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Abstract: Permeable concrete is a type of porous concrete with the special function of water per-
meability, but the permeability of permeable concrete will decrease gradually due to the clogging
behavior arising from the surrounding environment. To reliably characterize the clogging behavior
of permeable concrete, particle swarm optimization (PSO) and random forest (RF) hybrid artificial
intelligence techniques were developed in this study to predict the permeability coefficient of perme-
able concrete and optimize the aggregate mix ratio of permeable concrete. Firstly, a reliable database
was collected and established to characterize the input and output variables for the machine learning.
Then, PSO and 10-fold cross-validation were used to optimize the hyperparameters of the RF model
using the training and testing datasets. Finally, the accuracy of the developed model was verified by
comparing the predicted value with the actual value of the permeability coefficients (R = 0.978 and
RMSE = 1.3638 for the training dataset; R = 0.9734 and RMSE = 2.3246 for the testing dataset). The
proposed model can provide reliable predictions of the clogging behavior that permeable concrete
may face and the trend of its development.

Keywords: permeable concrete; PSO; RF; water permeability; hybrid artificial intelligence techniques

1. Introduction

The traditional concrete structure is dense, and rainwater does not easily pass through,
so it is easy to observe urban waterlogging in the season of heavy rainfall [1,2]. At the
same time, groundwater cannot be replenished in time; therefore, groundwater resources
have gradually decreased. Permeable concrete is a type of functional concrete that prevents
water accumulation on the ground by artificially setting gaps in the concrete, so that
the surface water can pass through freely [3,4]. During the preparation of permeable
concrete, the interspaces of concrete can be connected by adopting corresponding technical
measures [5,6]. Permeable concrete refers to the concrete with internal porosity that is
greater than 10%, generally 15% to 30%, and most of the pore diameters are greater than
1 mm, with certain water and air permeability [7–11]. As the organic matter and fine-
grained impurities block the voids of the permeable concrete, water permeability becomes
an urgent problem to be solved in the application [7,12,13]. Impurities, such as leaves,
pine needles, nuts, sprouts, grass clippings, soil washed away by runoff, and sand falling
from the concrete, can all become the components to block permeable concrete [8]. Also,
industrial experience has shown that even if there is no organic matter and fine-grained
materials directly invading the permeable concrete, the permeability will still decrease over
time [14] (as shown in Figure 1).
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Figure 1. Penetration attenuation of permeable concrete. 

Observing the obstructions in the voids of permeable concrete, it is found that they 
are composed of fine sand particles and squeezed organic matter [15]. These obstructions 
generally cluster together in the voids of permeable concrete [16]. The obstructions in the 
voids of permeable concrete pavement will decompose or re-synthesize over time, which 
will affect the permeability of permeable concrete. Therefore, the agglomeration of ob-
structions is regarded as the main factor determining the permeability of permeable con-
crete [7,17–19]. 

Permeable concrete is a functional concrete that is used in cities to realize the ecolog-
ical circulation of water resources and improve the natural ecological environment [20]. 
The proposal of “sponge city” has increased the attention to the application of permeable 
concrete research. Permeable concrete is a type of multi-void concrete with high porosity; 
therefore, its mechanical properties, such as compressive strength, are poor, and it is often 
used in urban streets, residential parks, and other areas with high requirements for road 
permeability [21]. The permeable effect of permeable concrete is related to the service en-
vironment, the material properties of permeable concrete, and cleaning and maintenance 
methods [22,23]. The permeability of permeable concrete varies with rainfall, topography, 
and the proportion of blocked particles [24]. In terms of material properties, the permea-
bility effect of permeable concrete is mainly related to the water–cement ratio, the poros-
ity, the thickness of the concrete specimen, and the aggregate diameter [25]. The blocked 
particles trapped in the surface of permeable concrete are the main factors leading to the 
decrease in the permeability of permeable concrete. Timely cleaning and maintenance of 
permeable concrete are beneficial to reducing the decline of the permeability of permeable 
concrete [26]. To improve the permeability of permeable concrete, it is of great significance 
to study the composition materials of permeable concrete. 

Researchers often use the laboratory test method to study the performance of con-
crete, but this method not only has the disadvantage of low efficiency but also requires a 
lot of money [27]. To solve the inevitable shortcomings of the laboratory experiment 
method, some researchers have proposed to use artificial intelligence models for the re-
gression prediction [28–45], such as multilayer perceptron (MLP), feed-forward (FF), ra-
dial basis function (RBF), and recurrent neural networks (RNN). Zhang et al. studied ran-
dom forests (RF), support vector machine (SVM), and artificial neural network (ANN) 
models to solve the complex fatigue problems of concrete materials, and proposed a 
strength degradation model for evaluating the residual strength of concrete under fatigue 
loads [46]. Imran et al. developed a multiple regression (MPR) model to predict the com-
pressive strength of eco-friendly concrete and compared the prediction performance of 
this model with the linear regression (LR) model and the SVM model. The results showed 
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Observing the obstructions in the voids of permeable concrete, it is found that they
are composed of fine sand particles and squeezed organic matter [15]. These obstructions
generally cluster together in the voids of permeable concrete [16]. The obstructions in
the voids of permeable concrete pavement will decompose or re-synthesize over time,
which will affect the permeability of permeable concrete. Therefore, the agglomeration
of obstructions is regarded as the main factor determining the permeability of permeable
concrete [7,17–19].

Permeable concrete is a functional concrete that is used in cities to realize the ecological
circulation of water resources and improve the natural ecological environment [20]. The
proposal of “sponge city” has increased the attention to the application of permeable
concrete research. Permeable concrete is a type of multi-void concrete with high porosity;
therefore, its mechanical properties, such as compressive strength, are poor, and it is
often used in urban streets, residential parks, and other areas with high requirements
for road permeability [21]. The permeable effect of permeable concrete is related to the
service environment, the material properties of permeable concrete, and cleaning and
maintenance methods [22,23]. The permeability of permeable concrete varies with rainfall,
topography, and the proportion of blocked particles [24]. In terms of material properties,
the permeability effect of permeable concrete is mainly related to the water–cement ratio,
the porosity, the thickness of the concrete specimen, and the aggregate diameter [25].
The blocked particles trapped in the surface of permeable concrete are the main factors
leading to the decrease in the permeability of permeable concrete. Timely cleaning and
maintenance of permeable concrete are beneficial to reducing the decline of the permeability
of permeable concrete [26]. To improve the permeability of permeable concrete, it is of
great significance to study the composition materials of permeable concrete.

Researchers often use the laboratory test method to study the performance of concrete,
but this method not only has the disadvantage of low efficiency but also requires a lot of
money [27]. To solve the inevitable shortcomings of the laboratory experiment method,
some researchers have proposed to use artificial intelligence models for the regression
prediction [28–45], such as multilayer perceptron (MLP), feed-forward (FF), radial basis
function (RBF), and recurrent neural networks (RNN). Zhang et al. studied random forests
(RF), support vector machine (SVM), and artificial neural network (ANN) models to solve
the complex fatigue problems of concrete materials, and proposed a strength degradation
model for evaluating the residual strength of concrete under fatigue loads [46]. Imran
et al. developed a multiple regression (MPR) model to predict the compressive strength
of eco-friendly concrete and compared the prediction performance of this model with the
linear regression (LR) model and the SVM model. The results showed that the prediction
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performance of the new model was superior to the other two models [47]. Han et al.
proposed a method for predicting the elastic modulus of concrete containing recycled
aggregate and compared the prediction effect of the integrated learning model with that of
five commonly used artificial intelligence models. The results showed that the prediction
effect of the elastic modulus of concrete containing recycled aggregate was better than
that of the single artificial intelligence model [48]. Liu et al. studied the different artificial
intelligence models for the prediction of the recycled aggregate concrete carbonation depth
effect. The results showed that the predicted effect of the RF model was better than the
gaussian process regression (GPR) model and independent of the ANN model [49]. All
the above artificial intelligence models have achieved good results in predicting concrete
performance, indicating that artificial intelligence techniques have broad prospects in
predicting concrete performance [50,51]. Although the permeable effect of permeable
concrete is facing great problems, which need to be solved urgently, there are few types of
research on the water permeability of permeable concrete using the artificial intelligence
method. Also, to the knowledge of the authors, the thickness of permeable pavement has
not been considered in the prediction of the clogging behavior of permeable concrete.

To effectively simulate the clogging behavior of permeable concrete and reduce the cost
of numerous laboratory tests, a numerical simulation study was carried out. In addition,
to improve the reliability of the modeling, a hybrid artificial intelligence technique was
developed to predict and simulate the clogging behavior of permeable concrete under
different clogging particles. The proposed study provides a theoretical basis for subsequent
researchers to study the clogging behavior of permeable concrete.

2. Research Aims

The main aim of this research was to evaluate and model the clogging behavior of
permeable concrete by predicting the permeability coefficient using machine learning tech-
niques, intending to understand the clogging behavior of permeable concrete and the trend
of its development. A hybrid AI algorithm combining the PSO and RF models is proposed
to improve the efficiency and accuracy of the prediction process. The permeable concrete
was mixed and designed using four types of aggregates (2.36–4.75 mm, 4.75–9.50 mm,
9.50–16.0 mm, and 16.0–19.0 mm). The input parameters were determined as the different
proportions of these four types of aggregates. To consider the permeable pavement thick-
ness, the sample thicknesses were determined as 50 mm, 100 mm, and 150 mm, respectively.
The permeability reduction tests were conducted using three types of clogging sands of
different sizes (0–0.25 mm, 0.25–0.5 mm, and 0.5–1 mm). After the laboratory tests, the
hybrid model based on the PSO-RF algorithm was employed to construct a hybrid artificial
intelligence technique to predict the permeability under varying clogging sands. Figure 2
presents the research process of this study.
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3. Data Collection

The employment of machine learning techniques to predict the performance of con-
crete is a recent research hotspot. Researchers are eager to develop novel and effective
artificial intelligence techniques for predicting concrete performance, but often ignore the
importance of a database for verifying the prediction effect of the model on concrete perfor-
mance. To more accurately verify the prediction effect of the PSO and RF hybrid artificial
intelligence techniques developed in this study on the permeability of permeable concrete,
this study established a reliable database based on the dataset collected from previous stud-
ies [52]. Compared with another algorithm for hyperparameter tuning, the PSO algorithm
has no crossover and mutation operations and relies on particle speed to complete the
search. Moreover, in the iterative evolution, only the optimal particle transmits information
to the other particles, and the search speed is fast. There are also fewer parameters to be
adjusted; therefore, the structure is simple, and it is easy to predict the clogging behavior
of permeable concrete. In the database employed in this study, the proportion of four
aggregates (2.36–4.75 mm, 4.75–9.50 mm, 9.50–16.0 mm, and 16.0–19.0 mm), the thickness
of three different concrete specimens (0–0.25 mm, 0.25–0.5 mm, and 0.5–1 mm), and three
different sizes of blocking sand (0–0.25 mm, 0.25–0.5 mm, and 0.5–1 mm) were regarded
as input variables. The datasets of 84 groups (as shown in the appendix) were randomly
divided into two parts, one of which accounted for 70% of the total dataset as the training
set, and the other accounted for 30% of the total dataset as the test set.



Buildings 2024, 14, 1173 5 of 17

4. Methodology
4.1. Random Forest (RF) Model

The RF model combines multiple weak classifiers, and the final results are voted or
averaged so that the results of the overall model have high accuracy and generalization
performance. The good performance of the model is mainly due to “randomness” and
“forest”, one making it resistant to overfitting, the other making it more accurate. A random
forest is made up of many classifications and regression trees (CART), and there is no
correlation between the different carts. As the classification task is carried out, new input
samples will enter and each decision tree in the forest will be allowed to judge and classify
separately. Each decision tree will have its own classification result; the random forest
will take the classification results of the decision tree that has the most classification as the
final result.

4.1.1. Classification and Regression Tree (CART)

CART uses binary recursive segmentation to divide the original sample set into two
subsets so that there will be two branches on each non-leaf node. In the case of node
splitting, the splitting rule follows the minimum principle of the Gini index, and the
probability distribution of the Gini index can be calculated using [53,54]:

Gini(p) =
K

∑
k=1

pk(1 − pk) = 1 −
K

∑
k=1

pk
2 (1)

where K is the total number of feature samples in the node, and pk is the probability of the
feature samples of class K in the node. The Gini index of one dataset can be determined
as follows:

Gini(D) = 1 −
K

∑
k=1

(
|Ck|
|D|

)2
(2)

The Gini index divided by each node can be calculated using the following equation:

Ginisplit(D) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (3)

where D1 and D2 are the two subsets of the permeability dataset.

4.1.2. Bagging Algorithm for the Permeability Coefficients

The bagging algorithm sets a series of weak classifiers into a strong classifier, and each
weak classifier classifies and predicts the data on the permeability coefficients indepen-
dently, which can improve the generalization performance of the classifier and improve the
accuracy of the final result. The bagging algorithm is a retractable sampling method, that
is, based on repeatable random sampling, each sample is obtained using the retractable
sampling of the initial dataset of the permeability coefficients. The bootstrap method
(Figure 3) was used to randomly select the N training samples of the permeable concrete
(pc1, pc2, pc3) from the original sample set, and the process was carried out for Ntree cycles
to obtain the Ntree training sets, which were independent of each other.

According to the method in Figure 3, the Ntree training dataset can generate Ntree
models. To model the clogging behavior of permeable concrete, the permeability can be
determined using the average of the Ntree models. The flow chart of the bagging algorithm
is summarized in Figure 4.
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4.1.3. RF Modeling for the Permeability Prediction

The construction of the RF algorithm consists of three stages: training set generation,
decision tree construction, and algorithm formation. First, the bagging algorithm is used
to generate the n unrelated training sets without placing back sampling randomly. Then,
the n training sets are trained separately to build a decision tree. Finally, the N decision
trees are integrated to form the RF model. The flow chart used to construct the RF model to
predict the clogging behavior of permeable concrete is shown in Figure 5.
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4.2. Random Forest (RF) Model

The PSO algorithm compares the whole particle swarm to a bird flock, and each
particle in the population has the attributes of position, speed, and fitness value. A particle
represents a feasible solution in the feasible domain of the solution, but it is not necessarily
the optimal solution. In addition, each particle does not know the specific location of the
target. In each cycle operation, the particle adjusts its own speed and position vector by
learning its own historical experience and the historical experience of the population and
comparing this with the adaptive value of the previous position to finally achieve the
purpose of global optimization.

During the cycle iteration, the velocity and position vectors of the particle were
updated as shown below [55,56]:

vid = ω ∗ vid + c1 ∗ r(x) ∗ (pid − xid) + c2 ∗ r(x) ∗
(

pgd − xid

)
(4)
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xid = xid + vid (5)

where ω is the inertia weight; c1 and c2 are the learning factors; and r(x) is the random
equation in the range of (0,1). vid should be limited using the following equations:

vid =


vmax, vid > vmax
vmin, vid < vmin

vid, vmin< vid < vmax

(6)

4.3. Hybrid AI Techniques to Predict the Clogging Behavior

To address the issue that the number of decision trees, n, and the number of splitting
features, m, are discrete values in the RF algorithm, the PSO algorithm was used to optimize
the parameters of the RF model [57,58]. In detail, the relevant parameters of the RF and
PSO algorithms were initialized; the value range, the initial value of the number of decision
trees, n, and the splitting feature number, m, in the RF model were given; and the number
of iterations in the particle swarm was set. The number of decision trees, n, and the number
of splitting features, m, were substituted into the RF model to calculate the average error.
The number of iterations was checked to ensure it meets the requirement of the set value
and determine the optimized tree number, nbest, and splitting characteristic number, mbest.
In the original dataset of the permeable concrete, the nbest training sets were randomly
selected using the Bootstrap method to form the nbest decision trees. Then, the mbest
features were randomly selected to form split feature sets. Each decision tree was divided
by selecting the optimal split feature until the leaf node. The result of each decision tree
was calculated using the arithmetic average value, and the final permeability prediction
result of the RF-PSO model was obtained.

4.4. Hyperparameter Tuning
4.4.1. 10-Fold Cross-Validation (CV)

In this research, the 10-fold cross-validation (CV) was used for the hyperparameter
tuning in the RF model [59,60]. In the 10-fold CV, the permeability coefficient dataset was
divided into 10 subsets, of which 9 subsets were used for the training process and 1 subset
was used to validate the permeability prediction results. For the subset used to validate
the prediction, the minimum RMSE needs to be determined after 50 iterations to represent
the optimal structure of this RF model [61,62]. In other words, such a verification process
needs to use the PSO algorithm 50 times to attain the hyperparameters of the RF model.
The permeability prediction results should be compared with the clogging behavior model,
considering the size of the clogging sand.

4.4.2. Determination of the Prediction Effect

This research applied two parameters (RMSE, root-mean-square error; R, correlation
coefficient) to validate the model and evaluate the prediction effect of the model established
in this study. The RMSE was defined using the following formula [63,64]:

RMSE =

√
1
n∑n

i=1

(
y∗i − yi

)2 (7)

where y∗i is the predicted permeability coefficient of the permeable concrete; yi is the
measured value of the permeability coefficient of the permeable concrete; n is the number
of the permeable concrete samples to conduct the tests of permeability. R was determined
using the formula as follows:

R =
∑n

i=1
(
y∗i − y∗

)
(yi − y)√

∑n
i=1

(
y∗i − y∗

)2
√

∑n
i=1(yi − y)2

(8)
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where y∗i and yi are the permeability coefficients of the permeable concrete using the
prediction and the measurement, respectively.

5. Results and Discussion
5.1. Analysis of the Permeability Results

This study applied the Pearson correlation coefficient to calculate the relationship
between the input parameters that determine the permeability results. The higher the
correlation value, the stronger the correlation between the two parameters. When the
correlation coefficient between the two parameters is closer to 1, this indicates that the
correlation is stronger. Conversely, when the correlation coefficient between the two
parameters is closer to 0, this indicates that the correlation is weaker. Figure 6 shows the
correlation matrix of the different input parameters, including the proportions of G1, G2,
G3, and G4, as well as the sample thickness and clogging sand sizes.
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It can be observed in Figure 6 that the correlation coefficient of the two identical
variables on the diagonal is 1 from the bottom left to the top right, and the correlation
coefficient of the upper part of the diagonal is symmetrical with that of the lower part of
the diagonal. The correlation coefficients between the variables are relatively low (most
values are below 0.5). This demonstrates that these input variables are independent of each
other and can be used as input variables to predict the clogging behavior of permeable
concrete samples without causing multicollinearity problems.

To determine the relationship between input variables and the permeability of per-
meable concrete, the sensitivity of the input variables and the permeability of permeable
concrete were analyzed in this study. Figure 7 presents the sensitive analysis of different
input variables.
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As observed in Figure 7, the proportion of the G1 aggregate is negatively correlated
with the permeability coefficient (see Figure 7a), indicating that the aggregate with a small
particle size is not conducive to the permeability of permeable concrete. This is because
the aggregate size is small and easily filled into the skeleton structure, reducing the voids.
For the G2, G3, and G4 aggregates, the influence of the aggregate ratio on the permeability
coefficient is relatively random (Figure 7b–d). It can be seen from Figure 7e that the sample
thickness is beneficial to the permeability of permeable concrete. This may be because
there are more seepage paths in the thicker concrete specimens, increasing the permeability
coefficient. It can be seen in Figure 7f that the size of the clogging sand has little influence
on the permeability coefficient. The permeability coefficient of permeable concrete can be
significantly reduced with larger clogging sand.
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5.2. Results of the Hyperparameter Tuning

The hyperparameter of the optimized RF model to predict the permeability was tuned
using the 10-fold cross-validation method in this study. In the 10-fold cross-validation
method, one subset of the permeability dataset needs to be isolated for the final evaluation
of the model. The remaining permeability coefficient data are divided into 10 folded subsets.
These folded subsets are then cross-validated iteratively, using one subset as the validation
set in each iteration and using all the remaining subsets as the training set. The RMSE
values obtained during this process were used for the validation. Figure 8 shows the RMSE
values regarding the different fold numbers after the 10-fold cross-validation.
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As shown in Figure 7, the minimum value of the RMSE can be obtained at the sixth
fold from the permeability dataset of the permeable concrete, and the minimum RMSE
value is 0.75 mm/s. Therefore, the hyperparameter obtained at the sixth fold was used
in the present study to construct the optimized RF model to predict the permeability of
permeable concrete.

Figure 9 shows the development of the RMSE values with the increase in the iteration
times and demonstrates that the RMSE values can decrease quickly with the increase in the
iteration times. It is evident that the PSO algorithm can tune the RF model to predict the
permeability of the permeable concrete efficiently.
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5.3. Evaluation of the Model

In the field of artificial intelligence, it is necessary to evaluate the established model
after it is established to judge the accuracy of the established artificial intelligence model.
This study verifies the accuracy of the PSO and RF hybrid artificial intelligence technology
in predicting the permeability of permeable concrete by comparing the predicted value and
the actual value of the training set and the test set. The comparison between the predicted
value and the actual value of the permeability of permeable concrete in the training set
and the test set is shown in Figure 9, and the horizontal line represents the error. It can be
observed in Figure 10 that the predicted values of the permeability of permeable concrete
in the training set and the test set have a high consistency with the actual values, which
proves that the hybrid machine learning technique of PSO and RF proposed in this paper
has a good prediction effect on the permeability of permeable concrete.
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Figure 11 more intuitively shows the comparison between the predicted value and
the actual value of the permeability of permeable concrete in the training set and the test
set, as well as the R value and the RSME value corresponding to the training set and
the test set. It can be seen in Figure 10 that the permeability of permeable concrete in
both the training set and the test set is concentrated in 0–20mm/s. Most of the predicted
values have a high consistency with the actual values, and only a few points have a large
error, which will not affect the overall prediction effect of the model on the permeability
of permeable concrete. It can also be seen in Figure 11 that the R values of the training
set and the test set were 0.978 and 0.9734, respectively, and the RME values were 1.3638
and 2.3246, respectively, that is, the R values of the training set and the test set were
very high, and the RME values were very low (it should be noted that the standard
deviation of the training set and the test set were 5.30 and 5.74, respectively). It is proven
again that the hybrid artificial intelligence technology of particle swarm optimization
and radio frequency proposed in this paper can predict the permeability of permeable
concrete with high precision. In conclusion, the model can provide a reliable prediction
for the possible plugging behavior of permeable concrete and its development trend. The
model provides a reference for the maintenance engineers of permeable pavement to
understand the blocking behavior, propose a reasonable maintenance time, and determine
the corresponding maintenance strategies.



Buildings 2024, 14, 1173 13 of 17

Buildings 2024, 14, x FOR PEER REVIEW 13 of 18 
 

which will not affect the overall prediction effect of the model on the permeability of per-
meable concrete. It can also be seen in Figure 11 that the R values of the training set and 
the test set were 0.978 and 0.9734, respectively, and the RME values were 1.3638 and 
2.3246, respectively, that is, the R values of the training set and the test set were very high, 
and the RME values were very low (it should be noted that the standard deviation of the 
training set and the test set were 5.30 and 5.74, respectively). It is proven again that the 
hybrid artificial intelligence technology of particle swarm optimization and radio fre-
quency proposed in this paper can predict the permeability of permeable concrete with 
high precision. In conclusion, the model can provide a reliable prediction for the possible 
plugging behavior of permeable concrete and its development trend. The model provides 
a reference for the maintenance engineers of permeable pavement to understand the 
blocking behavior, propose a reasonable maintenance time, and determine the corre-
sponding maintenance strategies. 

  
(a) training set (b) test set 

Figure 11. Consistency analysis of the predicted value and the actual value. 

To understand the predictive results of the clogging behavior with other research and 
standard codes, an in-depth comparison was conducted with the previous studies [65,66]. 
Figure 12 demonstrates the comparison between the proposed model and the previous 
studies (one is a physical-based prediction model considering the clogging behavior 
[67,68]; the other is a hybrid machine learning algorithm based on a PSO-SVM model [52]). 
It can be observed that the prediction results based on the machine learning models are 
better than the physical model. Also, the hybrid algorithm-based model proposed in this 
study achieved better results than the PSO-SVM model used in a previous study. This is 
because the proposed physical models are more based on idealized assumptions. For ex-
ample, the connected pore is assumed to be an equally thick permeable pipe [67,68], or 
the porosity of the concrete specimens is assumed to be consistent in different sections 
[67,68]. It is easy for the physical model to be inconsistent with the actual seepage when 
predicting the permeation decay behavior of pervious concrete, which leads to the low 
prediction reliability of the physical model. Also, it can be indicated in the figure that the 
PSO model shows higher reliability when predicting the permeability attenuation behav-
ior of pervious concrete by tunning the hyperparameters of the RF model compared with 
the SVM model. This will provide a basis for future engineers to predict the permeability 
attenuation behavior of pervious concrete using artificial intelligence methods. 

Figure 11. Consistency analysis of the predicted value and the actual value.

To understand the predictive results of the clogging behavior with other research and
standard codes, an in-depth comparison was conducted with the previous studies [65,66].
Figure 12 demonstrates the comparison between the proposed model and the previous
studies (one is a physical-based prediction model considering the clogging behavior [67,68];
the other is a hybrid machine learning algorithm based on a PSO-SVM model [52]). It can
be observed that the prediction results based on the machine learning models are better
than the physical model. Also, the hybrid algorithm-based model proposed in this study
achieved better results than the PSO-SVM model used in a previous study. This is because
the proposed physical models are more based on idealized assumptions. For example, the
connected pore is assumed to be an equally thick permeable pipe [67,68], or the porosity
of the concrete specimens is assumed to be consistent in different sections [67,68]. It is
easy for the physical model to be inconsistent with the actual seepage when predicting
the permeation decay behavior of pervious concrete, which leads to the low prediction
reliability of the physical model. Also, it can be indicated in the figure that the PSO
model shows higher reliability when predicting the permeability attenuation behavior of
pervious concrete by tunning the hyperparameters of the RF model compared with the
SVM model. This will provide a basis for future engineers to predict the permeability
attenuation behavior of pervious concrete using artificial intelligence methods.
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6. Conclusions

Permeable concrete is a type of multifunctional building material that can improve
ecological circulation, protect the ecological environment, and solve the negative influence
of modern urban construction on the urban ecological environment. Permeable concrete
has many functions, such as water permeability, skid resistance, sound absorption, and
noise reduction, among which water permeability is the most important property. However,
as the service time of permeable concrete increases, the water permeability of permeable
concrete gradually decreases, so it is a great challenge for engineers to design permeable
concrete with a strong water permeability. In this study, the PSO and RF hybrid artificial
intelligence techniques were proposed to predict the water permeability of permeable
concrete. The study drew the following conclusions:

With the increase in the number of iterations, the RMSE value obtained using PSO and
10x cross-validation was at least 0.7. This indicates that the RF model has a good tuning
effect for predicting the permeability of pervious concrete.

The increase in the proportion of the small aggregate size harms the permeability
of permeable concrete, the increase in the concrete thickness is beneficial to improve the
permeability of the permeable concrete, and the increase in blocked particle size will
significantly reduce the permeability of the permeable concrete.

Comparing the predicted and actual values of pervious concrete in both the training
set and the test set, it was observed that the disparity between the predicted and actual
values in both sets was less than 5. The R value and the RMSE value were analyzed for
both sets. The RMSE value for the training group was found to be 1.3638, while for the test
group it was 2.3246. Additionally, the R values obtained for the training group and the test
group were determined to be 0.978 and 0.9734, respectively. Hence, this study effectively
demonstrated that the proposed mixed artificial intelligence technology combining PSO
and RF can provide improved predictions of water permeability in pervious concrete.

According to the RMSE value of 2.2346 and R value of 0.9734 of the test set, the model
demonstrated the capability to reliably predict potential plugging behavior and devel-
opmental trends in pervious concrete. Simultaneously, the model offer valuable insights
into plugging behavior for the maintenance engineers working with permeable pavement,
enabling them to propose appropriate maintenance schedules, determine corresponding
measures, and provide a point of reference.

In this study, the influences of the different aggregate compositions, the thickness
of the permeable pavement, and the size of clogging particles on the clogging behavior
were considered. However, it should be noted that there may be more factors affecting the
clogging behavior of permeable concrete (such as the water–cement ratio and the content
of additives). Therefore, more possible factors should be considered in future studies to
achieve the prediction of clogging behavior. The training and testing datasets were also
collected from the same study. Regarding future development, the prediction results should
be compared with the other studies to achieve a comprehensive prediction.
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