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Abstract: Understanding drought evolution and its driving factors is crucial for effective water
resource management and forecasting. This study enhances the analysis of drought probability by
constructing bivariate distributions, providing a more realistic perspective than single-characteristic
approaches. Additionally, a meteorological drought migration model is established to explore
spatiotemporal paths and related characteristics of major drought events in the Choushui River
alluvial fan. The results reveal a significant increase in the probability of southward-moving drought
events after 1981. Before 1981, drought paths were diverse, while after 1981, these paths became
remarkably similar, following a trajectory from north to south. This is primarily attributed to the
higher rainfall in the northern region of the Choushui River alluvial fan from February to April,
leading to a consistent southward movement of drought centroids. This study proposes that climate
change is a primary factor influencing changes in the spatiotemporal paths of drought. It implies
that changes in rainfall patterns and climate conditions can be discerned through the meteorological
drought migration model. As a result, it provides the potential for simplifying drought-monitoring
methods. These research findings provide further insight into the dynamic process of drought in the
Choushui River alluvial fan and serve as valuable references for future water resource management.

Keywords: standardized precipitation index; bivariate copula function; drought migration model;
drought spatiotemporal path; Choushui River alluvial fan

1. Introduction

According to the 2022 Emissions Gap Report from the United Nations Environment
Program [1], the current temperature increase may reach 2.4–2.6 ◦C by the end of this
century. Rising temperatures will have a devastating impact on the global environment,
leading to an increase in the frequency of natural extreme events, such as heatwaves, floods,
and droughts. What is even more challenging to adapt to is the abrupt transition from one
extreme event to another [2]. Rapid changes in extreme events will have a more pronounced
impact on society and the economy, potentially causing devastating damage. Therefore, it
becomes crucial to explore the relationship between climate change and extreme events [3].

Drought is one of these extreme events which leads to greater economic losses com-
pared to other natural disasters [4]. This phenomenon is observed worldwide and tends
to recur. It has adverse effects on water resources [5], agricultural production [6], ecosys-
tems [7], and human health [8]. Droughts are typically classified into four types [9,10],
including meteorological drought, hydrological drought, agricultural drought, and socioe-
conomic drought. Among them, meteorological drought is determined by the dryness of a
region, usually caused by prolonged insufficient rainfall. It tends to precede and lead to the
occurrence of the other three types of drought. The identification and characterization of
drought events are essential prerequisites for drought frequency analysis and spatiotempo-
ral variability analysis. However, accurate identification and characterization of drought
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events still face significant challenges [11]. Since the definition of drought is difficult to unify
across different regions, establishing robust drought indices is crucial for the identification
and characterization of drought events [10,12]. Over the past few decades, various meteoro-
logical drought indices, such as the Standardized Precipitation Index (SPI) [13], the Palmer
Drought Severity Index (PDSI) [14], and the Standardized Precipitation Evapotranspiration
Index (SPEI) [15], have been continually developed. Among these indices, the SPI is widely
employed in various studies. Despite criticism for its assumption of the dominance of
precipitation in drought impact, SPI remains widely used due to its flexibility in time scale,
straightforward calculation, and comparability across different climatic regions [16,17]. On
the other hand, the Palmer Drought Severity Index (PDSI) is a drought index based on the
balance between water supply and demand. It is heavily influenced by current climatic
conditions, and the parameters needed for its calculation are obtained from meteorological
data. However, its applicability to other regions may be limited, and adjustments may be
necessary based on the specific conditions of the study area. Additionally, the SPEI is based
on SPI, incorporating potential evapotranspiration (PET) for assessment. Under conditions
of global warming, the SPEI is considered to be more effective in monitoring actual drought
conditions. However, calculating PET can be challenging due to its involvement of multiple
factors [18]. Results obtained from different PET calculation formulas may vary widely, and
there is also a risk of overestimating the influence of a certain factor [19]. Because the SPEI
requires a significant amount of data, its uncertainty and complexity far exceed that of the
SPI, which can be calculated solely based on precipitation data. In Taiwan, many studies
have used the SPI to analyze drought characteristics [20,21] and establish drought warning
systems [22], demonstrating the reliability of the SPI in studying meteorological drought
in Taiwan. For this study, the SPI was chosen for drought analysis due to its convenience
and accuracy in data acquisition, as well as its recognized sensitivity in identifying extreme
drought events in previous studies [23–25].

Examining the probability characteristics of drought performance is an important
method for understanding water resource scarcity [26]. Current drought studies often
employ univariate frequency analysis to quantify the probability characteristics and magni-
tude of drought, providing valuable insights into the severity and likelihood of drought
events. However, this approach overlooks the fact that extreme events are typically mul-
tivariate rather than univariate. Since defining multivariate distributions is challenging
and comes with high uncertainty, this study employs copula functions to establish the joint
distribution of bivariate drought characteristics. Copula functions offer the advantage of
independently selecting appropriate marginal distributions for two drought variables. They
also allow for the choice of suitable models to capture the dependency relationship between
the two [27]. Compared to other bivariate functions, such as bivariate normal distribu-
tion [28,29], bivariate gamma distribution [30], bivariate exponential distribution [31], and
bivariate extreme value distribution [32,33], Copula functions exhibit superior flexibility
and fitting performance.

Currently, drought-monitoring methods mainly involve analyzing the time series
of drought indices to investigate drought conditions in specific regions. However, these
simplified methods can only independently discuss the temporal and spatial changes of
drought and cannot describe the spatiotemporal structure of drought [19]. In order to
track spatial drought in real time and enhance our understanding of the spatiotemporal
development of drought, it is essential to conduct research on key drought characteristics
including duration, intensity, and spatial extent [12,19,34]. Based on these studies, an
analytical framework for the spatiotemporal dynamics of drought can be formed to obtain
information on the spatiotemporal paths of drought. This analytical framework identifies
the drought status of each grid by dividing the study area into multiple grids, calculating
drought indicators in the spatial context, and establishing their thresholds. The overall
dynamic behavior of drought in the study area can be described according to the spatial
migration path of drought clusters, onset and end time, and drought characteristics [35,36].
While this method has found extensive application in large-scale analyses, its effectiveness
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in capturing the spatiotemporal evolution characteristics at relatively smaller spatial scales
remains a challenge. Zhou et al. [37] proposed a drought migration research method
based on topological spatial relationships, which effectively analyzed the spatial clusters,
migration trajectories, and migration directions of meteorological droughts in the Poyang
Lake Basin, China. However, the drought cluster identification method (DCI) used in their
study tends to be complex in calculation and is often subject to limitations imposed by
parameters and conditional assumptions. Therefore, Han et al. [38] proposed a drought
migration model to characterize the spatiotemporal distribution characteristics of drought
and describe the process of drought characterized by the track, path, direction, and velocity
of gravity migration under the unconditional assumption. It not only analyzes the factors
affecting agricultural drought through spatiotemporal dynamic migration of the drought
centroids in the Loess Plateau but also provides a reference for agricultural drought early
warning, prevention, and mitigation of drought losses in the Loess Plateau from the
perspective of time and space.

Describing the spatiotemporal evolution (paths, directions, etc.) of drought not
only helps us understand its development process and driving force but also allows for
further improvements in drought-monitoring methods, thereby reducing the impact of
drought [12,35,38]. However, the current drought research in Taiwan focuses on evaluating
the characteristics of drought through different drought indicators, and the grasp of the spa-
tiotemporal development and path characteristics of drought is still insufficient. Therefore,
to enhance insights into the spatiotemporal development of drought, this study employs
the Standardized Precipitation Index to identify the temporal and spatial characteristics
of drought events. Through a two-dimensional copula function, it establishes the joint
probability distribution of extreme drought coverage and duration to select major drought
events. Subsequently, this study conducts an in-depth analysis of the frequency distribu-
tion, spatiotemporal paths, and degree of variation in major drought events through the
implementation of a meteorological-based drought migration model.

2. Materials and Methods
2.1. Study Area and Data

This study selected the Choushui River alluvial fan to analyze the spatiotemporal
paths of drought. The Choushui River alluvial fan is located on the central–western coast of
Taiwan, encompassing parts of Changhua County, Yunlin County, and the northern region
of Chiayi County. It stretches approximately 70 km in length and 40 km in width, covering
a total area of about 1800 square kilometers [39]. The terrain in this area slopes gently,
with elevations ranging from sea level to 100 m above sea level, as depicted in Figure 1.
Subject to the influence of the southwest monsoon and typhoons, the area experiences a
wet season from May to October, while the period from November to the following April
constitutes a dry season due to the obstruction of the Central Mountain Range. This study
compiles data on the annual precipitation from 1960 to 2021. The distribution of annual
precipitation ranges from 910 mm to 1940 mm, with a tendency for greater rainfall in the
eastern areas compared to the west due to topographical effects. The uneven spatial and
temporal distribution of precipitation, compounded by anomalies attributed to climate
change, has resulted in insufficient surface water supply in the region. The monthly
rainfall data from 1960 to 2021 used in this study were obtained from the Taiwan Climate
Change Projection and Information Platform (TCCIP), which provides about 5 km grid
(the spatial resolution is 0.05◦ × 0.05◦) rainfall data. These grid data use the coordinate
system GCS_WGS_1984. It should be noted that each data point represents the average
value within the grid range centered around the latitude and longitude of that data point.
For example, for a grid data point with a latitude and longitude of 119.45◦ E, 23.2◦ N and
a resolution of 0.05 degrees, it represents the average value within the range of 119.425◦

E–119.475◦ E, 23.175◦ N–23.225◦ N.
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Figure 1. The geographical information map of the Choushui River alluvial fan.

2.2. Standardized Precipitation Index (SPI)

In this study, drought is calculated by the Standardized Precipitation Index (SPI), with
four drought intensities being used to identify meteorological drought events at different
time scales [13,40]. These intensities include the following: mild (−1.0 < SPI ≤ 0), moderate
(−1.5 < SPI ≤ −1.0), severe (−2.0 < SPI ≤ −1.5), and extreme (SPI ≤ −2.0) drought.

Generally, a one-month-scale SPI exhibits high spatiotemporal variability as it es-
sentially standardizes monthly precipitation, resulting in a higher frequency of shorter
individual drought events [37]. While it has the advantage of quickly tracking drought
occurrence, it is less suitable for generating subsequent drought paths. Therefore, in this
study, a three-month-scale SPI (SPI-3) is used to characterize drought conditions in the
Choushui River alluvial fan.

2.3. Drought Coverage (Dc)

Drought coverage is defined as the extent of drought occurrence in the study area over
a specific period [38]. In this study, a grid of 0.05◦ is utilized to represent the extent of the
study area. Drought coverage is expressed as the ratio of the number of drought grids for
the current month to the total number of grids, as shown in Equation (1):

Dc =
m

TD
× 100% (1)

where m represents the number of grids experiencing drought in the current month, and
TD represents the total number of grids in the study area. A higher Dc value indicates a
larger area affected by drought. Additionally, four drought scales are classified as follows:
no obvious drought (Dc < 10%), partial drought (10% ≤ Dc < 25%), regional drought
(25% ≤ Dc < 50%), and regional-wide drought (Dc ≥ 50%).
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2.4. Selection of Major Drought Events

A drought event is defined as a continuous negative SPI value over a period of time,
including cases where SPI is less than −1 [13]. The threshold for the occurrence of drought
events was set at a drought coverage of 10%. Drought events with a Dc below 10% were
considered as having no drought occurrence. Combined with these two conditions, the
duration of drought events (dd) can be calculated based on their onset and end times.

Compared to general drought events, major drought events occur less frequently but
often result in more significant impacts on the study area. Therefore, they are the focal
point of discussion in this study. The selection of major drought events is conducted using
a bivariate distribution established through the copula function [41]. The choice of an
appropriate copula is based on methodologies outlined in prior research [42,43]. The main
process for selecting major drought events in this study follows these steps:

(1) Select drought characteristics as drought variables to assess the magnitude and fre-
quency of drought events.

(2) Construct the marginal distributions of the two random variables separately [27,44].
(3) Fit the copula function and estimate its parameters [45].
(4) Perform goodness-of-fit tests to choose the optimal copula function [46].
(5) Determine major drought events through thresholding of joint distribution probabili-

ties.

The variables used to evaluate drought magnitude include severity, duration, and
spatial extent [47]. Given that the primary objective of this study is to delve into the
spatiotemporal characteristics and dynamic processes of drought events, the criteria for
selecting major drought events in this study prioritize drought coverage and duration. This
approach is more conducive to subsequently establishing a drought migration model and
conducting spatiotemporal characteristic analyses. Additionally, to ensure the selection of
major drought events based on their intensities, this study utilizes the drought coverage of
extreme drought (Dc(SPI ≤ −2)) as a characteristic to describe the spatial extent of drought
in the Choushui River alluvial fan. The joint probability distribution constructed in this
section allows for the quantification of the occurrence probability for various combinations
of extreme drought coverage (Dc(SPI ≤ −2)) and duration (dd), aiding in the selection
of major drought events. In this study, major drought events are defined as those falling
within the first third of the drought events, where the joint probability distribution of
Dc(SPI ≤ −2) and dd is greater than or equal to 67%.

2.5. Spatiotemporal Paths of Drought Events

The application of centroids is an important method for studying spatial distribution
in research related to the migration of matter and energy [48]. Using the drought migration
model to determine the spatial migration path of drought is essential for analyzing the
spatiotemporal characteristics of the drought in the Choushui River alluvial fan. The
drought migration model comprises the following four steps:

(1) Identifying drought events: Drought events are defined as a continuous negative
value of SPI for a period of time, including the occurrence of an SPI less than −1 [13].
In this study, the minimum drought area threshold was set at 10%.

(2) Screening of the grid: The study area is divided into multiple grids for analysis. Each
grid is evaluated based on the drought index to determine if it experiences drought
(SPI < 0). If drought occurs, the drought state (Ds) is assigned a value of 1; otherwise,
it is assigned a value of 0, as shown in Equation (2):

Ds(t) =
{

1 if SPI < 0
0 if SPI ≥ 0

(2)

where Ds is the drought state.

(3) Determining the location of the drought centroids: The drought area is determined
by grids where Ds is equal to 1. To account for the different weights of the SPI, the
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SPI values within each drought grid are recorded. The centroid coordinates are used
to represent the spatial location of the drought event in that month, as shown in
Equation (3):

(X, Y) =


X =

n
∑

i=1
SPIiXi

/
n
∑

i=1
SPIi

Y =
n
∑

i=1
SPIiYi

/
n
∑

i=1
SPIi

(3)

where X and Y represent the longitude and latitude of the drought centroid in the study
area, respectively; Xi and Yi represent the longitude and latitude of the ith grid center,
respectively; and Pi represents the SPI of the ith grid.

(4) Connecting centroids: By connecting the centroids of drought events, it is possi-
ble to comprehensively describe the path, length, and velocity characteristics of
drought events.

Figure 2 depicts the schematic diagram of the drought migration model. In general,
the position of the drought centroid for each month is determined by the Standardized
Precipitation Index (SPI) values of the drought grids. Darker red areas on the diagram
indicate more severe drought conditions with smaller SPI values, causing the drought
centroid to move closer to these regions. Blue grids represent the absence of drought, and
they do not affect the centroid’s position. Connecting the centroids of each month during a
drought event forms the spatiotemporal path, from which drought characteristics such as
onset and end locations, path length, velocity, and direction can be derived. In this study,
the direction (i.e., direction of migration) is defined as the direction from the onset location
to the end location of the drought event, independent of the path of the drought. In this
study, eight compass directions are used for classification.
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2.6. Spatial Distribution of Drought

This study quantifies the monthly drought frequency of each grid using the SPI. Its
value can be calculated based on the Ds defined in Section 2.5, as shown in Equation (4):

pi =

N
∑

t=1
Ds(t)

N
(4)

where pi represents the monthly drought frequency of each grid, and N represents the total
number of months in the study period. Since Ds(t) can only take values of 0 or 1, pi ranges
between 0 and 1. Subsequently, Ordinary Kriging is employed for the spatial interpolation
of monthly drought frequencies to describe the spatial distribution of drought conditions
and trends across the entire region. This method is known for its ease of computation and
interpretation, along with providing good interpolation accuracy [49].
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3. Results and Discussion
3.1. Direction of Drought Events

Based on the SPI results and the drought event identification method, a total of
54 drought events occurred in the Choushui River alluvial fan from 1960 to 2021. In order to
better understand the spatial characteristics of these drought events, the relative positions
of the onset locations and end locations of the drought events are depicted in Figure 3. The
onset locations of drought events are mostly distributed to the north of the centroid of the
Choushui River alluvial fan, while the end locations are mostly distributed to the south,
indicating a general south direction. Figure 4a illustrates the directions of drought events,
with the south direction being the most common, occurring in a total of 21 events. There
are only eight events each for the east, southeast, and southwest directions. Since other
directions occur less frequently, they are combined for further discussion.
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In addition, this study analyzes changes in the probability of a south direction, as
shown in Figure 4b. The results indicate that after 1981, there was a significantly higher
probability of south directions compared to before 1981, suggesting that a change in climate
conditions occurred in that year. Therefore, this study divides the entire study period into
pre-1981 and post-1981 periods. Table 1 presents the probabilities of different directions in
the entire study period (all), the pre-period (1960–1981), and the post-period (1981–2021).
The results reveal that in the pre-period, the probabilities for south, east, and southeast
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directions were all 23.8%, with no significant differences among directions. However,
the probability of the south direction in the post-period increased from 23.8% to 48.5%,
indicating that approximately half of the drought events during the post-period exhibited
a south direction. In addition, the probability of a southwest direction increased from 9.5%
to 18.2%, while the probabilities for the remaining directions decreased. Specifically, the
probabilities for the east and southeast directions decreased from 23.8% to 9.1%.
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moving drought events after each year.

Table 1. Probability of directions for drought events.

Time S E SE SW Others

all 38.9% 14.8% 14.8% 14.8% 16.7%
pre-period
(1960–1981) 23.8% 23.8% 23.8% 9.5% 19.0%

post-period
(1981–2021) 48.5% 9.1% 9.1% 18.2% 15.2%

3.2. Spatial Distribution of Drought Frequency in Different Periods

Visualizing drought frequency enables us to comprehend the spatial distribution of
droughts across different time periods. This section explores the spatial distribution of
drought frequency in the entire study period (all period), pre-period (1960–1981), and post-
period (1981–2021), as shown in Figure 5. The spatial distribution clearly reveals significant
variations in drought frequency between the pre-period and post-period. During the pre-
period, a higher drought frequency accumulates in the northeast of the Choushui River
alluvial fan. In contrast, in the post-period, a higher drought frequency accumulates in the
southeast. Since the post-period constitutes about two-thirds of the entire study period, it
significantly influences the drought frequency for the entire study period, concentrating it
in the southeast of the Choushui River alluvial fan. Nevertheless, it also reflects the Impact
of drought frequency during the pre-period, indicating a tendency to extend northward.

Regarding drought frequency throughout the entire study period, the range is from
0.429 to 0.463. In the pre-period, it ranges from 0.457 to 0.485, while in the post-period,
it ranges from 0.407 to 0.465. This indicates that droughts were more frequent in the pre-
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period compared to the post-period. This observation aligns with the analysis of drought
event occurrence periods. Over the 61-year study period, there were 54 drought events,
averaging approximately 0.885 events per year. In the pre-period, there were 21 drought
events, averaging 1 event per year; In the post-period, there were 33 drought events,
averaging approximately 0.825 events per year. This implies a higher frequency of drought
events during the pre-period.
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3.3. Joint Probability Distribution and Major Drought Events

To determine the most suitable distribution for fitting drought variables, cumulative
distribution functions (CDFs) of the exponential, lognormal, gamma, and Weibull distri-
butions were applied to both Dc(SPI ≤ −2) and dd. This study evaluated the goodness
of fit of the marginal functions through logarithmic likelihood ratio, AIC, and BIC values.
A higher logarithmic likelihood ratio and lower AIC and BIC values indicate a better fit,
as shown in Table 2. The results indicate that the most suitable distribution functions for
drought duration (dd) are the gamma distribution and Weibull distribution, while for ex-
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treme drought coverage (Dc(SPI ≤ −2)), the gamma distribution is appropriate. Therefore,
this study selects the gamma distribution as the marginal distribution for further bivariate
copula analysis. Additionally, the Archimedean copula function family, including Gumbel,
Clayton, and Frank copulas, is widely applied in drought research due to its properties of
uniformity and tail-dependence [50,51]. Therefore, this study employs maximum likeli-
hood estimation to estimate the parameters (θ) of the Clayton, Frank, and Gumbel copula
functions. The parameters estimated for these three copula functions are 0.32, 1.22, and
1.3, respectively. The AIC and BIC values are employed to select the best-fitting function.
Among these copula functions, the Gumbel copula shows the lowest AIC and BIC values,
as shown in Table 3. This indicates that the Gumbel copula provides the optimal fit for the
joint distribution of Dc(SPI ≤ −2) and dd. Therefore, in this study, the Gumbel copula is
chosen to construct the joint distribution function for Dc(SPI ≤ −2) and dd.

Table 2. The log-likelihood ratio, AIC, and BIC values for marginal functions.

dd

Distributions Loglikelihood AIC BIC

exponential −153.358 308.7158 310.7048

lognormal −98.49 200.97 204.95

gamma −97.08 198.16 202.14

Weibull −97.08 198.16 202.14

Dc(SPI ≤ −2)

Distributions Loglikelihood AIC BIC

exponential −229.61 461.21 463.20

lognormal −167.55 339.09 343.07

gamma −143.38 290.76 294.73

Weibull −153.32 310.63 314.61

Table 3. The θ, AIC, and BIC values for Archimedean copula functions.

Clayton Copula Gumbel Copula Frank Copula

θ 0.32 1.22 1.3
AIC 0.47 −2.58 0.11
BIC 2.44 −0.61 2.08

A joint probability distribution is depicted to select the major drought events, as
shown in Figure 6. This study selected the joint probability distribution in the first third,
i.e., events with Dc(SPI ≤ −2) and dd greater than or equal to 67%, as the main focus for
further discussion. A total of seven drought events were selected, labeled as No.3, No.5,
No.14, No.29, No.34, No.41, and No.54. These events were further classified as the major
drought events in the Choushui River alluvial fan during the study period.
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3.4. Spatial Migration Process of Major Drought Events

In this study, a drought migration model is established to analyze the drought spa-
tiotemporal paths of seven selected major drought events, as shown in Figures 7 and 8.
Notably, the paths in the pre-period exhibit distinct directions, including north, east, and
southeast. However, in the post-period, these paths become remarkably similar, following
a trajectory from north to south.
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In the early stages of all major drought events, the drought centroids rapidly approach
the region near the centroid of the Choushui River alluvial fan, with migration velocities of
15.0, 16.3, 10.1, 16.6, and 12.1 km per month, respectively. Except for the drought events
No.41 and No.54, the migration velocities in the first month are particularly slow, only
1.0 km per month. The drought centroids accelerate towards the centroid of the Choushui
River alluvial fan before the third month, with migration velocities of 11.4 km per month
and 25.1 km per month, respectively. Subsequently, the drought centroids continue to
approach the region near the centroid of the Choushui River alluvial fan, but the migration
velocity decreases, ranging from 3 km to 10 km per month. They reach the vicinity of the
centroid of the Choushui River alluvial fan 1 to 3 months later. In the No.34 drought event,
the drought centroid did not move closer to the centroid of the Choushui River alluvial fan
from December to January. Instead, it shifted 5.5 km to the northeast; however, this change
only persisted for one month. From January to February, the drought centroid resumed
its approach to the region near the centroid of the Choushui River alluvial fan, moving
3.8 km southward towards the vicinity of the centroid of the Choushui River alluvial fan.
The centroids of all seven major drought events will reach the region near the centroid of
the Choushui River alluvial fan in February or March (the mid-term of the drought event).
At this time, the migration velocities decrease to within 3 km per month. The direction will
also be irregular, with instances of stagnation; however, this situation will only persist for 1
to 3 months. Finally, in the last 1 to 3 months before the end of the drought (the late stages
of drought events), the drought centroids accelerate and move away from the centroid of
the Choushui River alluvial fan. Among these major drought events, the directions in the
pre-period differ: the No.3 event moves eastward, the No.5 event moves southwestward,
and the No.14 event initially moves eastward before turning northeastward; however,
the directions in the post-period all accelerate southward and leave the centroid of the
Choushui River alluvial fan. Specifically, the No.29 event moves at a velocity of 5.4 km per
month, the No.34 event at 11.8 km per month, and the No.54 event at 8.2 km per month.
Despite the No.41 event, from March to April, the drought centroid moves southward at a
velocity of 7.1 km per month and departs from the vicinity of the centroid of the Choushui
River alluvial fan; however, the migration velocity drastically drops from April to May,
moving only 0.8 km to the east. Then, from May to June, it suddenly shifts northward by
5.0 km. Nevertheless, the overall drought path still remains in a south direction.

From observing the spatiotemporal paths of the seven major drought events, it can
be discerned that the drought paths in the early and late stages are long and the velocity
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is high. In contrast, during the mid-term of drought events, the paths are shorter and the
spatial distribution of centroids is denser. In the early and late stages of a drought event,
due to significant fluctuations in drought coverage, the migration velocity is generally
higher. However, during the mid-term of a drought event, the drought coverage reaches
its peak, resulting in a noticeable slowdown in migration velocity. Based on this pattern,
it is evident that when the drought coverage increases, the drought path length shortens.
This is because, with a larger expanse of drought area, the distance between centroids
decreases, leading to slower migration velocity. Conversely, when the drought coverage
is lower, the distance between centroids increases, resulting in a longer path length and
higher migration velocity.

3.5. Links between Rainfall Patterns and Drought Paths

In order to understand the relationship between drought spatiotemporal paths and
rainfall patterns, Figure 9 illustrates the monthly rainfall distribution during major drought
events. The results highlight substantial spatial variations in rainfall between the northern
and southern regions each month. To better understand how these differences influence the
trajectory of drought paths, the Choushui River alluvial fan is divided into northern and
southern regions based on its centroid location. Rainfall amounts are computed separately
for the two regions. Figure 10 shows the cumulative percentage of rainfall in the northern
and southern regions of the Choushui River alluvial fan. This analysis explores how the
disparity in north–south rainfall distribution impacts the spatial migration process.
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Figure 9. Distribution of rainfall and drought paths for major drought events. Red dots denote
the centroids of drought events for all months within the drought event, yellow dots represent the
drought centroids in the current month, and blue lines depict the drought paths.
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regions of the Choushui River alluvial fan.

In the pre-period, major drought events exhibit significant divergence in spatiotempo-
ral paths, with onset and end locations widely separated. Generally, the onset locations of
drought events are significantly influenced by the monthly rainfall distribution. During the
winter, drought centroids tend to approach and linger around the centroid of the Choushui
River alluvial fan due to scarce winter rainfall in the whole study area. However, major
drought events in the post-period follow the trajectory from north to south in the post-
period. They all begin in the northern region of the Choushui River alluvial fan. During
the winter, the drought centroids tend to approach and linger around the centroid of the
Choushui River alluvial fan. In the late stage of drought events, the drought centroids
tend to move southward and ultimately end in the southern region of the Choushui River
alluvial fan, because the cumulative rainfall percentage in the northern region significantly
exceeds that in the southern region.

Figure 10 indicates that in the post-period, there was a higher accumulation of rainfall
from February to April, which may be related to the Pacific Decadal Oscillation (PDO).
Numerous studies have highlighted that during positive phases of the PDO index, sea
surface temperatures in the tropical central and eastern Pacific are warmer. This warming
induces anomalous flow patterns of low-level anticyclones over the Philippine Sea. This
leads to more spring rainfall in Taiwan [52,53]. These findings align with the results of
this study, indicating that the pre-period is mainly characterized by the negative PDO
phase, whereas the post-period is predominantly associated with the positive PDO phase.
Additionally, another factor influencing the interannual variation in spring rainfall is the
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El Niño–Southern Oscillation (ENSO). The ENSO, with a shorter periodicity compared
to PDO, has a more profound impact on extreme events [54]. Jiang et al. [55] point out
that since the late 1970s, there has been a significant positive correlation between Niño-3
SST during the cold season and subsequent spring rainfall in western Taiwan. Researchers
found that there are substantial differences in the large-scale environmental conditions
associated with heavy spring rainfall events during strong El Niño years compared to
non-El Niño years. The intrusion of weak mid-latitude front systems into the eastern
coastal areas of China, coupled with the low-level anticyclone over the Philippine Sea in the
troposphere, is the primary factor leading to more heavy spring rainfall events in Taiwan
during strong El Niño years.

4. Conclusions

This study employs the 3-month-scale Standardized Precipitation Index (SPI-3) to
identify drought events in the Choushui River alluvial fan from 1960 to 2021. The SPI-3 is
considered a suitable indicator for establishing a drought migration model. Appropriate
marginal distribution functions and copula functions are used to construct a bivariate
probability distribution and select major drought events. Additionally, a drought migra-
tion model is established for these seven major drought events to further analyze their
development processes and spatiotemporal characteristics. The results reveal a total of
54 drought events. Regarding the spatiotemporal characteristics of drought events, our
study indicates a notable difference in drought direction between the pre- and post-periods.
In the pre-period, irregular directions are observed, while in the post-period, the probability
of droughts moving southward is more than twice that of the pre-period. In terms of spatial
distribution, there is also a noticeable difference in drought frequency between the pre-
and post-periods. Subsequently, this study explores the probability of drought occurrence
and selects seven major drought events through the construction of a bivariate probabil-
ity distribution, providing a more realistic analysis of drought conditions compared to
analyzing based on a single drought characteristic. Finally, the drought migration model
demonstrates that the paths in the pre-period are diverse, while the paths in the post-period
of drought events all follow a trajectory from north to south. This is primarily attributed
to higher rainfall in the northern region from February to April, leading to a consistent
southward movement of drought centroids. It implies that changes in rainfall patterns
and climate conditions can be discerned through the meteorological drought migration
model. This study proposes that climate change is a primary factor influencing changes in
the spatiotemporal paths of drought. Additionally, it provides potential for simplifying
drought-monitoring methods. However, this study only relies on historical precipitation
data to establish the drought migration model and assess changes in the climatic conditions
of the study area. To deepen our understanding of drought conditions in the Choushui
River alluvial fan and provide guidance for future government water resource management,
this study contends that establishing a drought migration model for future drought events
can estimate their development and forecast their distribution, enabling early implemen-
tation of water resource management and adaptation strategies to mitigate the adverse
impacts of drought. These findings provide further insight into the dynamic process of
drought and serve as valuable references for future water resource management.
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