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Abstract: The unique structure of bearingless motors requires extra displacement sensors to monitor
rotor movement, unlike conventional synchronous motors. However, this requirement inevitably
escalates the cost and size of the motor. To address these issues, this paper proposes a novel approach:
a bearingless synchronous reluctance motor (BSRM) without displacement sensors, utilizing the
whale optimization algorithm–Elman neural network (WOA-ENN). The paper firstly introduces the
suspension mechanism and mathematical model of the BSRM, upon which a function containing
rotor position information is constructed. Subsequently, a sensorless method based on Elman
neural network (ENN) is proposed, optimized using the whale optimization algorithm (WOA).
Finally, the feasibility and reliability of the proposed approach are validated through simulations
and experiments.

Keywords: bearingless synchronous reluctance motor; Elman neural network; whale optimization
algorithm; displacement; sensorless

1. Introduction

Compared to traditional motors, bearingless motors lack bearing support and instead
utilize magnetic levitation technology to suspend the rotor at the center of the stator.
Consequently, bearingless motors offer several advantages, including absence of mechanical
friction, elimination of the need for lubrication, prevention of leakage, high efficiency,
and low noise. As a result of these benefits, bearingless motors have found successful
applications in various fields, including biomedical, energy, chemical engineering, and
high-precision manufacturing [1,2].

Due to their unique internal structure and lack of bearing constraints, bearingless mo-
tors experience radial displacement of the rotor. Consequently, to both ensure the normal
rotation of the rotor and prevent collisions between the stator and the rotor, bearingless
motors require the installation of both speed and displacement sensors. Speed sensors, typ-
ically optical encoders, are installed at one end of the shaft for accurate speed measurement,
while displacement sensors are mounted within the stator to monitor radial displacement.
However, the installation of mechanical sensors inevitably increases the cost and size of the
motor, complicating the design and manufacturing process. Moreover, in harsh working
environments such as those with high humidity, temperatures, air pollution, or dust-prone
areas, installing sensors may be impractical or susceptible to strong interference, rendering
them ineffective.

The aforementioned issues severely constrain the cost-effective utilization of bear-
ingless motors in specialized applications such as aerospace, aviation, energy transport,
and chemical engineering. There exists an urgent need for a rotor displacement estima-
tion method to supplant traditional mechanical sensors, thereby simplifying the internal
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motor structure, reducing costs, and enhancing system reliability. The emergence of such
technology holds significant importance for the widespread application and promotion of
bearingless motors.

To address these challenges, several scholars have researched sensorless techniques.
For instance, methods utilizing sliding mode observers (SMOs) to predict motor speed
signals were proposed in [3,4]. However, the accuracy of these methods was constrained
by the size and slope of their sliding mode surfaces, and as control requirements become
increasingly stringent, the effectiveness of sliding mode control diminishes. In [5], the
Kalman filters (KFs) were investigated, but the KFs can only be applied to linear systems.
In order to apply the KFs to nonlinear systems, such as estimating the speed of a motor, it
is necessary to linearize the system under study, resulting in the extended Kalman filter
(EKF). However, the EKF is not very stable, and its convergence process can be slow in
most cases [6].

While most methods focus on research regarding motor speed sensorless techniques,
there is relatively little research on displacement sensors for bearingless motors. Reference [7]
proposed a method for predicting angular velocity based on the freewheeling current of
the driving phase. However, this method requires the radial displacement obtained by the
displacement sensor to determine the rotor angular position. References [8–10] studied the
high-frequency injection method (HFI), which involves superimposing a high-frequency
voltage pulse on the motor’s output voltage at specific time intervals. By calculating the
voltage and current at the sampling time in a two-phase stationary coordinate system or
a synchronous rotating coordinate system, the estimation rotor displacement and speed
estimation can be achieved. However, this method requires the motor rotor to adopt a
salient pole structure, which imposes limitations. In [11], four search coils were added
to a bearingless induction motor and connected to a high-frequency voltage source. The
radial displacement of the rotor was then obtained by processing the midpoint voltage
between the two search coils. However, the introduction of search coils occupies space in
the stator slots, which can lead to a reduction in the basic performance of the motor. In [12],
a method based on inductance characteristics was proposed to predict rotor displacement,
but the calculation process was complex and relied on the accuracy of mathematical models.
References [13,14] utilized the model reference adaptive method (MRAS) to achieve accurate
prediction of rotor displacement, yet this method heavily depends on the accuracy of the
model. Reference [15] utilized the variation law of dual winding magnetic flux with rotor
eccentricity to design a new method for observing rotor radial displacement. However, this
still relies on precise magnetic flux mathematical models, and its universality is insufficient.
A neural network is an operational model comprising a large number of interconnected
nodes or neurons, each representing a specific output function known as an activation
function. The connections between nodes represent weighted values for the signal passing
through, termed as weights, which act as the memory of an artificial neural network. Neural
networks do not require specific structures or rely on precise mathematical models. They
have been successfully applied in sensorless technology research [16,17]. At present, there
are branches such as back-propagation neural networks (BPNNs), convolutional neural
networks (CNNs), recurrent neural networks (RNNs), Elman neural networks (ENNs),
and others. Among them, ENN is a type of neural network due to its local memory and
feedback connection characteristics. It excels in predicting real-time data and exhibits
strong computing power. In this paper, the mapping of the input and output is nonlinear
because the neuron functions of ENN can be nonlinear and can handle data with temporal
or sequential dependencies. This is highly suitable for the application context of this study.

However, traditional ENN applications in high-order dynamic systems often en-
counter issues such as slow convergence speed and susceptibility to becoming stuck in
local optima [18]. To overcome these challenges, the whale optimization algorithm (WOA),
inspired by the predatory behavior of humpback whales in nature, was incorporated into
the neural network. This algorithm eliminates the need for manual setting of various inter-
mediate control parameters, reducing application difficulty, improving algorithm efficiency,
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and increasing system response speed. It has been successfully applied in various fields,
including logging curves [19], meteorological forecasting [20], and photovoltaic water
pump systems [21].

Based on the above discussion, this paper designs and constructs a method based
on the whale optimization algorithm–Elman neural network (WOA-ENN) to effectively
predict the radial displacement of the rotor. This method not only minimizes the cost
associated with sensor installation, but also eliminates the need for additional complex
hardware equipment. Both the simulation and experimental results validate the feasibility
and reliability of this method.

2. Basic Principle of the BSRM

To achieve stable control of the suspension force, two conditions must be satisfied:
(1) the absolute difference in the number of pole pairs between the two sets of windings is
1; and (2) both sets of windings are supplied with currents of the same frequency [2]. In this
paper, the torque winding of the bearingless synchronous reluctance motor (BSRM) has a
pole pair number of P1 = 2, and the suspension force winding has a pole pair number of
P2 = 1, with both windings supplied with currents of the same frequency. Figure 1 illustrates
the principle diagram of radial suspension force generation under no-load conditions for
the BSRM. The black winding Na represents the torque winding, while the red winding Nb
represents the suspension winding. They are supplied with currents to produce magnetic
flux Ψa and Ψb, respectively. When the current directions are as shown in Figure 1a,
according to the right-hand rule, the magnetic fields formed by the two sets of windings
interact, causing Ψa and Ψb to be in the same direction at gap region 3, thereby enhancing
the magnetic flux density at region 3; at gap region 1, Ψa and Ψb are in opposite directions,
resulting in a weakening of the magnetic flux density in this region. The imbalance in gap
magnetic flux density leads to the generation of radial suspension force Fx in the opposite
direction along the x-axis. Similarly, when the current directions of the two sets of windings
are as shown in Figure 1b, an increase in magnetic flux density occurs at gap region 2
and a decrease occurs at region 4, resulting in the generation of radial suspension force
Fy in the positive direction along the y-axis. Therefore, by controlling the magnitude and
direction of the current in the suspension windings, the magnitude and direction of the
radial suspension force can be effectively controlled, thereby controlling the position of the
rotor [2,22].
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When the motor undergoes acceleration, deceleration, or sudden load changes, the
rotor is inevitably affected, disrupting its original state of suspension at the center of the
stator and causing radial displacement. Figure 2 illustrates the displacement of the rotor.
Point O represents the original center position of the rotor without displacement, while
point O’ represents the center position of the rotor after displacement. Consequently,
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the gap between the stator and the rotor also changes. The length of the air gap can be
represented by the following equation.

δ(θ) = δ0 − ∆δ = δ0 − x cos θ − y sin θ (1)

where δ0 is the length of the single-sided air gap before eccentricity; θ is the angle between
eccentricity and the shaft; and x and y are the displacement components of the rotor in the
coordinate system, respectively.
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According to the mathematical derivation in [23], we can obtain the dynamic sus-
pension motion equations of the rotor for the BSRM. The equations can be expressed
as follows: -Fx + Fsx + Fx0 = m d

dt (
dx
dt )

-Fy + Fsy + Fy0 = m d
dt (

dy
dt )

(2)

where Fx and Fy represent the controllable radial suspension forces in the x-axis and y-axis
directions, respectively. Fsx and Fsy denote the Maxwell forces experienced by the rotor in
the x-axis and y-axis directions, respectively. Fx0 and Fy0 represent the radial disturbance
forces exerted on the rotor in the x-axis and y-axis directions, respectively. Fy0 includes the
gravitational force mg acting on the rotor.

According to [2,24], Fx and Fy can be expressed as follows:

[
Fx
Fy

]
=

[
(M0 + M1)id (M0 −M1)iq
(M0 −M1)iq −(M0 + M1)id

][
ix
iy

]
M0 = µ0rlK2 N2 N4

2δ2
0

ρ

M1 = µ0rlK2 N2 N4
8δ2

0
sin 4ρ

(3)

where M0 and M1 represent the mutual inductances of the two sets of windings, r is the
rotor radius, l is the axial length of the rotor, µ0 = 4π × 10−7 is the air permeability, and ρ
is polar arc width parameter. K is the numerical value of the fundamental wave, which is
4/π times the numerical value of the integer wave. N4 and N2 are the effective series turns
per pole per phase of the torque winding and the suspension winding, respectively. The
a-phase of both windings is aligned with the x-axis, and their spatial distribution follows a
sinusoidal pattern. id and iq are the current components of the torque winding in the d-q
rotating coordinate system, and ix and iy are the current components of the suspension
winding in the d-q rotating coordinate system.
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The pole arc width of the BSRM in this study is π/6; therefore, ρ = π/12. The (3) can
be changed to (4).[

Fx

Fy

]
=

µ0rlK2N2N4

48δ2
0

[
(2π + 3

√
3)id (2π − 3

√
3)iq

(2π − 3
√

3)iq −(2π + 3
√

3)id

][
ix

iy

]
(4)

where kml =
µ0rlK2 N4 N2

48δ2
0

(2π + 3
√

3) and km2 = µ0rlK2 N4 N2
48δ2

0
(2π − 3

√
3), and the following

equation can be obtained: [
Fx

Fy

]
=

[
kmlid km2iq

km2iq −kmlid

][
ix

iy

]
(5)

The Maxwell force in Formula (2) can be represented by the following equation:[
Fsx

Fsy

]
= k

πrlB2

µ0δ0

[
x

y

]
= km

[
x

y

]
(6)

where k is a proportionality coefficient related to the motor structure. km represents the
stiffness of the suspension force displacement, which is associated with parameters such as
the inherent structure of the motor, air gap magnetic flux density, core length, and air gap
length. Here, based on estimation, km = 351 N/mm.

Assuming that the system sampling period is sufficiently small, discretizing the
displacement terms on the right-hand side of Equation (2) yields the following equations:(dx

dt ) =
x(t+1)−x(t)

Ts

(
dy
dt ) =

y(t+1)−y(t)
Ts

(7)

where Ts is the sampling period, x(t + 1) and y(t + 1) are the displacements in the x and y
directions at time t + 1, and x(t) and y(t) are the displacements in the x and y directions at
time t.

By substituting Equations (5)–(7) into (2), the following equations can be obtained: x(t + 1) = (1 + kmT2
s

m )x(t) + T2
s

m
[
-km1id(t)ix(t)-km2iq(t)iy(t) + Fx0

]
y(t + 1) = (1 + kmT2

s
m )y(t) + T2

s
m [-km2iq(t)ix(t) + km1id(t)iy(t) + Fy0]

(8)

We assume that f (*) is a function related to the displacement; then, we can rewrite the
above equation as follows:{

x(t + 1) = fx[id(t), iq(t), ix(t), iy(t), x(t)]

y(t + 1) = fy[id(t), iq(t), ix(t), iy(t), y(t)]
(9)

It is evident that a significant correlation exists between the displacement values x and
y and the currents id, iq, ix, and iy of the two sets of windings. Additionally, the currents
are readily measurable. By leveraging the strong nonlinear function processing capability
and adaptability of the ENN neural network, it can rapidly approximate and accurately
predict target values.

Furthermore, by recursively examining the Equation (9), it can be observed that the
data at each moment are intricately linked to the data from the previous moment. This
inherent temporal dependency can be optimized using the WOA, which will be introduced
later, facilitating rapid convergence to target values. This approximate optimization strat-
egy enhances the response speed of the ENN and elevates the accuracy of the network,
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enabling it to effectively capture and predict complex relationships between variables
across time intervals.

3. Elman Neural Network

Figure 3 illustrates the schematic diagram of the ENN. Standard neural networks
consist of an input layer u(k), an output layer h(k), and a hidden layer q(k). In contrast, the
ENN introduces an additional undertaking layer qc(k) built upon the existing hidden layer.
This layer receives feedback signals from the hidden layer, with each hidden layer node
connected to a corresponding node in the context layer. The role of the undertaking layer is
to incorporate memory connections, allowing the previous time step’s hidden layer state to
be combined with the current network input as the input to the hidden layer, effectively
providing state feedback. This mechanism aids in enhancing the network’s ability to handle
variables that change over time, thereby improving its robustness.
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The values of ω1, ω2, and ω3 represent the weights from the undertaking layer to the
hidden layer, from the input layer to the hidden layer, and from the hidden layer to the
output layer, respectively. Based on experience, the values of ω1, ω2, and ω3 are 0.7, 0.15,
and 0.15, respectively.

The mathematical model of the ENN is as follows:
qc(k) = q(k− 1)

q(k) = tan sig[ω1qc(k) + ω2u(k)]

h(k) = purelin[ω3qc(k)]

(10)

where purelin(*) is the linear transfer function of the output neuron and tansig(*) is the
tangent S-shaped function of the hidden neuron. The expression can be expressed as
follows [25]: {

purelin(z) = z

tan sig(z) = 2
1+e−2z − 1

(11)

The learning index function of the Elman neural network adopts the sum of squares
function of error, representing the discrepancy between the predicted output and the actual
target. The expression can be expressed as follows [19]:

E(k) =
n

∑
k=1

[h(k)− hc(k)]
2 (12)
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where hc(k) is the target output value.
Based on the mathematical deductions in the preceding section, there exists a strong

correlation between the displacement and the currents in the two sets of windings. There-
fore, in this study, the input layer u(k) consists of a matrix formed by the currents id, iq, ix,
and iy, while the output layer h(k) consists of a matrix formed by the displacements x and y
in the x-axis and y-axis directions.

4. Whale Optimization Algorithm

The WOA was proposed by Seyedali Mirjalili in 2016, and is a new type of algorithm
inspired by the predatory behavior of humpback whales in nature. Currently, it has been
successfully applied in many engineering application fields.

The WOA primarily consists of three steps: surrounding the prey, bubble-net attacking,
and searching for prey randomly. The detailed process is outlined as follows:

(1) Surrounding the prey: Initially, the exact position of the target prey is unknown.
The WOA designates the position of the most promising individual within the existing
whale group as the presumed target prey location. Subsequently, the remaining individuals
in the whale group adjust their positions according to the identified location of the best
candidate individual. This updating process is articulated as follows [21,26]:{

D = |C · X∗(j)− X(j)|
X(j + 1) = X∗(j)− A · D

(13)

where X denotes the position vector, X* represents the position vector of the best solution
obtained so far, A and C are coefficient vectors, | | denotes the absolute value, · is an
element-by-element multiplication, and j represents the current iteration.

It’s important to highlight that if a superior solution is discovered, the variable X must
be updated in every iteration. The equation for A and C can be expressed as follows [21,26]:{

A = 2ar-a

C = 2r
(14)

where a is linearly decreased from 2 to 0 over the course of iterations; r is a random vector
in [0, 1].

(2) Bubble-net attacking: During this stage, the calculation of the target prey’s position
and the distance from the whale is conducted for the first time. Utilizing these data,
the whale determines its most likely subsequent action. The mathematical expression
governing this process is outlined below [21,26]:{

D′ = |X∗(j)− X(j)|
X(j+1) = D′ · ebl1 · cos(2pi · l1) + X∗(j)

(15)

where b is a constant that defines the logarithmic spiral shape and l1 is a random number
between −1 and 1.

(3) Search for prey. In real-life scenarios, members of whale communities may engage
in random exploration for prey positions relative to their own locations, thereby augment-
ing the algorithm’s capacity for global search. This behavior is represented by directing the
search agent to diverge from the reference whale when the condition of | A | > 1 is met.
This aspect is mathematically characterized as follows [21,26]:{

D = |C · Xrand − X|
X(j + 1) = Xrand − A · D (16)

where Xrand is a random position vector (a random whale) chosen from the current population.
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The utilization of the WOA in the ENN is illustrated in the main process depicted in
Figure 4. Here is a breakdown of the process:

Step 1: Import the data and perform normalization.
Step 2: Establish the topology of the ENN. Define variables for the input and output layers.
Step 3: Initialize the thresholds and weights of the neural network.
Step 4: Introduce the WOA to optimize the network. Continuously iterate using the WOA
to adjust the weights and thresholds of the ENN. Repeat this process until the weights and
thresholds meet the specified tolerance range. Terminate the loop at this point and proceed
to the next step.
Step 5: Update the weights and thresholds of the network based on the values provided by
the algorithm.
Step 6: Output the training set and predicted values.
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It is obvious that the accuracy of both training and testing data significantly impacts
the neural network’s performance. Therefore, before simulation, it is crucial to select some
data to train the neural network. Displacement and current data corresponding to various
time points were randomly collected. In theory, the more data, the higher the accuracy
of the network. Considering the computational cost, in this paper, a sample size of 300
was chosen randomly. Among them, 100 groups were allocated for the testing set, and
the remaining 200 groups were designated for the training set. In the MATLAB software
R2021b environment, code was written and relevant variables were configured. The main
parameters are shown in Table 1.
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Table 1. Parameters for neural networks.

Parameter Value

Number of nodes in the input layer 4
Number of nodes in the output layer 2
Number of nodes in the hidden layer 11

Number of training iterations 1000
Minimum error 10−6

Learning rate 0.01
Momentum factor 0.01

Minimum performance gradient 10−6

Maximum failure count 10
Initial population size 30

Maximum evolution generations 50

The accuracy of the neural network directly affects the credibility of subsequent
research. Therefore, it is essential to validate and evaluate the trained neural network. By
comparing the differences between the output values of the two networks and the actual
values, the accuracy of the networks can be verified. Due to the similarity in displacement
along the x-axis and y-axis directions, to reduce variables, we only select displacement
along the y-axis as the output. Figure 5 illustrates the comparison of the predicted values
of both networks with the actual values. Figure 5a shows the comparison between the
predicted values and the actual values of the two networks, while Figure 5b displays the
errors between the predicted values and the actual values for both networks. It can be
observed from the figures that the predicted values of both methods are very close to the
actual values, indicating high accuracy for both. However, from Figure 5b, it can be seen
that the error of ENN mostly ranges from 4–8 µm, whereas the error of WOA-ENN remains
within 2 µm. Clearly, the error of the latter is significantly smaller than that of the former.
The results demonstrate the feasibility of the neural network and validate the precision of
the WOA.

Actuators 2024, 13, x FOR PEER REVIEW 10 of 19 
 

 

along the y-axis as the output. Figure 5 illustrates the comparison of the predicted values 

of both networks with the actual values. Figure 5a shows the comparison between the 

predicted values and the actual values of the two networks, while Figure 5b displays the 

errors between the predicted values and the actual values for both networks. It can be 

observed from the figures that the predicted values of both methods are very close to the 

actual values, indicating high accuracy for both. However, from Figure 5b, it can be seen 

that the error of ENN mostly ranges from 4–8 μm, whereas the error of WOA-ENN re-

mains within 2 μm. Clearly, the error of the latter is significantly smaller than that of the 

former. The results demonstrate the feasibility of the neural network and validate the pre-

cision of the WOA. 

 

Figure 5. Comparison of the predicted values of both networks with the actual values. (a) Result. 

(b) Error. 

To further quantitatively analyze the differences between the two networks, evalua-

tion indicators are introduced here, mainly including the root mean square error (RMSE), 

mean absolute error (MAE), determination coefficient (R2), and variance accounted for 

(VAF). RMSE represents the square root of the ratio of the square of the deviation between 

predicted and actual values to the sample size n. MAE denotes the average of the absolute 

errors between predicted and actual values. Smaller RMSE and MAE values indicate 

higher prediction accuracy of the model. R2 and VAF are commonly used to assess the 

linearity of the model fit. Higher values of R2 approaching 1 or VAF approaching 100% 

indicate better model quality. Their formulas are as follows [19,27]: 

Figure 5. Comparison of the predicted values of both networks with the actual values. (a) Result.
(b) Error.

To further quantitatively analyze the differences between the two networks, evaluation
indicators are introduced here, mainly including the root mean square error (RMSE),
mean absolute error (MAE), determination coefficient (R2), and variance accounted for
(VAF). RMSE represents the square root of the ratio of the square of the deviation between
predicted and actual values to the sample size n. MAE denotes the average of the absolute
errors between predicted and actual values. Smaller RMSE and MAE values indicate higher
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prediction accuracy of the model. R2 and VAF are commonly used to assess the linearity of
the model fit. Higher values of R2 approaching 1 or VAF approaching 100% indicate better
model quality. Their formulas are as follows [19,27]:

YRMSE =

√
1
n

n
∑

i=1
(yi − y∗i )

2

YMAE = 1
n

n
∑

i=1

∣∣(yi − y∗i )
∣∣

YR2 = 1−

n
∑

i=1
(y∗i −y)2

n
∑

i=1
(yi−y)2

YVAF = [1− var(yi−y∗i )
var(yi)

]× 100%

(17)

where yi represents the actual data, yi* represents the fitted data, y represents the mean
value, and var (*) denotes the variance function. The evaluation indicators are shown in
Table 2.

Table 2. Evaluation indicators of two models of a neural network.

Method RMSE MAE R2 VAF

ENN 3.1001 × 10−3 2.2148 × 10−3 0.98538 85.9179%
WOA-ENN 4.6127 × 10−4 3.2671 × 10−4 0.99979 96.2315%

Among the above evaluation indicators, R2 is a measure of the linear regression model
fit. It can be graphically represented through regression analysis, as shown in Figure 6.
From the graph, it can be observed that the fitting of WOA-ENN is superior.
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Combining Table 2 and Figure 6, it can be concluded that the trained neural network
is accurate. Moreover, the utilization of WOA has significantly improved the accuracy of
the ENN.

5. Simulations and Experimental Results

In order to verify the accuracy and reliability of the method, a simulation system and
experimental platform were designed and built. This paper uses a BSRM as a platform
to build a displacement sensorless control strategy. The BSRM parameters are shown in
Table 3.
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Table 3. Parameter of the BSRM.

Parameter Value

Nominal Power (PN) 500 W
Nominal Speed (nN) 3000 rpm

Flux (Φ) 0.1 Wb
Mass of Rotor (m) 1 kg

Rotational Inertia (J) 0.002 kg·m2

Air Gap Length with Centered Rotor (l) 0.25 mm
Torque Winding pole pairs (P1) 2
Torque Winding Resistance (Rs) 0.25 Ω

Torque Winding d-axis Inductance (Ld) 0.035 H
Torque Winding q-axis Inductance (Lq) 0.007 H

Suspension Winding pole pairs (P2) 1
Suspension Winding Resistance (Rr) 0.7 Ω

Suspension Winding x-axis Inductance (Lx) 0.002 H
Suspension Winding y-axis Inductance (Ly) 0.002 H

5.1. Simulation Results

The trained WOA-ENN model from the previous section was integrated into the
MATLAB/Simulink environment to construct a displacement sensorless simulation model
for the BSRM. The control diagram is illustrated in Figure 7. The working steps of the
suspension winding control system are described as follows. The current signals (id,
iq, ix, iy) collected from the two windings are input into the WOA-ENN module. The
predicted rotor displacement signals (x, y) obtained from the displacement sensorless
technique serve as negative feedback control signals, which are compared with the desired
displacement signals (x*, y*). The resulting error signals are transformed by a PID controller
into suspension force signals (Fx*, Fy*). The current signals ix* and iy* of the suspension
winding can be obtained through force/current conversion (Equation (3)). These signals
are compared with the feedback current values ix and iy of the suspension winding. The
resulting error signals are then converted by a PI controller into voltage signals, followed by
Park inverse transformation and Clark inverse transformation to obtain the input voltages
(u2a*, u2b*, u2c*) for the SVPWM module, thereby driving the suspension winding.
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For the torque winding part, a vector control method with id* = 0 is employed. The
speed signal detected by the encoder serves as a negative feedback control signal, which is
compared with the given speed. Subsequent processing, similar to that of the suspension
winding, yields the input voltages (u1a*, u1b*, u1c*) for the SVPWM module, driving the
torque winding.

In this simulation, the variable step size odt23tb was employed as the simulation
algorithm. The simulation commenced at t = 0 s and concluded at t = 0.15 s. At t = 0 s, the
motor initiated operation from a standstill. By t = 0.025 s, the speed had reached 3000 r/min
and remained constant until the end of the simulation. At t = 0.1 s, a disturbance of 2 Nm
was abruptly applied in the positive direction of the y-axis. To showcase the superiority of
the WOA, we utilized the ENN as a reference and monitored the tracking performance of
the rotor displacement throughout the entire simulation duration. The entire simulation
process is shown in Figure 8.
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Comparing Figure 8b–d, it can be observed that the trends of the three curves were gen-
erally consistent throughout the entire simulation process. This indicates that both the ENN
and WOA-ENN methods are capable of predicting rotor displacement. However, at t = 0.1 s,
there was a noticeable distortion in the ENN waveform, while the WOA-ENN waveform
remained unaffected. This is attributed to the inherent limitations of ENN, such as poor
convergence and robustness in handling nonlinear time series problems, whereas the latter,
benefiting from the optimization of WOA, does not exhibit such pronounced deficiencies.
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For further analysis, we compared the differences between the two methods and the
actual values, as shown in Figure 9. Figure 9a shows the error results of both methods
compared to the actual values throughout the entire simulation process, while the remaining
three sub-figures represent zoomed-in views of the start-up phase, steady-state operation
phase, and load disturbance phase of the motor, respectively. It can be observed that the
fluctuation amplitude of ENN was relatively large, with errors ranging from 6 to 9 µm
during the rising phase, significantly greater than the errors below 2 µm observed with the
WOA-ENN method. During the steady-state operation phase of the motor, the errors of
both methods were very small, but it can also be noted that the fluctuation range of the ENN
method is significantly larger than that of the WOA-ENN. During the load disturbance
phase, ENN produced significant errors, approximately 9 µm, indicating its inability to
respond promptly to sudden load changes. In contrast, the WOA-ENN demonstrated
excellent tracking performance.
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Throughout the simulation process, the WOA-ENN can accurately predict the dis-
placement information of the rotor. Compared with traditional ENN, it has a small error
and fluctuation range, proving that the proposed method is accurate, implementable, and
has strong anti-interference ability.
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5.2. Experimental Results

To validate the correctness of the simulation results, an experiment platform was
established. The experimental parameters and simulation parameters were consistent. The
BSRM experimental platform was built, as shown in Figure 10. It mainly comprised the
BSRM, power drive boards, power supplies, and a DSP controller. Because the actual
displacement of the BSRM could not be directly obtained, we assumed that the values
measured by the displacement sensor were the true data, while the values obtained after
processing by the neural network were the predicted values. The displacement sensor used
in this experiment was the QH8500 model of an eddy current sensor. This type of sensor is
a non-contact linear position measurement device, known for its high resolution, strong
anti-interference capability, and fast response speed. An oscilloscope was used to display
the displacement signal detected by the displacement sensor and the displacement signal
predicted by the neural network, and they were analyzed.
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We employed three control methods to control the suspension winding of the BSRM.
The first method utilized the displacement signal detected by traditional displacement
sensors as the negative feedback control signal. The other two methods, as mentioned in the
Simulation Results section, used ENN and WOA-ENN to obtain the displacement signal
as the negative feedback control signal. The first method served as the reference group,
allowing us to demonstrate the feasibility of the proposed method and the optimization
effect of the WOA.

Figure 11 shows the displacement curves of the rotor during normal motor operation.
It can be observed that the fluctuations of the rotor in the x-axis and y-axis directions
were relatively small, indicating the effective operation of the motor suspension control
system at this time. Overall, the values measured by the sensor were the smoothest, with
fluctuations within 0.5 µm, followed by the WOA-ENN with fluctuations within 1 µm and
ENN with fluctuations reaching up to 4 µm. The WOA-ENN exhibited smaller fluctua-
tions and lower errors compared to ENN, indicating its accuracy and the effectiveness of
algorithm optimization.
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To further validate the reliability of this method, a 2 Nm load was intentionally added
in the positive y-axis direction. We observed the predictive capability of this method
during the load disturbance phase. Figure 12 shows the displacement comparison during
this process. The values measured by the sensor were the smoothest, with fluctuations
within 2 µm, followed by the WOA-ENN, with fluctuations within 4 µm, and ENN, with
fluctuations reaching up to 10 µm. Comparing the three plots in Figure 12, it is evident that
the sensor had the fastest response speed, with minimal fluctuations and the smoothest
waveform. The performances of the two sensorless methods were not as effective as that
with the sensor. However, comparing the two sensorless methods, it is evident that the
WOA-ENN closely approximated the values detected by the sensor and exhibited a smaller
fluctuation range. Meanwhile, the ENN’s ability to respond to sudden load disturbance
was not as stable, resulting in some waveform distortion.
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Based on the results of the simulations and experiments in this section, the WOA-
ENN method was demonstrated to be feasible and accurate. However, it still faces some
potential issues and challenges. The foundation of the proposed method relies on the
quantity and quality of sample data. The more samples and the higher the quality, the
better the performance of the method. In this study, due to workload constraints, the
number of samples collected was limited. Additionally, most of the collected sample data
were obtained during normal motor operation, with fewer samples collected during motor
failure. Therefore, the predictive performance of the method may be compromised when
the motor experiences faults. Of course, adding a certain number of fault samples can
effectively improve the prediction performance.

6. Conclusions

Building upon the mathematical model proposed by previous scholars for the bear-
ingless synchronous reluctance motor, this study extracts the relationship between the sus-
pension winding current and the rotor radial displacement. We designed a displacement
sensorless technique for the BSRM based on the WOA-ENN. The WOA was utilized to
optimize the ENN, enhancing the accuracy and stability of the proposed method. Both the
simulation and experimental results demonstrate the effectiveness of this approach in predict-
ing the rotor’s radial displacement. Moreover, this method requires no additional hardware,
is straightforward to implement, and exhibits strong resistance to interference. These findings
underscore the promising prospects and research value of the proposed technique.
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