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Abstract: Queuosine (Q) is a modification of the wobble base of tRNA harboring GUN anticodons
with roles in decoding accuracy and efficiency. Its synthesis is complex with multiple enzymatic
steps, and several pathway intermediates can be salvaged. The only two transporter families known
to salvage Q precursors are QPTR/COG1738 and QrtT/QueT. Analyses of the distribution of known
Q synthesis and salvage genes in human gut and oral microbiota genomes have suggested that
more transporter families remain to be found and that Q precursor exchanges must occur within the
structured microenvironments of the mammalian host. Using physical clustering and fusion-based
association with Q salvage genes, candidate genes for missing transporters were identified and five
were tested experimentally by complementation assays in Escherichia coli. Three genes encoding
transporters from three different Pfam families, a ureide permease (PF07168) from Acidobacteriota
bacterium, a hemolysin III family protein (PF03006) from Bifidobacterium breve, and a Major Facilitator
Superfamily protein (PF07690) from Bartonella henselae, were found to allow the transport of both
preQ0 and preQ1 in this heterologous system. This work suggests that many transporter families can
evolve to transport Q precursors, reinforcing the concept of transporter plasticity.

Keywords: queuosine; queuine; transporter; tRNA; salvage; biogeography; phylogenomic

1. Introduction

While the multifaceted functions of tRNA modifications in translation have been
recognized for over four decades, only recently has it become apparent that these modifi-
cations may serve pivotal regulatory roles across various model systems from bacteria to
humans [1]. In addition, technical advancements in the analytical techniques for detecting
and quantifying many tRNA modifications have allowed systems-wide investigations into
their functional significance, positioning this area of study within the epitranscriptomic
domain [2–5].

Queuosine (Q) is a modification found at the wobble base (position 34) of tRNAs that
decode NAC/U codons in most bacteria and eukaryotes. Although its role in decoding
accuracy and efficiency has been well established, the effects of Q vary with the specific
codon and organism, and these differences are not fully understood [6]. The discovery of
most Q metabolism genes combined with the development of different analytical tools,
such as 3-(Acrylamido) phenylboronic acid (APB)-based affinity-based gels, LC-MS/MS
analysis of bulk tRNAs, and next-generation-based sequencing methods (reviewed in [6]),
have led to the recent realization that this modification could also play regulatory roles in
virulence and oxidative stress in bacteria by affecting the translation efficiency of specific
genes enriched for specific codons [6].
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Only bacteria can synthesize Q de novo in a complex pathway that was recently
extensively reviewed (Figure 1 and [6]). In short, GTP is the precursor molecule and, therein,
its first step is shared with the tetrahydrofolate (THF) synthesis pathway. Four additional
enzymes (QueD, QueE, QueC, and QueF) are required to make the 7-aminomethyl-7-
deazaguanine (preQ1) precursor base that is exchanged with the guanine at position 34 of
target tRNAs by tRNA-guanine (34) transglycosylase (bacterial TGT, bTGT). Additional
tailoring enzymes (QueA, and QueG or QueH) finish the synthesis of Q on the tRNA
molecule. Both preQ1 and its direct precursor 7-cyano-7-deazaguanine (preQ0) can be
salvaged from the environment, with some bacteria relying only on the salvage route due
to a lack of preQ0/preQ1 synthesis enzymes. The queuine (q) base can also be salvaged
directly in some pathogenic bacteria, as well as in all eukaryotes. In these organisms,
the bTGT enzyme has changed substrate specificity from preQ1 to q. Sources of the q
bases are products of tRNA hydrolysis (Q, Q-3’MP, and Q-5’MP), and specific nucleoside
hydrolases are required to liberate the q base from these precursors. Two, QueK and
Qng1, have been experimentally characterized thus far. These enzymes are members of
unrelated protein families and harbor different substrate specificities (Figure 1 and [7,8]).
We recently discovered an indirect q salvage pathway in which a queuine lyase (QueL)
enzyme regenerates a preQ1 intermediate that can then be used by canonical bTGT [7].
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Figure 1. Bacterial Q de novo and salvage pathways. Q de novo synthesis pathway is depicted with 
enzymes that are shown in red. Indirect and direct q salvage pathways are depicted with enzymes 
that are shown in green and blue, respectively. Possible degradation and phosphorylation pathways 
are shown with dashed arrows. Among the four components of ECF transporters, only the sub-
strate-specific transmembrane (S) component (QueT/QrtT) is labeled (bold border). 

Like other purine derivatives, Q precursors (preQ0, preQ1, q, and Q) require specific 
transporters to be imported into the cell. Only two such transporter families have been 
characterized to date: the QPTR family, formerly named YhhQ, and the QueT/QrtT sub-
groups of the Energy-coupling Factor (ECF)-type transporters (see review in [6]). Sub-
strate specificity differences have been observed between members of both transporter 
families. For example, QPTR from E. coli transports preQ1 and preQ0 but not q [9], while 
QPTR from Chlamydia trachomatis transports q but not preQ1 or preQ0 [7]. Similarly, one 
QrtT from Clostridioides difficile only transports preQ1, while the other transports preQ1, q, 

Figure 1. Bacterial Q de novo and salvage pathways. Q de novo synthesis pathway is depicted
with enzymes that are shown in red. Indirect and direct q salvage pathways are depicted with
enzymes that are shown in green and blue, respectively. Possible degradation and phosphorylation
pathways are shown with dashed arrows. Among the four components of ECF transporters, only the
substrate-specific transmembrane (S) component (QueT/QrtT) is labeled (bold border).

Like other purine derivatives, Q precursors (preQ0, preQ1, q, and Q) require specific
transporters to be imported into the cell. Only two such transporter families have been
characterized to date: the QPTR family, formerly named YhhQ, and the QueT/QrtT sub-
groups of the Energy-coupling Factor (ECF)-type transporters (see review in [6]). Substrate
specificity differences have been observed between members of both transporter families.
For example, QPTR from E. coli transports preQ1 and preQ0 but not q [9], while QPTR from
Chlamydia trachomatis transports q but not preQ1 or preQ0 [7]. Similarly, one QrtT from
Clostridioides difficile only transports preQ1, while the other transports preQ1, q, and Q [7].
However, the genes encoding Q precursor transporters have yet to be identified in most
organisms, including all eukaryotes.
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Recent studies have reinforced the importance of Q as a micronutrient [10,11], particu-
larly for optimal brain function [12,13] and mitochondrial stress responses [14]. However,
how the human host competes with organisms of the microbiome for Q precursors is
poorly understood. Different members of the microbiome can generate Q de novo or
act as preQ1/preQ0/Q scavengers [7,15]; hence, it is possible that competition between
sympatric organisms could be observed for Q as it has been for B vitamins [16,17]. More-
over, Q supplementation does lead to an increased level of α-diversity in the intestinal
microbiota [18]. The role of Q in microbiome composition, as well as the amount of Q
produced and utilized by the gut microbiota, might affect the health of the host, as sug-
gested by recent studies [19,20]. However, to construct an accurate model of Q exchange
in the microbiome, all Q metabolism genes—including all missing transporters—must
be identified, particularly in phyla most prevalent in the human gut and other specific
microbial niches. Finally—as recent metagenomic and single-cell sequencing analyses
have revealed regarding the temporal and spatial heterogeneity of bacterial communities
inhabiting humans [21,22]—understanding the holistic biogeography of Q metabolism is
critical to discerning how it may shape microbial communities and, therein, the emergent
health of their hosts.

This study focuses on the reconstruction of Q metabolism for species in the gut and oral
microbiome to evaluate the importance of Q precursor exchanges in these ecological niches
and estimate the prevalence of unidentified Q precursor transporters. We then use the pipeline
described in Figure 2 that combines comparative genomics and experimental techniques to
identify and characterize missing transporter genes applied to the Q salvage pathway.
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Figure 2. Schematic representation of comparative genomics-driven approach to identify novel Q
transporters. (1) Identification of knowledge gaps in metabolic pathways, e.g., missing Q precursor
transporters. (2) Construction of Sequence Similarity Networks (or SSNs) for signature enzymes
in Q pathways, e.g., E6 (TGT) and E9 (Qng1/QueK). (3) Investigation of genomic neighbors and
fusions for Pfam families of query signature enzyme. (4) Generation of candidates. (5) Expression
of candidates in engineered E. coli strains lacking indigenous Q precursor transporter. (6) Detection,
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quantification, and localization of Q-tRNA using various technologies. Enzymes in Q biosynthesis
pathway are represented by E1 to E9. Among them, E6 (TGT) and E9 (hydrolases) are signature
enzymes of q salvage.

2. Results and Discussion
2.1. Q Makers and Users Are Spatially Distributed in the Human Gut and Oral Microbiomes

Previous reconstructions of Q pathways of the human microbiota used only de novo
pathway genes and were restricted to a limited number of reference organisms [7,15]. To
predict the importance of Q exchanges for different niches of the human microbiome,
we analyzed the presence–absence patterns of all known Q synthesis and salvage genes
in 13,027 genomes of the gut microbiome (Dataset S1) and 8547 genomes of the oral
microbiome (Dataset S2).

In terms of Q synthesis, species of the gut microbiome fall within two major classes:
one is enriched in Q makers, mainly Pseudomonadota (synonym Proteobacteria), that
encode a full biosynthetic pathway (bottom half of the tree in Figure 3), and another
enriched in Q precursor-users, composed mainly of Actinomycetota and Bacillota, lacking
QueDECF proteins but still encoding bTGT, the signature enzyme in the pathway (top
half of the tree in Figure 3). The types of salvage can be further specified within either
class. For example, most Actinomycetota are predicted to salvage q as they lack QueA and
QueH/QueG, whereas most Synergistales species are predicted to salvage preQ1/preQ0
bases. Additionally, it is clear that not all transporter genes have been identified, as many
organisms predicted to salvage Q precursors lack homologs of QPTR or QueT/QrtT, a
pattern seen quite strikingly in Propionibacteriales.

With this quite granular dataset in hand, we could set out to map Q metabolism on
spatial species distribution maps (Figure 4). For example, Q users would be expected
to be more abundant in the lower region of the gastrointestinal tract, such as the small
intestine, where food is digested and may release Q precursors. Most species in the large
intestine lack queDECF genes, instead harboring q salvage genes (QueKL) and transporters
(Figure 4a), supporting our hypothesis.

Within each region of the gut, the host tissues, mucus layers, and luminal spaces present
distinct habitats, leading to phylogenetic heterogeneity along the transverse axis of the gas-
trointestinal tract. We speculated that Q precursors could influence microbial organization
at the micro-scale, like gradients of oxygen, AMPs, immune factors, and mucus density [22].
Indeed, in the mouse colon, members of the Ruminococcaceae, Lachnospiraceae, and Lactobacilli
families are generally found as cecal crypt residents [23]; these species generally lack Q syn-
thesis genes (Figure 4b). On the other hand, the loose outer mucus layer is colonized by
commensals, including mucolytic bacteria, such as Akkermansiaceae [24] and some Bacteroides
species [25], which can typically synthesize Q (Figure 4b). Therefore, a gradient of Q precur-
sors may be present that decreases from the outer to the inner mucus layers and likely plays a
role in shaping the composition of respective microbial communities.

In the oral microbiome, the establishment of dental plaques is a sequential process
starting with early colonizing species, such as Streptococcus, that cling to the tooth sur-
face using specialized adhesins. Among early colonizing species, there appears to be no
clear preference of Q salvage or Q synthesis, with examples like Streptococcus gordonii and
Streptococcus sanguinis being salvagers, Streptococcus mitis encoding the full Q biosynthetic
pathway, and Actinomyces not utilizing Q at all [26] (Figure 5 and Dataset S2). As dental
plaque develops, defined structures, microenvironments, and specially organized collec-
tions of oral bacteria and yeast species begin to take shape, largely driven by the formation
of extracellular matrices and biofilm species diversity, providing surfaces for other organ-
isms to colonize [21]. The presence of oxygen correlates with Q utilization preferences,
where oxygen-replete environments in the interior of the plaque show enrichments of Q
precursor consumers (e.g., Leptotrichia, Capnocytophaga, and Fusobacterium) and organisms
that do not utilize Q, including Candida species. Communities that colonize the exterior
of the plaque are more likely to be composed of Q synthesizers and genera with mixed



Epigenomes 2024, 8, 16 5 of 18

Q acquisition strategies. Organic acids produced by acidogenic organisms accumulate to
form low-pH microenvironments within plaque layers. These acids can either encourage
the growth of other acidophilic organisms or foster organisms that metabolize organic
acids [27]. Streptococcus mutans is a key acid-producer and is also a Q synthesizer. After the
founding of an acidic environment, species that can tolerate low pH, like the Lactobacilli,
can colonize the plaque and primarily rely on the importation of Q precursors (Figure 5).
Alternatively, the acid-metabolizing Veillonella species can help neutralize pH and are
predominantly Q synthesizers. The dental plaque offers unique insights into synergism
and competition between microorganisms, and, here, it is illustrated that Q precursors may
be another resource that these species exchange and compete for.
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2.2. Identification of Q Precursor Transporter Candidates through Comparative Genomics

Fusion and physical clustering analyses are powerful tools to identify missing genes in
bacteria [31]. We hence used several of these strategies to identify missing Q precursor trans-
porters. We first looked for protein fusions of transporter domains with bTGT (see Section 4).
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Three different transporter domains were identified as fused with bTGT (Table S1). One was the
known preQ1/preQ0 transporter, QPTR (PF02592/COG1738/IPR003744). The other two were
found to be transporters unique to different Tsukamurella species. Of these, Tpau_0550 (UniProt:
D5USC3) belonged to the Major Facilitator Superfamily (MFS-1, PF07690), and the second was
found to be a member of the MMPL family (PF03176), Tpau_4044 (UniProt: D5UNC0).

To complement the first, a second approach was implemented independently, in par-
allel, for the identification of putative Q precursor transporters. Specifically, this analysis
examined the physical clustering of Q salvage signature genes, namely bTGT, Qng1, and
QueK (see the pipeline described in Figure S1). Here, we used the Gene Neighborhood Net-
work (GNN) tool in the Enzyme Function Initiative (EFI) suite [32] to survey neighbors of
the targeted signature genes among bacteria. With this, 51 diverse transporter families were
identified as potential candidates (Table S2). Because it was expected that organisms requir-
ing Q salvage would likely necessitate the transport of Q precursors, these candidates were
sorted using scores determined by each protein’s Q pathway profile as derived through
comparative genomic analyses. Candidates with high scores (z-score ≥ 1) included known
Q precursor transporters QPTR (PF02592) and QrtT (PF12822), as well as tentatively novel
Q-relevant transporter families. Specifically, these new high-scoring candidates were as
follows: the MMPL family (PF03176), Haemolysin-III (PF03006), the Fusaric acid resistance
protein-like superfamily (PF13515), the sugar transporter-Major Facilitator Superfamily
(PF00083-PF07690), and another ABC transporter family member (PF00005) (Table S2). A
majority of these candidates were members of large transporter superfamilies with highly
diverse subgroups that, historically, have been notoriously difficult to annotate.

To narrow the list of candidates and to visually explore their physical clustering with Q
salvage genes, we constructed protein Sequence Similarity Networks (SSNs) using EFI-EST
(EFI Enzyme Similarity Tool) [32] for the bTGT, Qng1, and QueK protein families, coloring
the sequence nodes based on the predicted Q pathway profile of the encoding organism
and the presence of the 51 transporter candidates identified (Figure 6). Physical clustering
between signature genes and transporter candidates occurred across each SSN generated
(yellow nodes), confirming that organisms able to synthesize Q de novo may also encode
transporters to salvage precursors, as previously observed in E. coli [9] (red-circled yellow
nodes). Among the clusters in which transporters are present, we focused on those for
organisms that are expected to require a q salvage pathway (blue- and dark green-circled
nodes, 12 clusters boxed in Figure 6) and calculated the percentage of occurrence for each
transporter candidate within that cluster. QPTR (PF02592) and QrtT (PF12822) dominated
five out of the seven clusters in which they were present (Figure 7). MFS superfamily
members (PF07690) were observed in two-thirds of the examined clusters, especially
dominating clusters 7 and 10. Ureide permease (UPS, PF07168), which overshadowed all
other candidate families in cluster 8, was prioritized for the same reason. Many organisms
expected to require q salvage for Q synthesis were not found to encode a transporter that
clusters with bTGT, Qng1, or QueK (blue- and dark green-circled open nodes), suggesting
the possibility that other candidates have yet to be identified. Based on the physical
clustering and predicted metabolic requirement of Q salvage, this analysis generated a final
list of 10 candidates (Table 1) (Figure S2 and Table S3).
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share no less than 90% identity. An edge is drawn between two nodes with an alignment score > 90. 
The nodes are circled based on the presence/absence of the other Q synthesis genes in the 
corresponding species. Species that do not encode bTGT are circled in gray. For better visualization, 
the solitary nodes and small clusters are hidden. Nodes are in full color when candidate transporters 
are present in the gene neighborhood (distance ≤ 3) or fused. Boxed clusters are analyzed further in 
Figure 7. 

Figure 6. SSNs of bTGT, Qng1, and QueK proteins. (a) Each node in the network represents one or
multiple bTGT proteins that share > 90% identity. An edge (represented as a line) is drawn between
two nodes with a BLAST E-value cutoff of better than 10–135 (alignment score threshold of 135).
(b) Each node in the network represents one Qng1 protein. An edge is drawn between two nodes
with an alignment score > 90. (c) Each node in the network represents one or multiple QueK proteins
that share no less than 90% identity. An edge is drawn between two nodes with an alignment score
> 90. The nodes are circled based on the presence/absence of the other Q synthesis genes in the
corresponding species. Species that do not encode bTGT are circled in gray. For better visualization,
the solitary nodes and small clusters are hidden. Nodes are in full color when candidate transporters
are present in the gene neighborhood (distance ≤ 3) or fused. Boxed clusters are analyzed further in
Figure 7.
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Table 1. Top Q precursor transporter candidates.

Pfam Description Experimentally Tested
Candidates (Species and Accession Number)

PF07690 Major Facilitator Superfamily (MFS_1) Bartonella henselae (A0A0H3LX18) (Bh_MFS)
PF03176 MMPL family (MMPL) Corynebacterium propoinquum (0A2W5NLC3)
PF03006 Haemolysin-III-related (Hly_III) Brevibacterium breve (A0A0M3T8W5) (Bb_HlyII)

PF13515 Fusaric acid resistance
protein-like superfamily (FUSC_2) Not tested

PF00892 EamA-like transporter family (EanA) Not tested

PF02355 Protein export membrane
protein (SecD/SecF) Not tested

PF03739 Lipopolysaccharide export
system permease (LptF/LptG)

Winogradskyella sp. (A0A024FC69)
Chryseobacterium piperi

(A0A086BN18)
Bacteroides (Phocaeicola) dorei (A0A076J562)

PF06541 Putative ABC-transporter type IV
(ABC_trans_CmpB) Not tested

PF07168 Ureide permease (UPS) Acidobacteriota bacterium (A0A2V9U0M9) (Ac_UPS)
PF00005 ABC transporter (ABC_tran) Not tested

2.3. Members of Three Transporter Superfamilies Can Evolve to Transport preQ0 and preQ1

Having identified ten different candidate families, we selected five of them to target
for experimental validation (Table 1). This was accomplished by expressing candidate
transporter genes in strains of E. coli that are auxotrophic for preQ0/preQ1 due to the
deletion of both the queD gene and QPTR, the latter of which results in an inability to
transport either precursor. We found that the expression of members of three out of the five
families tested was able to complement both the preQ0 and preQ1 transporter deficiencies
of an E. coli QPTR queD double-deletion strain (Figures 8a and S3). We cannot rule out that
the lack of complementation with the genes encoding MMPL and LptG/F transporters was
due to expression issues in a heterologous system. In the follow-up of these findings, we
found that preQ1 could be transported even when present at low concentrations (5 nM)
(Figure S4), suggesting that the expressed clones were encoded with preQ1 transporters of
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a particularly high affinity. However, it should be noted that the actual Km values of each
still require proper estimation.
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Figure 8. Experimental validation of preQ0/preQ1 transport activity. (a) tRNAs were extracted from
WT, tgt, or E. coli queD-yhhQ/-QPTR double deletion mutants expressing the candidate MFS, Hly
III, and UPS transporter genes, respectively, from Bartonella heneselae (Bh), Bifidobacterium breve (Bb),
and Acidobacteriota bacterium (Ac), listed in Table 1, grown in minimal media in the presence of
exogenous preQ1 or preQ0. The detection of Q-tRNAAsp

GUC was performed using the APB detection
assay described in the Materials and Methods section, where Q-modified tRNAs migrate slower than
unmodified tRNAs. (b) The presence of Q pathway genes in the organisms encoding the transporters
tested in (a); data extracted from Dataset S3.

Interestingly, Q pathway reconstructions were unable to predict that the MFS proteins
of Bartonella henselae and Bifidobacterium breve would transport preQ1/preQ0, as they lack
queA or queG/H genes (Figure 8b and Dataset S3). We have previously shown that the B.
henselae QPTR and bTGT proteins preferred preQ1 as a substrate [33], and that preQ1 is
found in tRNA suggesting that preQ1 and not Q was the final deazapurine modification
present in tRNAs in this organism [33]. The importance of the preQ1 modification is
reinforced by the discovery that a second preQ1 transporter of the MFS family is present
adjacent to tgt in this organism (Figure S2). In the case of B. breve, our results suggest
that preQ1 is transported and inserted into tRNA by a canonical bTGT enzyme. However,
further experiments are needed to check if the Q pathway terminates here for this organism
or whether another family of enzymes has yet to be discovered that may catalyze this
remaining step. Finally, the Acidobacteriota UPS transporter candidate gene found encoded
next to qng1 was observed to transport preQ0/preQ1. This was not expected as Qng1 is
only known to cleave the q base of Q or that of Q-MP precursors. Using a genetic setup
previously implemented to validate q and Q transporters of different pathogenic bacteria [7],
it seems that this UPS transporter does not transport Q; instead, it only transports q at very
high, physiologically improbable concentrations (Figure S5).

2.4. Tentative Identification of preQ1 Transporter Subgroups in Three Transporter Superfamilies

The three new experimentally validated preQ1/preQ0 transporter genes presented by
this work are members of notably large superfamilies, making it very difficult to confidently
propagate any such annotations. Therefore, we opted to construct SSNs in an attempt to
identify the potential isofunctional members of the preQ1-specific transporter subgroup of
these families.

HlyIII (IPR004254/PF03006) is a family of ~48,000 proteins with a wide variety of
annotated functions. Previous analysis of the family detailed several subgroups, including
PAQR1 and PAQR2 [34]. PAQR1 only consists of eukaryotic proteins and includes the orig-
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inally identified adiponectin receptor of mammals ([34] and Figure 9a). In contrast, PAQR2
consists of both bacterial and eukaryotic proteins (Figure 9a). The bacterial homologs are
frequently annotated as ‘hemolysin III’, but, as it concerns any experimental validation, the
functions of members of this PAQR2 subgroup remain unknown [34]. The B. breve HlyIII
member found to transport preQ0/preQ1 is part of this larger PAQR2 subgroup (Figure 9a).
Further analysis, here, of the proteins linked by similarity to the experimentally validated B.
breve preQ1 transporter implies that only a subset (circled in Figure 9b and listed in Table S4)
are likely to share this function, as most of the HlyIII proteins in surrounding subclusters
originate from organisms that do not encode bTGT (black-circled nodes in Figure 9b).
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proteins thought to transport a wide spectrum of oxo-derivative heterocyclic nitrogen 
compounds, including allantoin, uric acid, and xanthine [35–37]. The UPS member found 
to transport preQ0/preQ1 in the Acidobacteriota bacterium (A0A2V9U0M9) separates well 
from other UPS members that have been characterized in plants (Figure 10a). In this case, 
we can confidently propagate this annotation to the defined subset of UPS proteins 
indicated in Figure 10b and listed in Table S4. However, this annotation should be spread 
no further as, again, many UPS proteins in the other subclusters are from organisms that 
do not encode bTGT proteins (black-circled nodes in Figure 10b). 

Figure 9. SSN of the HlyIII family (IPR004254/PF03006). (a) Each node in the network represents
one or multiple HlyIII proteins that share no less than 50% identity. An edge (represented as a line)
is drawn between two nodes with a BLAST E-value cutoff of better than 10–45 (alignment score
threshold of 45). Node borders were colored by superkingdom. The PAQR groups as classified in [34]
and Bifidobacterium HlyIII proteins encoded by genes that are next to tgt are colored. The HlyIII
members connected to the preQ1 transporter in B. breve were further analyzed (boxed). (b) Each
node in the network represents one HlyIII protein connected to the preQ1 transporter in B. breve
(A0A0M3T8W5) as boxed in (a). An edge is drawn between two nodes with an alignment score better
than 65. The nodes in the red circle are predicted to be the preQ1 transporters. For better visualization,
the solitary nodes and small clusters are hidden. Node borders are colored by the presence (blue) or
absence (black) of bTGT.

The ureide permease (IPR009834/PF07168) identified here is a family of ~2000 proteins
thought to transport a wide spectrum of oxo-derivative heterocyclic nitrogen compounds,
including allantoin, uric acid, and xanthine [35–37]. The UPS member found to transport
preQ0/preQ1 in the Acidobacteriota bacterium (A0A2V9U0M9) separates well from other
UPS members that have been characterized in plants (Figure 10a). In this case, we can
confidently propagate this annotation to the defined subset of UPS proteins indicated in
Figure 10b and listed in Table S4. However, this annotation should be spread no further as,
again, many UPS proteins in the other subclusters are from organisms that do not encode
bTGT proteins (black-circled nodes in Figure 10b).

The Major Facilitator Superfamily (IPR011701/PF07690) (MFS) examined here is a
family with more than 4 million members, representing the largest family of secondary
transporters with members originating everywhere, from Archaea to Homo sapiens [38,39].
Many of the characterized MFS subgroups transporting a variety of compounds were found
to separate well in the initial SSN (Figure S6). However, because of the family’s size, it was
only possible to sample its entirety for our analyses (1/100 sequences at every node) and,
as a result, lacked the necessary resolution to confidently predict members expected to be
isofunctional with the B. henselae MFS transporter found to transport preQ0/preQ1, even
if we had been able to extract the subgroup (circled in Figure S6 insert) of sequences only
from genomes also encoding bTGT (blue-circled nodes in Figure S6 and Table S4).
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represents one ureide permease protein. An edge (represented as a line) is drawn between two nodes
with a BLAST E-value cutoff of better than 10–30 (alignment score threshold of 30). Node boarders
were colored by superkingdom. Members that share no less than 90% identity with curated ureide
permeases in the Uniprot database are colored in orange. Nodes encoded by genes that cluster with
queK-like genes are colored in pink. The UPS members connected to the preQ1 transporter in the
Acidobacteriota bacterium (boxed) were further analyzed. (b) Each node in the network represents
one UPS protein connected to the preQ1 transporter in the Acidobacteriota bacterium (A0A2V9U0M9)
boxed in (a). An edge is drawn between two nodes with an alignment score better than 100. Node
borders are colored by the presence (blue) or absence (black) of bTGT. The nodes in the red circle are
predicted to be the preQ1 transporters.

3. Conclusions

Phylogenomic investigations into the Q synthesis and salvage genes in microbiome
species spanning various biogeographical regions indicate that precursors of queuosine
(preQ0, preQ1, q, and Q) could influence microbiome community composition at the species
level [40]. Moreover, these precursors could potentially play a role in enhancing the host’s
overall health. Therefore, queuosine and its precursors should be included in the roster of
metabolites examined in forthcoming microbiome research.

It is well established that plasticity drives the evolution of novel transporters from
existing ones [41–45], but our results also show that very different transporters can evolve
to transport the same preQ1 molecule. Indeed, the five experimentally validated preQ1
transporters are members of four different transporter superfamilies according to the TCDB
database [46] classification using the Transporter Class (TC) numbering system: the Vitamin
Uptake Transporter (VUT) Family (TC# 2.A.88), the Major Facilitator Superfamily (MFS;
TC# 2.A.1), the hemolysin III (Hly III) family (TC# 1.C.113), and the Drug/Metabolite
Transporter (DMT) Superfamily (TC# 2.A.7). The bioinformatic analyses performed in the
current study suggest that more transporters remain to be discovered and/or validated,
including the other candidates that were identified and not yet tested (Table 1).

This convergent evolution of members of different transporter families to transport
the same molecule seems to be a recurrent evolutionary scenario, as it was previously seen
for members of the bacterial Solute Binding Protein superfamily [47]. To further explore
how common cases of convergent evolution among transporters may truly be, we used
the new “molecule” search feature on the TCDB database [46], examining the number of
different transporter families known to transport the common nucleobases and B vitamins
(Figure 11 and Table S5). With this, it was observed that all molecules analyzed could be
transported by members of at least 3 and up to 11 superfamilies.

Finally, this work reiterates the difficulty of predicting the substrate specificity of
transporters based just on sequence similarity and the need to combine comparative
genomics with experimental validation to functionally annotate this functional group.
Systematic efforts to screen transporter substrate specificity are being implemented [48–50].
These will need to be combined with specialized transporter annotation capture and
propagation tools to generally improve the current transporter databases [46,51].
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4. Materials and Methods
4.1. Human Gut Microbiome Analysis

We retrieved 3632, 5387, and 4644 genome sequences of human gut bacterial and
archaeal isolates and metagenome-assembled genomes from three comprehensive high-
quality reference biobanks of the human gut microbiome, respectively: the Broad Institute-
OpenBiome Microbiome Library (BIOML) [52], the Global Microbiome Conservancy
(GMbC) [53], and the Unified Human Gastrointestinal Genome (UHGG) collection [54]. We
retrieved 10 near-universal and single-copy ribosomal protein families (L2, L3, L4, L5, L6,
L14, L16, L18, S3, and S8) using Diamond v0.8 (with BLASTx parameters: -more-sensitive
-e 0.000001 -id 35 -query-cover 80) [55]. Each ribosomal protein family was aligned indepen-
dently using MUSCLE v5.1 [56], trimmed using BMGE v1.12 (parameters: -t AA -g 0.95 -m
BLOSUM30) [57], and concatenated using Seaview v4.751 [58]. The phylogenetic tree was
reconstructed using FastTree v2.1 (parameters: -lg -gamma 20) [59] and was visualized and
modified in iTOL v6.8 (https://itol.embl.de/ accessed on 30 January 2024) [60]. For better
visualization, Orders with less than 10 genomes were hidden or merged. The presence of Q
pathway genes was determined using tBLASTn [61] with thresholds of 20% and 1 × 10−10

for identity and E-value, respectively. The identifiers of query proteins of the Q pathway are
listed in Table S6. The presence–absence pattern was visualized using an in-house program
available at https://github.com/vdclab/published_scripts, accessed on 26 February 2024.

4.2. Human Oral Microbiome Analysis

The tree of human oral microbiome bacteria was adapted from the genomic tree
version 10.1 of 8622 genomes in the expanded Human Oral Microbiome Database v3.1
(https://www.homd.org/ accessed on 19 February 2024). The tree was visualized and
modified in iTOL (60). For better visualization, Orders with less than 10 genomes were
hidden or merged. The presence of Q pathway genes was determined using BLASTp [61]
with thresholds of 20% and 1 × 10−10 for identity and E-value, respectively.

4.3. Comparative Genomics and Sequence Similarity Networks (SSNs)

All bacterial fusion proteins of transporters and TGT were retrieved using the “similar
architecture” tool of CDD (NCBI) [62], and with the “advanced search” tool of UniProt [63]

https://www.tcdb.org/
https://itol.embl.de/
https://github.com/vdclab/published_scripts
https://www.homd.org/
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(query: “Queuine tRNA-ribosyltransferase” AND (length:[500 TO 2000]) AND (taxon-
omy_id:2) AND transporter).

The classification of the different types of Q pathway profiles (e.g., de novo synthesis,
q direct or indirect q salvage) in any given taxonomic id (Dataset S3), was based on the
presence and absence of QueD, QueE, QueC, QueF, bTGT, QueA, and QueG/H proteins
(as described in Figure 1). The presence of these proteins was inferred from the InterPro
annotations in the corresponding genomes [64] using the InterPro family IDs listed in
Table S6. These Q pathway profile characteristics were then used to color the node borders
in the SSNs when stated.

As illustrated in Figure S1, SSNs were generated using the Enzyme Function Initia-
tive (EFI) analytic suite [32] and visualized using Cytoscape (3.10.1) [65]. Sequences for
each family, including IPR019438 (Qng1), IPR004803 (TGT), IPR023186 (QueK), IPR009834
(ureide permease), IPR011701 (MFS), and IPR004254 (AdipoR/Haemolysin-III-related),
were retrieved using the “Family” option of EFI-EST (EFI Enzyme Similarity Tool). The
initial SSN was generated with an alignment score (AS) cutoff set such that each connection
(edge) represented a sequence identity above 40%. The specific node coloring patterns are
given in the figure legends. More stringent SSNs were then created by gradually increasing
the alignment score cutoff in small increments (usually by 5 AS units). This process was
repeated until clusters were homogeneous in color. Edges were drawn between nodes
with a BLAST E-value over the cutoff (alignment score threshold) as indicated in each SSN.
The genomic neighborhoods were analyzed using EFI-GNT (Genome Neighborhood Tool)
with a minimal co-occurrence filter set to 0 [32]. For neighborhood selection, the Pfam
family of transporter candidates were selected with a median distance to bTGT, QueK, or
Qng1 of no more than 2 and with a physical clustering ratio of more than 0.2% of total
family members with recognized neighbors. The information on genomic regions was
retrieved using EFI-GNT [32] and the gene neighborhood diagram was created using Gene
Graphics [66]. The Transporter Classification Database [46] was used to further classify
transporter families.

4.4. Strains, Media, and Growth Conditions

All strains and plasmids used in this study are listed in Table S7. LB medium (tryptone
10 g/L, yeast extract 5 g/L, sodium chloride 5 g/L) was routinely used for E. coli strain
growth at 37 ◦C. The medium was solidified using 15 g/L of agar. As needed, kanamycin
(50 µg/mL), ampicillin (100 µg/mL), and chloramphenicol (25 µg/mL) were added. In
the presence of exogenous Q precursors as previously described [7,9], cells were cultured
in M9-defined medium containing 1% glycerol (Thermo Fisher Scientific, Waltham, MA,
USA). After cells reached an optical density at 600 nm (OD600nm) of 0.1–0.2, 0.2% arabinose
was added to induce the expression of genes under the PBAD promoter. After cells reached
an OD600nm of 0.2, DMSO, preQ0, preQ1, q, or Q were added. The transport reaction was
stopped at time points of 30 or 60 min after supplementing with DMSO or different Q
precursors by placing samples on melting ice and then centrifuging, followed by tRNA
extraction. Q was purchased from Epitoire (Singapore), q from Santa Cruz Biotechnology
(Dallas, TX, USA), and preQ1 and preQ0 from Sigma-Aldrich (St. Louis, MO, USA).

4.5. Construction of E. coli Strains and Plasmids

The genes encoding the candidate transporter proteins listed in Table 1 were chemically
synthesized (without optimization) in pTWIST_Kan vectors (all DNA sequences are given
in Table S8). The Bifidobacterium breve Hly_III, Bacteroides henselae MFS, Corynebacterium
propinquum MmpL, Winogradskyella, and Bacteroides dorei YgjP encoding genes were directly
subcloned from the corresponding pTWIST constructs into the EcoRI and HindIII sites
of pBAD24 [67]. The Chryseobacterium piperi YgjP encoding gene was directly subcloned
from the corresponding pTWIST construct into the EcoRI and PstI sites of pBAD24. The
Acidobacteriota bacterium (Ac_UPS) gene was amplified from the pTWIST clones using the
following primer pairs: F_Ac_DMT_NheI_PBAD24/R_Ac_DMT_XbaI_PBAD24; then, it
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was cloned into the NheI and XbaI sites of pBAD24. E. coli transformations were performed
using the CaCl2 chemical transformation procedure [68]. Transformants were selected
on LB agar supplemented with ampicillin. The clones were validated through Sanger
sequencing and PCR analyses of the plasmids extracted using QIAGEN (Germantown,
MD, USA) plasmid Mini kits with the appropriate primer pairs. All primers used in this
study are listed in Table S9.

4.6. Q Detection Assay

Cells were harvested by centrifugation at 16,000× g for 2 min at 4 ◦C. Immediately after
pelleting, the cells were resuspended in 1 mL of Trizol (Thermo Fisher Scientific, Waltham,
MA, USA). According to the manufacturer’s instructions, small RNA was extracted with
a PureLink miRNA Isolation kit (Thermo Fisher Scientific, Waltham, MA, USA). Briefly,
25 µL of RNase-free water was used to elute the purified RNAs. Quantification of prepared
tRNA was performed using a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). We loaded 500 ng of tRNAs per well on a denaturing 8 M urea, 8%
polyacrylamide gel containing 0.5% 3-(Acrylamido) phenylboronic acid (APB) (Sigma-Aldrich)
after resuspending in a 2X RNA Loading Dye (NEB). Migration was performed in 1X TAE
running buffer using a BioRad Mini-PROTEAN system and run in a stirred ice bath at 120
constant volts. tRNAs were transferred onto a Biodyne B precut nylon membrane (Thermo
Fisher Scientific, Waltham, MA, USA) with a BioRad Trans-Blot SD semi-dry transfer cell
apparatus at 10 V for 15 min. The membrane was UV-irradiated in a UV crosslinker (Fisher FB-
UVXL-1000, Melville, NY, USA) at a preset UV energy dosage of 120 mJ/cm2. A North2South
Chemiluminescent Hybridization and Detection Kit (Thermo) was used to detect tRNAAsp.
As the DIG Easy Hyb (Roche) drastically reduces the background noise, it was used as the
initial membrane-blocking buffer instead of the North2South kit’s membrane-blocking buffer.
Hybridization was performed at 61 ◦C, using the specific biotinylated primer for tRNAAsp

GUC
(5′ biotin-CCCTGCGTGACAGGCAGG 3′ for E. coli) added to a final concentration of 50
ng/mL. The blot was visualized by iBright™ Imaging Systems.
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from fusion searches in the UniProt database. Table S2: Candidate transporters from GNN analysis
of TGT, Qng1, and QueK families. Table S3: Gene neighborhood information. Table S4: UniProt
identifiers for predicted preQ1 transporter subgroups of the PF07168, PF03006, and PF07690 fami-
lies. Table S5: Transporter families involved in the transport of bases and vitamins collected from
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