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Simple Summary: Mineral metabolism is altered with the onset of lactation, and a reduction in
concentrations of calcium (Ca) in blood, particularly when it persists for days, is associated with
increased risk of peripartum diseases. Hypocalcemia affects immune function, which seems to
underlie the susceptibility to other diseases. Hypocalcemia is not caused by inadequate Ca intake
but by the inability to adapt to the irreversible losses of Ca that disrupt homeostatic mechanisms
that control blood Ca concentrations. A common method to reduce hypocalcemia is the feeding of
acidogenic diets prepartum. Alternative strategies such as prepartum feeding P and Ca chelating
agents and administration at calving of active vitamin D3 metabolites have shown promising results.

Abstract: Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magne-
sium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize
colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it
lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent,
hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum
dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy
cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia
and increased susceptibility to other peripartum diseases and impaired reproductive performance.
Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows,
which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca
intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the
understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as
parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal
Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies
to prevent mineral imbalances either by nutritional or pharmacological interventions. A common
method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion
difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia,
but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that
induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocal-
cemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by
reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to
production and health remain to be shown. Alternative strategies to minimize subclinical hypocal-
cemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent
administered immediately after calving have shown promising results in reducing hypocalcemia and
altering immune cell function, which might prove efficacious to prevent diseases in early lactation.
This review summarizes the current understanding of Ca homeostasis around parturition, the limited
knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications
of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of
hypocalcemia and their impacts on productive performance and health in dairy cows.
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1. Introduction

One of the consequences of lactation is the change in mineral metabolism, in particular,
Ca. Colostrum is rich in Ca, with approximately 2.0 to 3.0 g/L [1–3]. In Holstein cows, 20 to
40 g of Ca are secreted by the mammary gland on the first day postpartum [1–3], and some
cows are unable to properly adapt to this abrupt and irreversible loss of the mineral, thus
impairing Ca homeostasis and leading to the development of hypocalcemia. Immediately
before calving, a Holstein cow requires approximately 20 to 30 g/d of absorbable Ca,
9 to 10 g for uterine tissue accretion [4], 10 g to replenish the daily fecal losses when
consuming 10 to 11 kg of dry matter daily [5], and another 1.5 to 10 g to meet the urinary
losses depending on the type of diet fed [3,6]. With colostrogenesis, the daily needs for
absorbable Ca increase substantially, and Ca sequestration by the mammary gland starts
before parturition [7], thus reducing concentrations in plasma at least 9 h before calving [8].
In some cases, such as multiparous Jerseys fed an alkalogenic diet, the decline in plasma
Ca concentration seemed to start the day before calving [9].

Normocalcemic dairy cows maintain plasma total Ca in a range of 2.2 to 2.5 mM. Of
the total Ca in plasma, fractions vary with pH and albumin content, but approximately 48 to
52% is biologically active in the ionized form (Ca2+), 40 to 45% is bound to proteins, mainly
albumin, with the remainder bound to soluble anions such as bicarbonate, phosphate,
citrate, or lactate. Because of the sudden change in Ca needs, it is not surprising that the
prevalence of dairy cows with serum Ca < 2.0 mM in the first 48 h after calving is at least
25% in primiparous and 45% in multiparous cows [10]. Nevertheless, the true incidence of
subclinical hypocalcemia in early lactation depends on the frequency of blood sampling and
the threshold used for the concentration of total Ca in serum or plasma [11]. Although dif-
ferent thresholds have been used, the most commonly cited is total Ca less than 2.0 mM [10],
which is easily justified as almost every healthy cow past early lactation maintains plasma
total Ca above 2.0 mM. When sampling of blood is daily, then incidence ranges from 40 to
60%, even when cows are fed diets designed to improve peripartum Ca metabolism [2,12].
When concentrations of Ca in the blood drop, both total Ca and Ca2+ decrease, which has
consequences to dry matter intake (DMI), energy metabolism, and immune function [13,14],
thereby predisposing cows to other periparturient diseases [15–17]. This review provides
insights into the current understanding of mineral metabolism in periparturient dairy cows
with a focus on Ca and its impacts on health and productivity, and discusses nutritional
and pharmacological strategies to reduce the risk of hypocalcemia.

2. Risk Factors for Periparturient Mineral Imbalance

Colostrogenesis and the onset of lactation are likely the most important risk factors
for hypocalcemia, as removal of the mammary gland prevented cows from experiencing
a decrease in blood Ca at parturition [9]. Interestingly, mastectomy did not prevent the
reduction of blood P, possibly because the maintenance of blood P depends on the con-
sumption of dietary P and rumination to recycle P to the gut through saliva, both of which
are affected by parturition, which suggests that the etiology of hypocalcemia differs from
that of hypophosphatemia during the periparturient period.

DeGaris and Lean [17] found that the risk of milk fever increased by 9% per lactation.
The increased risk may be ascribed to greater colostrum yield, as there was a 50% increase
in the amount of Ca secreted in colostrum, from 16.9 in primiparous to 25.5 g in multiparous
cow at the first postpartum milking [3]. This marked increase in irreversible loss of Ca
requires immediate homeostatic mechanisms to ensure that blood total and Ca2+ will not
drop below critical values that impair cellular function [13,14]. The need for an immediate
homeostatic response is emphasized by a limited plasma pool of 2 to 4 g of Ca and the lag
time between stimulation of parathyroid hormone (PTH) and calcitriol-induced uptake of
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Ca from the apical epithelium of the gastrointestinal tract (Figure 1). Further, readily labile
bone reserves of Ca are limited, perhaps as little as 8 to 10 g [18].
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Figure 1. Proposed gastrointestinal absorption of calcium (Ca) in bovine. (A), in vitro studies suggest
the presence of active transport of Ca in the rumen epithelium; however, it remains unclear the
exact mechanism and the Ca channels involved in the apical absorption of Ca. The expression of
transient receptor potential vanilloid 6 (TRPV6), the classical channel present in enterocytes, is poorly
expressed in rumen epithelium. Alternatively, TRPV3, TRPV4, and a Ca/H+ exchanger are potential
channels involved in Ca uptake at the apical membrane. The presence of vitamin D receptors and
how 1,25-dihydroxyvitamin D3 regulates Ca transport in the rumen remains unknown. Likewise, the
presence of calbindin-D9k is uncertain. At the basolateral membrane, the ruminal epithelia express
plasma membrane Ca ATPase (PMCA1b), which extrudes Ca from the cell; however, the presence
of sodium (Na) Ca exchanger 1 (NCX1) needs to be determined. (B) On the apical membrane of
enterocytes, TRPV6 is primarily responsible for the uptake of Ca into the cell. Once in the cytosol,
Ca binds calbindin-D9k, and the complex is translocated to the basolateral membrane. On the
basolateral membrane, Ca is released from calbindin-D9k and can be extruded from the cell through
the NCX1, which is energy independent; however, because it increases the cytosolic concentration
of Na, Na/K-ATPase uses ATP to maintain Na balance by exchanging Na with potassium (K), thus
maintaining the cell potential. In addition, Ca can be extruded from the cell by the PMCA1b incurring
in ATP expenditure. 1,25-dihydroxyvitamin D3 plays a key role in Ca transport in the enterocyte by
stimulating mRNA and protein expression of TRPV6, calbindin-D9k, and NCX1. Calcium absorption
also occurs via paracellular transport in favor of the chemical gradient, but recent evidence suggests
some control of tight junction proteins claudin 2 an 12 by vitamin D, which can affect the passive
flow of Ca from the lumen of the gastrointestinal tract to the interstitial space and venules draining
the gastrointestinal tract. Arrows point to the direction of flow of a chemical element, the side of the
cell if apical or basolateral, or the effect of a stimulus (hormone or activation of gene) on multiple
cellular responses. Arrows with positive symbols indicate downstream stimulation. Different shapes
(circles, squares, triangles) with respective colors represent different minerals in and out of the cell.
Pocket shapes represent calbindin-D9k protein transporting Ca2+ within the cytosol. Channels in the
apical and basolateral membranes represent the different ion channels responsible for Ca2+ flux in
and out of the cell or for maintenance of cell potential.
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In addition to the increased loss of Ca in colostrum, intestinal vitamin D receptor
(VDR) abundance differs substantially between calves at 1 to 2 months of age and lactating
cows of at least 9 years old [19]. Such changes in VDR at the apical membrane of the rumen
epithelium may explain some of the increased risk of milk fever as cows age; however, a
systematic description of the distribution and abundance of VDR in the gastrointestinal
tract of Brown Swiss and Holstein cows showed no difference between those with a mean
age of 3.6 years, lactations 1 and 2, and cows with a mean age of 6.9 years, lactations 3 to
6 [20]. Old cows, in particular, Jerseys, which have increased susceptibility to hypocalcemia,
may also have reduced vitamin D-stimulated absorption of Ca in the gastrointestinal tract.
Nevertheless, dairy cows in most farms typically are younger than 7 years of age, and the
current data suggest that VDR expression might not be a reason that underlie increased
susceptibility to hypocalcemia as cows move from lactations 1 to 4 [10].

In contrast, as rats age, both bone and intestinal VDR abundance decrease [19]. Older
rats have less capacity to synthesize 1,25-dihydroxyvitamin D3 because of reduced PTH
receptors in kidney cells [21]. Moreover, older rats have reduced expression of Ca-binding
proteins that play a role in the transcellular transport of Ca in the intestine and kidney [22].

Although the concentration of Ca in serum in the first 2 d postpartum decreased as
parity increased, the largest increment in risk of hypocalcemia as cows aged was observed
between the first and second lactation [10]. It is unknown if the ability of vitamin D to
facilitate gastrointestinal absorption of Ca or influence bone remodeling changes as cows
age from first to second lactation. There is evidence that primiparous cows have more
active bone remodeling during the transition period than multiparous cows [3]. The latter
data suggest that the pattern of changes in Ca homeostasis as animals age is likely to occur
in dairy cows, despite modern dairy cows having a mean lifespan of only 6 to 7 years in
most farms. In any case, the loss of Ca with colostrogenesis and onset of lactation is likely
the major cause of hypocalcemia [9], and multiparous cows have increased risk because
they secrete 50% more Ca than primiparous cows [3]. Therefore, it is suggested that one of
the main reasons for the increased risk of hypocalcemia as cows age is the increased loss of
Ca in colostrum concurrent with potential alterations in bone remodeling, although one
cannot discard reduced gastrointestinal Ca absorption.

Dairy cows fed diets with high potassium (K) and inadequate Mg contents have im-
paired ruminal absorption of Mg, predisposing them to hypomagnesemia [23,24]. Evidence
suggests that tissue responsiveness to PTH is dependent on Mg [25], as responses to PTH
in target tissues rely on the activation of adenylate cyclase [26] and phospholipase C [27],
enzymes that require Mg for adequate cellular response [28,29]. In addition, hypomag-
nesemia reduces the ability of the parathyroid gland to secrete PTH in humans, even in
the presence of hypocalcemia [30], and it is possible that similar mechanisms might also
be present in dairy cows. Although experiments have not been conducted to titrate the
adequate Mg content in prepartum diets, calculations have been used to suggest a dietary
concentration of Mg that results in ruminal fluid concentrations that induce paracellular
flow down the concentration gradient. Goff [15,31] indicated that when dietary Mg content
is in low concentration, less than 0.25% of the diet dry matter, thereby resulting in a daily
intake of 25 to 30 g in a prepartum cow consuming 10 to 12 kg of dry matter, the ruminal
fluid concentrations of ionized Mg would be insufficient to induce paracellular transport,
and absorption would rely primarily on the active transcellular transport mechanisms.
In ruminants, the rumen-reticulum is the site for Mg absorption [24] and bypassing the
forestomach-induced hypomagnesemia in sheep [32]. The apparent digestibility of Mg
in dairy cows decreases with increasing dietary K content [33]. At 1% dietary K, the ap-
parent digestibility of dietary Mg was estimated at 24.1%, whereas at 2% dietary K, the
digestibility of Mg decreased to 16.6% [33]. The epithelium of the rumen papillae has
an electrical potential difference of −40 to −70 mV. A high intake of K increases ruminal
concentrations, which depolarizes the apical membrane of rumen papillae, thus perturbing
the transepithelial Mg transport across the cell [34]. On the other hand, at high dietary
Mg, concentrations of ionized Mg increase sufficiently to induce paracellular transport. In
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fact, absorption of dietary Mg is influenced by the intake of Mg in diets with high, but not
low K [35]. In wethers, when dietary K was 1% of the diet dry matter, increasing dietary
Mg from 0.13 to 0.37% did not affect the percentage of Mg that was absorbed, which was
approximately 35%, although grams of Mg absorbed increased; on the other hand, at high
dietary K content, 3.6% of the diet dry matter, increasing dietary Mg from 0.13 to 0.37%
of the diet dry matter increased the percentage absorbed from 16.5 to 24.0% [35]. At the
typical rumen concentration of ionized Mg of 0.2 to 0.4 mM, most absorption is through the
transepithelial transport; however, at concentrations above 0.4 mM, paracellular diffusion
is expected to be responsible for a considerable portion of Mg absorption [15,34]. Low
dietary Mg might predispose cows to hypocalcemia [36], and it has been suggested that
blood Mg concentration below 0.65 mM increases the risk of hypocalcemia [37].

A high intake of dietary P might also predispose cows to Ca imbalance in the peri-
partum period. A mathematical model predicted that increasing dietary P content from
0.3 to 0.4% of diet dry matter prepartum would result in an 18% greater risk of clinical
hypocalcemia [36]. Dietary P content has been shown to linearly increase blood P in dairy
cows [38], and in mouse models, increased blood P stimulates osteocytes to synthesize the
bone-derived hormone fibroblast growth factor 23 (FGF23) [39], a mechanism that presum-
ably is present in bovine although confirmation is needed. The main role of FGF23 is to
control blood P and prevent hyperphosphatemia through two mechanisms. First, FGF23
reduces the reabsorption of P by reducing the expression of the sodium-phosphate cotrans-
porters NaPi-2a (SLC34A1) and NaPi-2c (SLC34A3) in the cortex of the kidney [40], leading
to increased urinary output of P. Secondly, FGF23 regulates the rate-limiting enzyme in
vitamin D metabolism, 1α-hydroxylase (CYP27B1), responsible for the conversion of 25-
dihydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 in the kidney [41]. Dairy cows fed diets
with very low P content, 0.15% prepartum and 0.20% postpartum, had increased plasma Ca
concentrations compared with cows fed diets with 0.28 and 0.44% P pre- and postpartum,
respectively, suggesting a possible role of dietary P on peripartum Ca homeostasis [42].
Cows fed the diets limited in P had less inorganic P in plasma, which possibly prevented the
downregulation of 1α-hydroxylase by FGF23. Although differences were numerical, cows
fed diets limited in P had decreased concentrations of PTH and increased concentrations
of 1,25-dihydroxyvitamin D3 [42], perhaps suggesting an increased sensitivity to PTH to
maintain Ca homeostasis around calving. Some evidence from a controlled experiment
exists that limiting dietary P prepartum benefits peripartum Ca metabolism [43], and
systematic reviews of the literature suggest an association between increasing dietary P
prepartum and increased risk of hypocalcemia in early lactation [36,44]. In addition to
the calcemic effects, FGF23 also inhibits 1α-hydroxylase in peripheral blood mononuclear
cells [45], which might influence the suggested immunomodulatory effects of vitamin
D [46]. Appropriate dietary contents of K (<1.20% of the diet dry matter), P (<0.30% of
the diet dry matter), and Mg (0.35 to 0.45% of the diet dry matter) in prepartum diets are
critical to improve Ca homeostasis during the periparturient period and reduce the risk of
hypocalcemia [15].

Differences in susceptibility to hypocalcemia exist across different breeds, although
limited mechanistic data are available to explain those findings. Jersey cows have 2.4 times
greater odds of developing milk fever compared with Holstein cows [36]. Roche and
Berry [47] reported that, in grazing production systems, Jerseys had five times the odds of
developing milk fever compared with Holsteins, whereas crossbreds Holstein and Jersey
were at intermediate odds of having milk fever. It is unlikely that management would
explain the differences observed between those breeds. On the other hand, most of the
nutritional recommendations for periparturient dairy cows are based on experiments using
Holsteins. It is possible that maintenance of Ca homeostasis around calving differs between
Jerseys and Holsteins, and the nutritional approaches to prevent hypocalcemia might not
be exactly the same between the two breeds.

Body condition has been associated with hypocalcemia, and over-conditioned cows
are at greater risk of having the disease [48]. Indeed, over-conditioned cows had increased
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milk yield in response to oral Ca dosing after calving [49] and improved health perfor-
mance in response to exogenous administration of 1,25-dihydroxyvitamin D3 at parturition,
which drastically reduced the prevalence of hypocalcemia [50]. Because excessive BCS is
associated with the risk of multiple diseases and inflammation, it is plausible to think that
increased hypocalcemia in over-conditioned cows might be the consequence of reduced
appetite or the result of the inflammatory response, as discussed later in this paper.

In dairy cows, excessive body condition increases the risk of fatty liver, which alters
hepatic protein synthesis [51]. One possibility is that cows with an increased degree of
fatness prepartum might have impaired synthesis of vitamin D binding protein, thus
reducing the megalin-mediated endocytosis and, consequently, the supply of precursor
for subsequent hydroxylation to 1,25-dihydroxyvitamin D3. Vitamin D binding protein is
mostly synthesized in the liver [52], and it can bind to all vitamin D metabolites. The vitamin
D metabolites 25-hydroxyvitamin D3 and the active form 1,25-dihydroxyvitamin D3, the
latter considered a steroid hormone, can cross the plasma membrane of cells, but they can
also enter cells through a receptor-mediated endocytosis. Nykjaer et al. [53] demonstrated
that 25-hydroxyvitamin D3 bound to the vitamin D binding protein is filtered by the
glomerulus and reabsorbed in the proximal convoluted tubules through megalin-mediated
endocytosis delivering the cell the precursor for hydroxylation to 1,25-dihydroxyvitamin
D3 or for catabolism by hydroxylation by the 24-hydroxylase, an enzyme encoded by the
CYP24A1 gene, which results in production of 24,25-dihydroxyvitamin D, an inactive form
of vitamin D.

3. Gastrointestinal Absorption and Homeostatic Mechanisms Maintaining
Blood Calcium

It is well established that gastrointestinal absorption of Ca in monogastrics takes place
in the small intestine, but the site of absorption of Ca in ruminants is less well characterized,
especially in bovine. Quantitative data summarized by Schröder and Breves [54] showed
that the site of Ca absorption is influenced by the amount of Ca consumed by bovine. When
Ca intake was limited, amounts less than 100 g/d, the pre-duodenal net Ca absorption
was close to zero. On the other hand, when Ca intake was greater than approximately
100 g/d, then pre-duodenal net Ca absorption was greater than zero. These findings
probably explain why some experiments showed that most Ca absorption took place
pre-duodenum in dairy cattle [55], with little Ca being absorbed in the small intestine.
Schröder and Breves [54] observed that as Ca intake increased, the contribution from the
pre-duodenum to absorption increased, and pre-duodenal absorption of Ca influenced
intestinal absorption. Experiments in which pre-duodenal net Ca absorption was positive
resulted in limited to no intestinal net Ca absorption [54], perhaps because pre-duodenal
Ca absorption increases the concentrations of Ca2+ in blood, with the latter inhibiting the
secretion of PTH and thus, synthesis of 1,25-dihydroxyvitamin D3 needed to stimulate
active Ca absorption in the intestine. However, it is not uncommon for dairy cattle diets to
be supplemented with CaCO3, which is mostly insoluble at a pH close to neutral or slightly
acidic, such as the pH of the rumen fluid. The low solubility of CaCO3 would likely limit
the amount of Ca2+ present in the rumen fluid for absorption pre-duodenum.

Calcium absorption in the gastrointestinal tract occurs through two main pathways:
paracellular and transcellular transport (Figure 1A,B). Paracellular transport involves the
movement of Ca between adjacent epithelial cells and is energy independent [56]. Ep-
ithelial cells form intercellular junctions in their lateral membrane to maintain cellular
attachment and tissue integrity [57]. Among those, tight junctions are the major determi-
nant of paracellular permeability and these are formed by a complex of proteins. Within
tight junctions, claudin and occludin proteins form pores of different sizes and charge
selectivity, which can control the permeability to Ca2+ [58]. Claudin-2 and claudin-12 are
involved in divalent cation selectivity, such as Ca2+ [59]. Although paracellular transport
of Ca was previously thought to be an unregulated process controlled solely by chemical
gradient, recent evidence suggests a vitamin D-dependent regulatory mechanism. Feeding
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low Ca diets to goats increased expression of claudin-2 and claudin-12 in the small intes-
tine [60], potentially regulated by increased 1,25-dihydroxyvitamin D3 through the classical
VDR pathway as it has been shown in mice [59]. Furthermore, nongenomic actions of
1,25-dihyxroxyvitamin D3, through membrane-associated rapid-response steroid-binding
protein, also resulted in increased paracellular transport of Ca in the intestine of rats [61].
Interestingly, 1,25-dihyxroxyvitamin D3 suppresses the expression of the cell adhesion
protein, cadherin-17, and tight junction channel aquaporin-8, suggesting that vitamin D reg-
ulates the integrity and permeability of epithelial cells that can favor paracellular transport
of Ca [62]. In the bovine rumen epithelium, paracellular transport of Ca is supported by
in vitro [63] and in vivo studies [64], but the presence of claudin-2 and claudin-12, and their
vitamin D-dependent regulation warrants further research. An increased concentration of
Ca2+ is required in the lumen of the gut to form a positive chemical gradient that favors
paracellular transport. Based on the Nernst equation, which relates the numerical value of
the concentration gradient to the electrical gradient that balances it, the concentration of
Ca2+ should be greater than 6 mM in the lumen of the gastrointestinal tract for paracellular
transport of Ca to take place [65]. Nevertheless, recent results with bovine rumen epithelia
mounted in Ussing chambers showed that increasing the Ca2+ concentrations in the luminal
side of the epithelium from 1.20 mM to 3.74 or 11.2 mM resulted in a large increase in the
net flux of Ca from the mucosa to serosa at the same time that the secretory component of
Ca, from serosa to mucosa, remained unaffected [63]. These results suggest a stimulatory
effect of Ca2+ concentration on Ca absorption in the bovine rumen at concentrations smaller
than that theoretically needed to stimulate paracellular absorption. Therefore, the amount
of Ca intake, solubility of Ca in different dietary sources, and the gastrointestinal sojourn
time are important determinants of paracellular transport of Ca.

Transcellular transport of Ca constitutes the movement of Ca through the epithelial
cell and it can be subdivided into three steps. Calcium enters the cell through the apical
membrane; it is transported across the cytosol, and Ca exits the cell through the basolateral
membrane to the extracellular fluid and blood (Figure 1). In contrast with the paracellular
transport of Ca, transcellular transport is an energy-dependent process that does not require
a positive concentration gradient. Moreover, transcellular transport is tightly regulated with
extensive evidence for hormonal regulatory mechanisms. Uptake of Ca from the lumen
into the enterocyte is mediated by the transient receptor potential vanilloid channel (TRPV)
subfamilies 5 and 6, in which TRPV6 is only expressed in the intestine [66], whereas TRPV5
is also expressed in the kidney [67]. Because of the low concentration of cytosolic Ca2+,
approximately 100 nM, and the negative electrical potential inside the cell, Ca transport
through the TRPV5 or TRPV6 across the apical membrane is favored by the electrochemical
gradient of Ca and does not require energy. Once Ca enters the epithelial cell, it binds to
calbindin-D9k in the intestine [68] or calbindin-D28k in the kidney [69]. These proteins have
EF-hands region that binds with high affinity to Ca [70], and the complex is translocated
through the cell to the basolateral membrane. Nevertheless, Ca movement from the
cytosol to the extracellular space is against the concentration and electrical gradient and,
therefore, requires ATP. Indeed, the extrusion of Ca from the cell is an energy-dependent
process [71], which is reduced by the ATPase inhibitor trifluoroperizine [72]. At the
basolateral membrane, Ca is extruded from the cell by the plasma membrane Ca ATPase
(PMCA) and, to a lesser extent, by the plasma membrane Na/Ca exchanger 1 (NCX1) [73].
Although NCX1 does not require ATP directly, Na/K ATPase uses ATP to regulate the
cytosolic concentration of Na [74] and, therefore, both transporters are energy dependent
(Figure 1).

Gastrointestinal Ca absorption and homeostasis are highly regulated by calciotropic
hormones such as PTH and vitamin D metabolites. A decline in blood concentrations of
Ca2+ is sensed by Ca-sensing receptors in the Chief cells of the parathyroid gland [75],
which leads to PTH secretion into the blood. Degradation of PTH decreases in hypocalcemia
and, therefore, more PTH is available for secretion [76]. In the kidney, PTH increases Ca
reabsorption by directly stimulating the mRNA and protein expression of TRPV5. The
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increased transepithelial Ca2+ transport results in increased protein expression of other
Ca transport proteins, such as calbindin-D28k and NCX1 [77]. Concurrently, PTH inhibits
P uptake in the proximal convoluted tubule by reducing the Na+/inorganic phosphate
cotransport proteins NaPi-2a and NaPi-2c [78]. Hence, PTH increases Ca and decreases P
reabsorption from the urinary filtrate in an attempt to conserve Ca and excrete P.

In the bone, osteoblasts and osteocytes regulate bone remodeling by influencing the
expression of the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteo-
protegerin (OPG) [79]. The RANKL stimulates bone resorption, whereas OPG prevents the
interaction between RANKL to its receptor and stimulates bone formation [79]. Under PTH
stimulation, osteoblasts increase synthesis of RANKL which binds to RANK in osteoclast
precursors, stimulating cell maturation. In addition, PTH decreases OPG synthesis [80],
favoring bone resorption and release of Ca and P into the circulation (Figure 2F). Although
the classical target tissues are bone and kidney, PTH also stimulates adenylate cyclase
activity in enterocytes [81], which increases the duodenal uptake of Ca [82]. Even though
PTH has a direct effect on tissues, resulting in increases in blood Ca, PTH also influences
the vitamin D pathway (Figure 2D), which promotes increases in blood Ca by stimulating
gastrointestinal absorption (Figure 1A,B).

Synthesis of 1,25-dihydroxyvitamin D3 starts by cleavage of the beta ring of
7-dehydrocholesterol, an intermediate in the pathway of cholesterol synthesis, in the
skin of animals exposed to ultraviolet-B light radiation forming the secosteroid previtamin
D3 [83]. In a temperature-dependent reaction [84], previtamin D3 undergoes isomerization
into vitamin D3, which is released into the bloodstream. Vitamin D3 can also be absorbed
in the small intestine from dietary sources of animal origin, which for bovine would be
of minimum contribution. Fungi and yeast present in plants can use ergosterol to form a
similar compound, vitamin D2 or ergocalciferol, after exposure to UV light. Both vitamins
D3 and D2 can be activated through a series of hydroxylation reactions, first in the liver [85]
and then in the kidney [86], to form 1,25-dihydroxyvitamin D. Despite being very similar,
vitamin D3 is more efficiently converted into 1,25-dihydroxyvitamin D than vitamin D2 [87],
and data in dairy cattle show that supplementing vitamin D2 interferes with the ability of
vitamin D3 to increase plasma concentrations of 25-hydroxyvitamin D3 [88]. In the hepatic
mitochondria and microsomes, vitamin D3 is converted into 25-hydroxyvitamin D3 [89], the
major circulating form of vitamin D3 metabolites. Under current feeding practices, plasma
concentrations in dairy cows range mostly between 40 and 90 ng/mL [90]. Ultimately,
25-hydroxyvitamin D3 is transported into the renal mitochondria for hydroxylation of C1 by
the enzyme 1α-hydroxylase [86], forming 1,25-dihydroxyvitamin D3. This enzyme is the tar-
get of regulatory hormones and growth factors as it is the rate-limiting enzyme to produce
1,25-dihydroxyvitamin D3, thereby being highly regulated by calciotropic hormones [91].

Recent experiments with dairy cows showed that feeding large quantities of vitamin D3
(cholecalciferol) did not markedly increase plasma concentrations of 25-dihydroxyvitamin
D3 [3,92], thereby suggesting that the hepatic 25-hydroxylase likely is under some control.
The concentrations of 25-hydroxyvitamin D3 in the plasma of individual cows fed 3 mg of
vitamin D3 for the last 3 weeks of gestation [3] or for a period of 56 d during lactation [92]
did not exceed 90 ng/mL. However, when prepartum and mid-lactation cows were fed 1 to
4 mg/d of calcidiol, concentrations of 25-hydroxyvitamin D3 exceeded 140 ng/mL [3,92],
suggesting that regulatory mechanisms are in place to prevent excessive conversion of
vitamin D3 into 25-hydroxyvitamin D3, which are obviously evaded once cows are fed
25-hydroxyvitamin D3. Also, it is clear that one can achieve adequate concentrations of
25-hydroxyvitamin D3 in the plasma of cattle with a much smaller amount of calcidiol than
cholecalciferol supplied in the diet.
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Figure 2. Mechanisms of metabolic acidosis influencing calcium (Ca) homeostasis in bovine.
(A) Cations such as Ca2+ and H+ can bind to negatively charged proteins such as albumin. During
metabolic acidosis, the increased concentration of H+ competes with Ca2+ to bind to those proteins,
and Ca2+ is released. Moreover, Ca binds to anions, such as bicarbonate, and the reduced concen-
tration of bicarbonate during metabolic acidosis results in an increased concentration of Ca2+ in the
blood. (B) In the Chief cells of the parathyroid gland, metabolic acidosis increases the synthesis and re-
lease of parathyroid hormone (PTH). (C) Tissue responsiveness to PTH is increased during metabolic
acidosis; conformational changes in the receptor increase the ability of PTH to bind, thereby increasing
the effects of PTH on target cells. (D) In the proximal tubule cells of the kidney, PTH stimulates the ex-
pression of 1α-hydroxylase in the mitochondria, resulting in greater conversion of 25-hydroxyvitamin
D3 to 1,25-dihydroxyvitamin D3. In the distal convoluted tubule, 1,25-dihydroxyvitamin D3 stim-
ulates the expression of transient receptor potential vanilloid 5 (TRPV5), calbindin-D28k, sodium
Ca exchanger 1 (NCX1), which is expected to increase reabsorption of Ca from the urinary filtrate;
however, the resulting tubular acidosis induced by increased concentration of H+ in the filtrate blocks
the transport of Ca across the TRPV5 resulting in increased urinary loss of Ca. (E), absorption of Ca
in the gastrointestinal tract (GIT) differs between the rumen and small intestine (see Figure 1). In the
small intestine, 1,25-dihydroxyvitamin D3 increases the expression of TRPV6, calbindin-D9k, NCX1,
and claudins 2/12; consequently, transcellular and paracellular transport of Ca is increased. Effects of
1,25-dihydroxyvitamin D3 on pre-duodenal absorption of Ca remain to be elucidated. (F), increased
concentration of H+ stimulates prostaglandin (PG) E synthesis by osteoblast, which stimulates re-
ceptor activator of nuclear factor κβ ligand (RANKL) synthesis in adjacent osteoblasts. Additionally,
PTH and 1,25-dihydroxyvitamin D3 stimulate RANKL expression and suppress the expression of
osteoprotegerin (OPG). Reduced OPG allows RANKL to bind to RANK on osteoclast precursors and
promote the maturation of those cells. Mature osteoclasts are stimulated by 1,25-dihydroxyvitamin
D3 promoting the expression of carbonic anhydrase II (CAII), which produces bicarbonate and H+

from water and carbon dioxide. The increased H+ is secreted into the bone lacunae which facilitates
collagen degradation by cathepsin K releasing Ca2+ from bone. Within each panel, positive and
negative symbols indicate downstream stimulation and repression, respectively.
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Little is known about the regulation of the 25-hydroxylase enzyme in bovine liver.
Two forms of the enzyme have been identified, a mitochondrial and a microsomal enzyme,
and serum concentrations of 25-hydroxyvitamin D3 are associated with mitochondrial
25-hydroxylase activity in the liver of rats [93]. In cattle, mutations in the CYP2J2 gene are
associated with serum concentrations of 25-hydroxyvitamin D3 [94], but 25-hydroxylase
activity is often considered an unregulated step in the vitamin D pathway. It is possible that
bovine 25-hydroxylase activity is saturated by a large supply of vitamin D3 or that other
compounds of vitamin D metabolism control expression and activity of 25-hydroxylase
such that the conversion of vitamin D3 into 25-hydroxyvitamin D3 is inhibited. Some
evidence suggests that 25-hydroxylase activity is influenced by 1,25-dihydroxyvitamin
D3 [95], and this effect might be mediated by cytosolic concentrations of Ca2+ [95,96].

Regulation of Ca homeostasis by 1,25-dihydroxyvitamin D3 requires the latter to bind
to VDR. Once 1,25-dihydroxyvitamin D3 binds to the VDR, the VDR forms a heterodimer
with the retinoid-X receptor (RXR). The complex VDR-RXR heterodimer recognizes vita-
min D-responsive elements, which are specific DNA sequences [97]. Localization of the
VDR-RXR complex to accessible vitamin D-responsive elements in the genome facilitates
induction or repression of transcription as a result of the recruitment of co-activators and
co-repressors. When 1,25-dihydroxyvitamin D3 binds to VDR, there is disruption of co-
repressors that are bound to the VDR, which are replaced by co-activators, resulting in local
chromatin relaxation and gene activation [98]. In monogastrics, 1,25-dihydroxyvitamin
D3 regulates gastrointestinal absorption of Ca mostly in the duodenum [99] by enhanc-
ing the expression of the apical membrane transporter, TRPV6 [100], and the basolateral
transporters, PMCA and NCX1 [101,102]. Likewise, calbindin-D9k encoded by the gene
S100G had mRNA expression reduced in the intestines of mice lacking VDR [103]. In
ruminants, expression of genes for VDR, S100G, and ATP2B1 (gene encoding PMCA1) has
been reported in the duodenum of dairy cows [104]. On the other hand, transcriptomic data
from RNA sequencing or PCR from six published studies, four using bovine [63,105–107]
and two using ovine [108,109] rumen tissue showed either absent or marginal abundance
of mRNA for TRPV5, TRPV6, S100G, SLC81A (gene encoding NCX1), ATP2B1, suggesting
that the classic mechanisms for Ca absorption and transport across the rumen epithelium
are either absent or in limited abundance (Figure 1A). Schröder and Breves [54] showed
that the site of absorption of Ca in the bovine gastrointestinal tract is dependent on the
amount of Ca consumed. In vitro experiments with Ussing chambers clearly demonstrated
the presence of the transcellular transport of Ca2+ in the bovine ruminal epithelia in the
absence of TRPV6 expression [63]. Either distinct Ca channels and transport mechanisms
exist in bovine rumen epithelia to actively absorb Ca, or the mechanisms are dependent on
paracellular transport and the proteins involved, and their importance likely differs from
those characterized in the small intestine (Figure 1B). Recently, TRPV3 has been shown
to be expressed in the bovine rumen epithelium with a potential role in the transport of
cations, including Ca2+ [110]. Thus, the regulatory effects of 1,25-dihydroxyvitamin D3 and
the cellular mechanism of ruminal transcellular Ca2+ transport remain undefined but are
important to uptake and transport Ca across the epithelia (Figure 1A).

Vitamin D-dependent increases in Ca availability go beyond the gastrointestinal
tract flux of Ca2+. The steroid 1,25-dihydroxyvitamin D3 stimulates the expression of the
RANKL gene (TNFSF11) in osteoblasts through vitamin D-responsive elements (Figure 2F),
favoring osteoclastogenesis [111]. In addition, mRNA for OPG (TNFRSF11B) degradation
is accelerated, and TNFRSF11B is transrepressed by 1,25-dihydroxyvitamin D3 [112]. At
the bone matrix, osteoclasts secrete lysosomal enzymes such as cathepsin K to digest
the collagen in the organic matrix and release mineral compounds. An acidic media is
required to convert Ca salts into soluble forms; thus, hydroxyapatite is dissolved and
releases Ca2+ and PO4

3−, which can be absorbed by the osteoclast and then released into
the circulation. Carbonic anhydrase II, present in osteoclasts, increases the availability of
protons transported to the bone matrix, which reduces the local pH. De novo production
of carbonic anhydrase II is induced in promyelocytes by 1,25-dihydroxyvitamin D3 at
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the mRNA and protein levels [113], further supporting the vitamin D-dependent bone
resorption mechanisms (Figure 2F).

Renal reabsorption of Ca mostly occurs by passive transport in the proximal convo-
luted tubule and the thick ascending limb of Henle Loop, whereas transcellular reabsorption
takes place at the distal convoluted and connecting tubules [114,115]. The kidney excretes
only 1 to 2% of filtered Ca, and Ca reabsorption from the filtrate is regulated at the tran-
scellular level, and 1,25-dihydroxyvitamin D3 decreases urinary Ca loss, whereas tubular
aciduria reduces Ca reabsorption and increases urinary losses (Figure 2D). Presumably, the
increased calciuria during renal tubular acidosis involves reduced conductance resulting in
closure of the TRPV5 channel [116]. The low pH in the urinary filtrate is sensed by an amino
acid residue that serves as a pH sensor located on the surface of the TRPV5 channel [116].
In vitamin D-deficient rats, 1,25-dihydroxyvitamin D3 increased the expression of mRNA
and protein for TRPV5 in epithelial cells of the distal convoluted tubule and connecting
tubule [117]. Moreover, 1,25-dihydroxyvitamin D3 enhanced calbindin-D28K expression
and accelerated PTH-dependent Ca transport [118], resulting in increased Ca availability
in blood.

4. Inflammation and Redistribution of Minerals

During the postpartum period, dairy cows are at an increased risk of developing
diseases that often induce inflammation, and excessive inflammatory responses might also
increase the risk for diseases. Parturition causes trauma and damages uterine and pelvic
tissues, favoring bacterial colonization and the development of uterine diseases [119]. Gram-
negative bacteria predominate in the uterus of dairy cows in the first days after calving,
and concentrations of lipopolysaccharides (LPS) can be high in the uterine fluid of those
with metritis [119]. Also, the risk of mastitis increases in the first weeks postpartum [120],
and gram-negative bacteria represent a large portion of the isolates causing mastitis in
dairy cows.

Gram-negative bacteria that affect the uterus or mammary gland release LPS during
the lysis of the cell wall. Lipopolysaccharides are composed of lipid A, a core oligosac-
charide, and an O antigen [121], and lipid A is the main pathogen-associated molecular
pattern that is recognized by mammalian cells through the Toll-like receptor 4 [122]. Upon
recognition of LPS, immune cells activate the NF-κB pathway that leads to the synthesis
and release of proinflammatory mediators, including tumor necrosis factor-α, interleukin-6,
and interleukin-8 [123]. In dairy cows, intravenous administration of LPS induces systemic
inflammation, and one of the many consequences of this acute inflammation is a reduction
in the concentrations of Ca and P in serum, while no effect was observed in concentrations
of Mg in serum [124]. In agreement, Kvidera et al. [125] showed that the concentration of
Ca2+ in blood decreased by 46% after LPS administration in dairy cows. In dogs and goats,
hypocalcemia has also been observed after an LPS challenge [126,127]. Horses challenged
with LPS had hypocalcemia with increased release of PTH that decreased urinary fractional
excretion of Ca and Mg but increased urinary loss of P [128], the latter response possibly
as an attempt to reestablish Ca balance. There are multiple possible mechanisms whereby
inflammation might contribute to hypocalcemia, among them activation of immune cells,
impaired vascular permeability, reduced gastrointestinal absorption of Ca, or increased
urinary loss of Ca. Nevertheless, under spontaneous disease, such as mastitis caused
by gram negative bacteria, the change in blood concentrations of Ca seemed mediated
by changes in protein-bound Ca but not Ca2+ [129]. Perhaps, the acute changes in Ca2+

induced by LPS, as shown by Kvidera et al. [125], might better represent the findings of a
very acute disease or sepsis.

Immune cells require Ca2+ to be activated. Once stimulated, immune cells increase the
uptake of Ca from blood and migrate into the affected tissue. Bovine neutrophils during
the resting state have a cytosolic concentration of Ca2+ of 85 nM, which increases to 300 to
400 nM upon activation [130]. Although there is a four-fold increase in the immune cell
cytosolic Ca2+ concentration, not all the Ca2+ originates from blood, as some is released
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from the endoplasmic reticulum [131], and calculations of Ca2+ uptake by immune cells
suggest only a minor role in the changes in blood Ca concentrations with the purpose of
activating leukocytes. For instance, considering the volume of neutrophils of 1766 µm3,
50% being cytosol, an increase in cytosolic Ca2+ of 315 nM, and 50% of the leukocytes in
the entire blood pool experiencing activation, would result in uptake of only 0.03 ng of
Ca per mL of blood, which represents only 0.00007% of the Ca2+ concentration in blood
of 1.2 mM. Therefore, using this simplistic static approach to calculate potential changes
in blood Ca2+, it is unlikely that uptake of Ca2+ from the extracellular space to reestablish
cytosolic concentrations during immune activation plays any role in the drop in blood Ca
concentrations during inflammation.

Another mechanism involved in inflammation-induced hypocalcemia is the altered
vascular permeability caused by the inflammatory process. Neutrophils migrate from
blood to the site of infection to phagocytize and kill pathogens [132]. Thus, neutrophils
interact with the endothelium at the target tissue through adhesion molecules and secrete
proteases, elastase, and cathepsin G to destroy the integrity of endothelial cells and base-
ment membrane [133]. In addition, neutrophils secrete matrix metalloproteinases [134] that
help degrade the basal membrane and interstitial tissue proteins to facilitate the process of
migration. Consequently, vascular permeability increases and neutrophils can reach the site
of infection. This adjustment of the endothelial barrier enables blood constituents to exit
the circulation and enter the extravascular tissues. Albumin is the most abundant protein in
blood and leaks from the blood pool during endotoxemia. Because it is negatively charged,
albumin normally binds Ca and protons. Approximately 40 to 45% of the blood pool of Ca
is bound to albumin; however, during alkalosis, there is a reduction in the concentration of
protons, and more Ca2+ binds to albumin, leading to a reduction in the proportion of Ca2+

(Figure 2A). Administration of LPS to cows has been shown to induce alkalosis [135], which
could contribute to the reduction in Ca2+ observed in LPS-treated cows [125]. In fact, cows
administered LPS intramammary had the appearance of bovine serum albumin and trypsin
inhibitor capacity in the whey of milk [136]. Furthermore, intravenous administration of
Escherichia coli toxin O111:B4 to pigs resulted in hypocalcemia and increased the peritoneal
fluid concentration of Ca from 1.35 to 2.10 mM [137], supposedly induced by increased
vascular permeability as a large increase in Ca was detected in the peritoneal fluid and liver.

A third mechanism potentially involved in inflammation-induced hypocalcemia is
the reduction of Ca absorption from the gastrointestinal tract. Lipopolysaccharides reduce
gastrointestinal motility in in vivo and in vitro studies [138,139], resulting in increased
gastric retention in a dose-dependent manner [140]. The effects of LPS on intestinal con-
tractibility seem to be partially mediated by direct binding to the Toll-like receptor 4 [141]
and by promoting the synthesis of proinflammatory molecules by immune cells, such as
tumor necrosis factor-α and interleukin-1 [142]. In dairy cows, LPS administration reduced
reticulo-ruminal contractions [143]. In agreement, in small ruminants, LPS administration
reduced muscular contractility in the rumen, reticulum, abomasum, and duodenum [144].
Motility of the gastrointestinal tract is important to allow contact of minerals to the apical
membrane of epithelial cells and facilitate absorption. Reduced gut contractility would
likely impair the absorption of Ca, contributing to the hypocalcemia observed in animals
receiving LPS. Furthermore, administration of LPS to mice decreased intestinal mRNA
expression of TRPV6, S100G, and SLC34A2 (gene encoding NaPi-2b), thereby suggesting
potential perturbations in intestinal Ca and P transport [145]. Nevertheless, further research
is warranted to determine if systemic inflammation alters the gastrointestinal absorption
of Ca.

Finally, it is possible that endotoxins impair Ca reabsorption from the renal filtrate,
resulting in increased calciuria. However, administration of LPS to cows can induce
alkalosis [135], and alkaline urine pH favors the action of the TRPV5 to reabsorb Ca
from the urinary filtrate [116,146]. In mice, administration of LPS induced hypocalcemia
and hyperphosphatemia, resulting in increased PTH and consequent renal expression of
CYP27b1 and increased 1,25-dihydroxyvitamin D3 [145]. Endotoxemia caused mixed effects
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on renal mRNA and protein expression for Ca and P channels and binding proteins. The
mRNA and protein expression of channels TRPV5 and TRPV6 were both upregulated,
whereas protein expression for calbindin-D28k and NCX1, and the mRNA for NaPi-2a
(SLC34A1) and NaPi-2c (SLC34A3) were downregulated by LPS, showing marked effects
on the FGR-23/vitamin D axis. Despite the alterations in renal transport proteins for Ca
and P, authors did not find increased calciuria or phosphaturia in mice treated with LPS.
Moreover, urinary losses of Ca and P decreased following LPS challenge [145].

Collectively, if mechanistic models apply interspecies, it is likely hypocalcemia, often
observed following an inflammatory insult, is caused primarily by the redistribution of Ca
away from the vasculature. Gastrointestinal absorption might be altered either by stasis or
reduced transport across the gastrointestinal mucosa. Therefore, inflammation that often
occurs during or after parturition likely contributes to the increased risk of hypocalcemia
in early postpartum cows.

5. Mechanisms Linking Hypocalcemia and Health in Dairy Cows

Hypocalcemia has been associated with several periparturient disorders (Figure 3),
including calving-related problems such as dystocia, retained placenta, and uterine pro-
lapse [147–149]; metabolic disorders such as hyperketonemia and displaced
abomasum [147,150]; and uterine diseases such as metritis [16]. Physiological processes
that influence these outcomes include decreased smooth muscle function [151], which re-
sults in the reduced rumen and gastrointestinal motility [14,152] and uterine motility [153].
Induction of hypocalcemia directly decreases DMI [14], and prevention of hypocalcemia
by dietary means prepartum increases DMI postpartum [44,154], and cows that develop
milk fever have impaired immune response [13]. Furthermore, Martinez et al. [14] showed
that induced hypocalcemia in dry cows reduced concentrations of cytosolic Ca2+ and
compromised phagocytosis and oxidative burst of neutrophils. Interestingly, the reple-
tion of extracellular Ca in the media of neutrophils derived from hypocalcemic cows
improved their phagocytic activity [155]. It is important to mention that spontaneous
subclinical hypocalcemia have different presentations, and cows classified as having tran-
sient hypocalcemia, primiparous with plasma total Ca ≤ 2.15 mM on the day following
calving and Ca > 2.15 mM at 2 days postpartum, and multiparous cows with plasma total
Ca ≤ 1.77 mM on the day after calving and Ca > 2.20 mM on day 4 postpartum, produced
the most milk in the first 10 weeks postpartum and had similar risk of diseases compared
with cows classified as normocalcemic in the first days postpartum [11].
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Figure 3. Diagram depicting the associations among diseases in which hypocalcemia has been shown
to play a central role either through epidemiological studies or mechanistic experiments. References
are included [13,14,16,31,44,147,148,151–162]. Continuous lines depict links among diseases. Dashed
blue lines depict proposed mechanisms linking immune function and some diseases. Arrows before
each disease indicate if hypocalcemia is associated with an increase (arrow up) or decrease/delay
(arrow down) in the particular response. DMI = dry matter intake; GIT = gastrointestinal tract;
RFM = retained fetal membranes.
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Calcium signaling is critical for the function of neutrophils, which are important cells
in defense against infections of the uterus and mammary gland. Neutrophils are among the
first immune cells to migrate from circulation to the site of infection. They are stimulated
by the engagement of ligands to G-coupled receptors and Fcy-receptors, activation of
β2-integrins, or the interaction of E-selectin with P-selectin glycoprotein ligand 1 and L-
selectin. This stimulus leads to the hydrolysis of phospholipids by phospholipase C forming
diacylglycerol and inositol-1,4,5 triphosphate, which will promote the release of Ca2+ stored
within the endoplasmic reticulum [163]. The reduction of Ca2+ within the endoplasmic
reticulum needs to be replenished; therefore, activation of Ca ATPase pumps within the
endoplasmic reticulum allows for entry of Ca2+ from the cytosol to fulfill the replenishment
of Ca [164]. Concurrently, replenishment of cytosolic Ca is accomplished by activation
of plasma membrane Ca channels, thus allowing Ca to be taken up by the cell from the
extracellular space, a process, namely store-operated Ca entry [165]. This increased influx
of Ca into the cell controls several cellular functions, including cell proliferation, enzymatic
activity, and death [166]. Within the neutrophil phagosome, reactive oxygen species are
produced from superoxide anions and are used for microbial killing. A key enzyme in the
synthesis of reactive oxygen species and the development of the inflammatory process is the
NADPH oxidase, which is regulated by the influx of Ca2+ [167]. Inadequate concentrations
of blood Ca2+ are expected to impair the proper entry of Ca2+ into neutrophils through the
store-operated Ca entry mechanism, compromising cell organelle Ca replenishment and cell
function, the latter observed in dairy cows induced to have subclinical hypocalcemia [14].
Ultimately, hypocalcemia reduces the ability of cows to fight bacterial infections and may
increase the susceptibility to uterine and mammary gland infection [12]. Calcium can also
influence immune function by affecting the synthesis and secretion of cytokines. Gene
expression for interleukin-8 (CXCL8), which is an important chemokine that activates and
recruits neutrophils into the site of infection, depends on the elevation of cytosolic Ca2+

concentration [168].
Calcium signaling contributes to the production of cytokines that signal among

immune cells. Cytokines categorized as proinflammatory (e.g., interleukin-1 and tu-
mor necrosis factor-α) promote systemic inflammation, whereas those anti-inflammatory
(e.g., interleukin-4 and interleukin-10) serve as a feedback to limit the proinflammatory
response [169]. Increased concentrations of Ca2+ within the cytosol activate calcineurin,
a serine/threonine protein phosphatase, by binding Ca2+ to the Ca-binding regulatory
subunit of calcineurin [170]. The nuclear factor of activated T cells (NFAT) is a transcription
factor that regulates gene expression and synthesis of several cytokines, but when phos-
phorylated, it cannot enter the nucleus. Thus, dephosphorylation of NFAT by calcineurin is
required for nuclear translocation and also to increase the affinity of NFAT to specific DNA
locations [171]. Because NFAT proteins are rapidly exported from the nucleus, calcineurin
activity needs to be maintained by a persistently high concentration of Ca2+ in the cy-
tosol [172]. The role of NFAT in regulating the immune and inflammatory response is wide
and can vary depending on cell type. The calcineurin/NFAT signaling pathway is present
in most immune cells, including neutrophils, eosinophils, basophils, macrophages, natural
killer cells, and dendritic cells and, depending on the cell synthesis of proinflammatory
or anti-inflammatory mediators, can be induced by NFAT [173]. Thus, the balance of the
immune system is tightly regulated to prevent the exacerbation of inflammatory responses.
Hypocalcemia can affect cytosolic concentrations of Ca2+ [14], which potentially alters
the calcineurin/NFAT signaling, unbalancing the immune response and contributing to
increased susceptibility to inflammatory processes and infectious diseases.

Collectively, there is strong evidence supporting the role of Ca in optimal immune
function. Impairment of immune response occurs simultaneously with decreased muscle
contractility in hypocalcemic cows. Thus, it is not surprising that hypocalcemia is con-
sidered a gateway disease [31] and that meta-analyses [44,154] identified reduced risks of
diseases with prevention of hypocalcemia by reducing the dietary cation-anion difference
(DCAD) of prepartum diets.
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6. Methods to Prevent Periparturient Mineral Imbalance
6.1. Alterations in Acid-Base Balance

Feeding acidogenic diets to prepartum dairy cows is a common method to improve Ca
homeostasis and reduce the risk of hypocalcemia. The discovery of the relationship between
cation and anion balance and risk of hypocalcemia in dairy cows in the late 50s and 60s was
initially random, after the addition of organic acids to improve forage preservation during
ensiling. These forages were fed to dry cows, and investigators later observed increased
blood Ca and reduced incidence of clinical hypocalcemia [174]. Later, Ender et al. [175]
suggested that the DCAD could be calculated by the following equation: DCAD = ([mEq
of K+ + mEq of Na+] − [mEq of Cl− + mEq of S2−]), which still is the most commonly used
equation to calculate cation-anion difference in diets by dairy nutritionists. The addition
of other cations, such as Ca2+ and Mg2+, and other anions, such as PO4

3−, to the equation
has been suggested; however, there is no clear evident benefit of adding those ions with
their respective bioavailabilities to calculate DCAD and predict the risk of hypocalcemia
in dairy cows [36,176,177]. Block [178] brought the concept to North America and further
investigated the use of acidogenic diets for prepartum cows. His findings showed that not
only was hypocalcemia reduced, but milk production increased by reducing the DCAD of
the prepartum diet. Two recent meta-analyses of the literature demonstrated that reducing
the DCAD of prepartum diets reduced the risk of hypocalcemia and the number of disease
events per cow, mostly because of a reduction in milk fever, retained fetal membrane, and
metritis [44,154]. Their findings clearly showed that acidogenic diets benefit multiparous
cows by increasing postpartum intake and yields of milk and fat-corrected milk [44,154].
However, the authors also identified the need to further understand the role of feeding
acidogenic diets to nulliparous cows because of the scarcity and heterogeneity of the data
currently available. Indeed, recent work showed limited benefits to feeding acidogenic
diets to prepartum nulliparous cows [179,180]. Diet-induced metabolic acidosis is achieved
by manipulating the mineral composition of the diet to result in a negative DCAD [181].
For instance, feeding acids of strong anions, such as HCl and H2SO4, or feeding salts
containing strong anions, such as CaCl2, MgSO4, and NH4Cl, reduce the DCAD [17].
When those ingredients are fed to cows, the absorption of anions is greater than that of
cations, or the cation is metabolized within the gastrointestinal tract and only partially
absorbed as such, thereby increasing the absorption of negatively charged ions. The
absorption of many anions occurs, in part, in exchange with HCO3

−, resulting in reduced
base excess in blood. Also, anion absorption results in the retention of H+ to maintain
equivalence in cell or body fluid electric charges. This process of loss of HCO3

− and
retention of H+ results in a reduction in the base excess and a concurrent reduction in blood
pH. Thus, feeding diets with a negative DCAD to cows leads to a state of compensated
metabolic acidosis with reduced partial pressure of CO2 and increased urinary excretion of
H+ [2,3,179,181]. If uncompensated, then metabolic acidosis might have detrimental effects
on the cow [182,183].

Under metabolic acidosis, Ca homeostasis is altered by different mechanisms (Figure 2).
A drop in blood pH alters the balance of total Ca to Ca2+, favoring ionization of Ca
by releasing it from bound to albumin and complexed with salts such as bicarbonate,
lactate, phosphate, or citrate in the blood (Figure 2A). Also, during metabolic acidosis, the
concentration of bicarbonate in the blood is reduced; therefore, Ca–bicarbonate interactions
are reduced, resulting in the release of Ca2+ [184]. Consequently, the change of Ca2+ in blood
during metabolic acidosis is greater than during respiratory acidosis [185]. In fact, in vitro
manipulations of blood pH resulted in a rate of increase of 0.36 mM in Ca2+ concentrations
with the reduction of one pH unit [186], although such a drastic change in pH should not
occur in blood because it threatens life.

Induction of metabolic acidosis increases the secretion rate of PTH [185] (Figure 2B),
enhances tissue responsiveness to PTH with increases in blood Ca and 1,25 dihydroxyvita-
min D3 [187,188] (Figure 2C), and increases the expression of PTH receptors (PTH1R) in the
renal cortex [189] (Figure 2D). These collective effects of metabolic acidosis on calciotropic
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hormones likely contribute to the reduced risk of hypocalcemia postpartum. In addition
to the direct effects of PTH and 1,25-dihydroxyvitamin D3 on bone resorption (Figure 2F),
the increased concentration of H+ during metabolic acidosis directly increases the net flux
of Ca from bone calvariae [190]. Osteoblasts produce prostaglandin E2 during acidosis,
which stimulates the synthesis of RANKL-promoting bone resorption [191]. The inhibition
of prostaglandin E2 synthesis limited bone Ca release and RANKL expression induced by
acidosis [192]. Thus, metabolic acidosis directly increases the release of Ca from the bone
reservoir by affecting osteoclast activity, which is mediated by prostaglandin E2. Bone is a
large reservoir of buffers, and increased bone resorption facilitates blood buffering during
metabolic acidosis. Thus, acidosis increases mineral efflux from bones initially through
physicochemical mechanisms to buffer blood, followed within hours by cell-mediated
mechanisms that culminate with increased osteoclastic activity and bone resorption [192].

Feeding diets that result in diet-induced compensated metabolic acidosis has been
shown to increase gastrointestinal absorption of Ca in dairy cows [179,188], presumably by
increased Ca flux across the rumen epithelium [193]. It is suggested that the changes in the
PTH–vitamin D axis previously discussed favor gastrointestinal Ca transport, as depicted
in Figure 2E.

Despite the benefits of feeding acidogenic diets to postpartum DMI [44], diet-induced
metabolic acidosis is known to decrease prepartum intake [44,154,176]. Such an effect has
been demonstrated whether cows are fed acidogenic salts or commercial products [154].
Recent work clearly showed that metabolic acidosis underlies the depression in DMI
and alters feeding behavior in dairy cows [6]. When the diet containing the acidogenic
product was supplemented with alkalogenic salts to result in the same positive DCAD
and acid-base balance as that of cows fed diets without any acidogenic product, then the
depression in DMI was prevented [6]. Therefore, the effects of acidogenic diets on DMI
are mediated by the changes in the acid-base status of the cow. Depression in intake is
one of the reasons to avoid feeding extremely acidogenic diets. Also, acidogenic diets
can alter cellular energy metabolism and impair insulin secretion and adipose tissue
insulin sensitivity in dairy cows, shifting cellular signals to be less lipogenic and more
lipolytic [183]. When cows were fed a diet with −405 mEq/kg of dry matter, measures of
energy metabolism were altered with reduced release of insulin in response to a glucose
tolerance test [182]. Time series analysis of blood concentrations of Ca, fatty acids, ketones,
and glucose from periparturient cows fed an acidogenic diet identified potential feedback
mechanisms between Ca and fatty acids [156]. Increased concentrations of fatty acids,
glucose, and ketones were observed subsequent to increased Ca concentrations, suggesting
a possible role of Ca in the energy metabolism of cattle, a role consistent with that in
other species. Nevertheless, it is important to note that the optimum DCAD to control
hypocalcemia and improve postpartum performance remains unknown. The available
data from experiments with parous cows suggest that there is no need to feed diets with a
DCAD smaller than −120 mEq/kg of dry matter to benefit health and production [44].

Limited data exist for how long acidogenic diets should be fed prepartum to elicit its
benefits postpartum. Cows develop all hallmark signs of metabolic acidosis within 24 to
36 h following intake of an acidogenic diet, and increased gastrointestinal Ca absorption
and improved response to PTH are observed within 3 d of exposure to the diet [188].
Therefore, it is likely that the benefits of those diets in improving Ca homeostasis are to be
observed within days. Three experiments evaluated the effects of extending the feeding
of acidogenic diets prepartum from the traditional 21 d to either 6 or 8 weeks [2,194,195].
None of the experiments showed any benefit to postpartum performance or metabolism by
extending the feeding of acidogenic diets beyond 21 d. In fact, Lopera et al. [2] observed
potential negative effects with reduced milk yield and extended days open. Indeed, Lopera
et al. [2] pointed out that in three experiments [2,194,195], the yield of energy-corrected
milk was always less for cows fed the acidogenic diets longer than 21 d. Two observational
studies evaluating days in the prepartum group, in which parous cows were fed acidogenic
diets, showed that postpartum performance was optimized when the length of exposure to
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the diets was 3 to 4 weeks [196,197]. Collectively, the available data indicate that prepartum
parous cows should be fed acidogenic diets planned for the last 21 d of gestation.

6.2. Low Ca Diets and Sequestering Agents

Limiting the availability of Ca in the gastrointestinal tract successfully reduced the
incidence of clinical hypocalcemia [198]. Calcium-restricted diets lead to a small reduction
in blood concentration of Ca sufficient to affect the cow’s Ca-sensing receptor “set-point”
that causes increased secretion of PTH and synthesis of 1,25-dihydroxyvitamin D3 [199].
Consequently, bone resorption is stimulated, as reflected in increased circulating hydrox-
yproline [200]. One of the challenges is to identify suitable dietary ingredients that have
very low concentrations of Ca such that prepartum diets supply less absorbable Ca than
required by the cow. A prepartum Holstein cow requires approximately 20 to 30 g/d of
absorbable Ca, 9 to 10 g for uterine tissue accretion [4], 10 g to replenish the daily fecal
losses when consuming 10 to 11 kg of dry matter daily [5], and another 1.5 to 10 g to meet
the urinary losses depending on the type of diet fed [3,6]. Assuming an alkalogenic diet,
the prepartum cow would require approximately 22 g/d of absorbable Ca to meet its daily
needs. Therefore, to induce negative Ca balance, the diet would have to provide daily
no more than 20 g/d of absorbable Ca or up to 35–40 g/d of total Ca, depending on the
expected bioavailability [5,201].

Alternatively, gastrointestinal Ca absorption can be reduced using Ca binders, such as
products containing aluminum silicates, which would be more practical and potentially
mimic the low Ca diet to induce a negative balance prepartum [202]. Zeolites are alu-
minum silicates with porous structures that can adsorb different cations. Studies in vitro
using ruminal fluid demonstrated that zeolite binds Ca and Mg and, under reduced pH,
increases the binding of P, thus decreasing the bioavailability of those minerals in dairy
cows [203]. Feeding synthetic zeolite for the last 21 d of gestation to dairy cows resulted
in greater concentrations of Ca in plasma in the last 5 d before calving, and during the
first 3 d postpartum [204]. A common finding when the synthetic zeolite is fed is a reduc-
tion in concentrations of P in blood, presumably by reduced gastrointestinal absorption.
Also, reducing gastrointestinal Ca bioavailability with zeolite might increase circulating
PTH to upregulate Ca absorption mechanisms, which increases urinary excretion of P,
thus contributing to the reduced plasma phosphate. Additionally, zeolites may release
aluminum, which can decrease the gastrointestinal absorption of P [205]. The reduced
blood P concentrations might reduce FGF23 secretion by osteocytes, which would benefit
vitamin D-mediated gastrointestinal Ca absorption and bone resorption, although such
mechanisms remain to be shown in bovine.

One limitation of zeolites is the amount of ash that they add to the diet. They are
typically fed at 5 to 7% of the diet dry matter, which might explain the reduced DMI
observed prepartum [204]. Collectively, limiting Ca and P absorption by feeding low
Ca and P diets or supplementing sequestering agents are effective in preventing clinical
hypocalcemia, but it remains unknown if those strategies benefit postpartum production
performance and risk of diseases other than hypocalcemia.

6.3. Sources of Vitamin D

According to the NRC [5], all classes of dairy cattle, including prepartum and lac-
tating cows, should receive 30 IU/kg of body weight, which would translate into ap-
proximately 20,000 IU or 0.5 mg of vitamin D3 daily for a prepartum cow. The new
NASEM [201] suggests an adequate intake of 30 IU/kg of BW for dry cows and 40 IU/kg of
BW for cows during lactation, although the NASEM dairy software (version 8 R2023.09.15)
calculates 32 IU/kg of BW and not 30 for dry cows. The suggested amount is proba-
bly the minimum needed to maintain blood concentrations of 25-hydroxyvitamin D3 in
dairy cows above 30 ng/mL [90]. In many cases, cows are fed amounts above the min-
imum recommended [90]. Horst et al. [206] suggested that adequate concentrations of
25-hydroxyvitamin D3 in cattle range from 20 to 50 ng/mL. Nevertheless, recent data from
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dairy cows under different feeding regimens showed that most have a concentration of
25-hydroxyvitamin D3 between 50 and 80 ng/mL [90]. It is interesting to note that even
at very large quantities of vitamin D3 fed to cows, 12,000 IU/d (3 mg of cholecalciferol),
corresponding to 4 to 5 times the amounts recommended by the NASEM [201] and NRC [5],
respectively, the plasma concentrations of 25-hydroxyvitamin D3 in dairy cows did not
increase above 100 ng/mL after 3 to 4 weeks of feeding [3,92]. On the other hand, feed-
ing 1 to 3 mg of 25-hydroxyvitamin D3 more efficiently increased plasma concentrations
of the vitamin in prepartum or lactating dairy cows [3,92]. Supplementing 3 mg/d of
25-hydroxyvitamin D3 to prepartum cows fed an acidogenic diet resulted in improvements
in Ca homeostasis during the transition period [207]. It is important to note that the bene-
fits of feeding 25-hydroxyvitamin D3 on blood Ca2+ concentrations were only observed
when combined with an acidogenic diet [3]. When supplemented with an alkalogenic
diet (+144 mEq/kg), then feeding 3 mg/day of 25-hydroxyvitamin D3 prepartum resulted
in the smallest blood Ca2+ concentrations, particularly in older cows [3]. Furthermore,
supplementing 3 mg/d of 25-hydroxyvitamin D3 to cows in the last 3 weeks of gestation
reduced the incidence of uterine diseases [208], perhaps because of the modulatory ef-
fects of vitamin D on the immune system [46]. Cows fed 3 mg/d of 25-hydroxyvitamin
D3 during the prepartum period had an increased yield of milk in the subsequent lacta-
tion [209,210]. In contrast, feeding 6 mg/d of 25-hydroxyvitamin D3 showed potentially
detrimental effects on cows [211]. Nevertheless, calves born from supplemented cows
had increased concentrations of 25-hydroxyvitamin D3 in plasma, suggesting a potential
benefit of 25-hydroxyvitamin D3 supplementation to the dam to improve vitamin D status
in calves [211].

The most active form of vitamin D, 1,25-dihydroxyvitamin D3, has also been evaluated
as preventative to hypocalcemia in dairy cows [212]. Cows starting lactation 3 or greater
and fed a diet to increase the risk of hypocalcemia received 500 µg of 1,25-dihydroxyvitamin
D3 orally and then were grouped according to the day the treatment was administered
relative to calving: within 24 h of calving, 1 to 3 d before calving, or 4 to 5 d before calving.
Those treated 1 to 3 d before calving had increased blood Ca and P compared with all
other groups, including the untreated control [213]. Intramuscular administration of a
1,25-dihydroxyvitamin D3 analog to prepartum cows susceptible to developing hypocal-
cemia, starting 7 d before the expected day of calving and repeating every 7 d until calving,
reduced the incidence of clinical hypocalcemia from 85% in untreated controls to 43 and
29% in cows that received 100 and 150 µg of 24-F-1,25-dihydroxyvitamin D3; however,
the repeated treatments prepartum impaired endogenous 1,25-dihydroxyvitamin D3 syn-
thesis postpartum in treated cows and eventually resulted in clinical hypocalcemia [214].
Thus, predicting the day of calving so that vitamin D3 metabolites are administered at the
proper timing has been a challenge. An alternative is to use 1,25-dihydroxyvitamin D3
immediately after calving in an attempt to minimize the risk of hypocalcemia following
calving, but the benefits would be observed 12 to 24 h later, which is the time needed
for blood concentrations of Ca to increase [1,50]. Subcutaneous administration of 300 µg
1,25-dihydroxyvitamin D3 within the first 6 h postpartum improved Ca homeostasis, re-
sulting in increased blood Ca2+ and reduced prevalence of subclinical hypocalcemia [1,50].
Additionally, 1,25-dihydroxyvitamin D3 improved measures of innate immune function,
which might offer benefits to postpartum health [1,50].

6.4. Oral Calcium after Calving

Supplementation with oral Ca, either as an oral solution, bolus, or gels containing
inorganic or organic salts of Ca, has been extensively used to prevent clinical and subclinical
hypocalcemia in dairy cows. The Dairy 2014 survey by the National Animal Health and
Monitoring System on dairy cattle management practices in the United States described
that 68.9% of the dairy farms surveyed use some oral or injectable Ca as part of their man-
agement or for the therapy of cows [215]. Recent experiments have evaluated Ca boluses
containing a mixture of chloride and sulfate salts of Ca, likely because boluses are perceived
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to be safer to administer compared with gels, oral solutions, or intravenous solutions.
Feeding approximately 50 g of Ca as CaCl2 in solution increased plasma concentrations
of total Ca in Jersey cows for at least 6 h [216]. On the other hand, providing 43 or 86 g of
Ca as an oral bolus containing chloride and sulfate salts of Ca increased blood Ca2+ and
serum total Ca for 2 to 6 h, depending on the dose [12]. Despite providing strong anions,
the Ca boluses given to postpartum cows did not affect measures of acid-base balance in
the hours or days after treatment [12]. Although oral Ca increased blood Ca concentrations
transiently, the impacts on health, production, reproduction, and survival have been hetero-
geneous [217,218]. In some cases, such as supplementation to first lactation cows resulted in
negative effects on reproduction [217], or supplementation to multiparous cows increased
the risk of culling [218]. A recent meta-analysis of the published literature, including nine
experiments with 6670 dairy cows in which oral Ca bolus was used after calving, showed
no benefit to milk yield or pregnancy at first postpartum insemination [219]. The lack of
benefits from blank intervention with oral Ca supplements at calving likely reflects the fact
that some subgroups of cows might benefit from the intervention, whereas other cohorts
might suffer detrimental effects [217,218]. If used, oral Ca should target specific populations
of cows, those at greater risk for hypocalcemia, such as cows not fed prepartum diets to
prevent hypocalcemia, older cows [10], and cows that are more likely to have persistent or
delayed hypocalcemia [11] such as those with problems at calving.

7. Conclusions

At the onset of lactation, dairy cows undergo perturbations in Ca homeostasis that
result in some developing milk fever, and a large proportion undergoes a period of tran-
sient subclinical hypocalcemia. Numerous mechanisms are activated to maintain a tight
regulation of blood Ca concentrations to avoid hypo or hypercalcemia. Those mechanisms
involve the calciotropic hormones PTH and vitamin D. They are responsible for regulating
gastrointestinal absorption of Ca, bone remodeling, and the renal excretion of Ca in order
to maintain blood Ca between 2.2 and 2.5 mM in most adult cattle. Absorption of Ca from
the gastrointestinal tract occurs through two mechanisms: paracellular and transcellular
transport. In bovine, the site of Ca absorption seems to depend on intake of the mineral.
When intake is limited, then most Ca is absorbed post-abomasum, whereas large intakes
result in absorption primarily pre-duodenum. Evidence exists for both paracellular and
transcellular mechanisms of Ca absorption to be present in the rumen epithelium; however,
the exact pathway and transporters involved in the transport across the rumen wall remain
unclear. Hypocalcemia predisposes cows to other periparturient diseases, presumably be-
cause of the role of Ca as a second messenger system, but also through inhibition of smooth
muscle function. Cows develop hypocalcemia because of irreversible loss of the mineral in
colostrum and milk, although inflammation in early lactation can further exacerbate the
condition by redistribution of Ca away from the vasculature. Feeding prepartum diets low
in Ca and P, which result in negative Ca and P balance, promotes improvement in blood Ca
postpartum and reduces the risk of clinical hypocalcemia. Feeding sequestering agents that
limit P and Ca absorption prepartum promotes improvements in blood Ca postpartum.
Prevention of hypocalcemia by manipulation of the DCAD to induce metabolic acidosis is
strongly supported by the literature with sound mechanistic data and extensive experimen-
tation demonstrating improvement in Ca homeostasis, health, and lactation performance
postpartum. Additionally, the use of vitamin D metabolites to overcome the challenge of
maintaining Ca homeostasis in combination with acidogenic diets may result in additional
benefits to animal performance.
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