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Abstract: The remaining useful life (RUL) of bearings is vital for the manipulation and maintenance
of industrial machines. The existing domain adaptive methods have achieved major achievements in
predicting RUL to tackle the problem of data distribution discrepancy between training and testing
sets. However, they are powerless when the target bearing data are not available or unknown for
model training. To address this issue, we propose a single-source domain generalization method for
RUL prediction of unknown bearings, termed as the adaptive stage division and parallel reversible
instance normalization model. First, we develop the instance normalization of the vibration data from
bearings to increase data distribution diversity. Then, we propose an adaptive threshold-based degra-
dation point identification method to divide the healthy and degradation stages of the run-to-failure
vibration data. Next, the data from degradation stages are selected as training sets to facilitate the RUL
prediction of the model. Finally, we combine instance normalization and instance denormalization of
the bearing data into a unified GRU-based RUL prediction network for the purpose of leveraging
the distribution bias in instance normalization and improving the generalization performance of
the model. We use two public datasets to verify the proposed method. The experimental results
demonstrate that, in the IEEE PHM Challenge 2012 dataset experiments, the prediction accuracy of
our model with the average RMSE value is 1.44, which is 11% superior to that of the suboptimal
comparison model (Transformer model). It proves that our model trained on one-bearing data
achieves state-of-the-art performance in terms of prediction accuracy on multiple bearings.

Keywords: adaptive threshold; RUL prediction; stage division; reversible instance normalization

1. Introduction

Bearings are essential in rotating machinery, serving as a vital part in maintaining the
smooth functioning of industrial equipment. The failure of bearings during the equipment’s
operation not only poses a direct threat to the safety of the machinery but also leads to
significant economic losses. Hence, the accurate prediction of the remaining useful life
(RUL) of bearings is essential for the effective prognosis and health management of the
equipment [1,2].

The current deep learning models have shown impressive performance in predicting
the RUL of bearings [3]. However, these models rely on the assumption that the training
and testing sets are independent identically distributed (I.I.D.) [4]. In realistic industrial
scenarios, different bearings usually work under different conditions, and it is uncertain
whether the vibration data collected from the unknown bearing are I.I.D. with the training
bearing. Furthermore, obtaining the full life cycle, i.e., run-to-failure vibration data for every
type of bearing, for the model training is unrealistic. Therefore, exploring the effective
learning model trained on one bearing that can be generalized to predict the RUL of
unknown bearings is of great application.
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Domain adaptive approaches provide effective solutions to address the issue of data
distribution discrepancies between training and testing sets [5–7]. These methods focus on
closing the gap between the source and target domains, allowing the model to carry over
knowledge from the source domain (such as a source bearing) to the target domain (like
a target bearing) to predict the RUL, as shown in Figure 1a. However, domain adaptive
methods cannot be applicable if the target bearing data are not accessible for model training.

Figure 1. Schema of the two approaches. (a) The domain adaptive strategy necessitates that the target
bearing’s data be accessible for inclusion in model training; (b) the single-source domain generaliza-
tion approach only uses source bearing data for model training without the target bearing data.

To address the aforementioned issues, the single-source domain generalization ap-
proaches provide a promising solution for predicting the RUL of unknown bearings. The
approaches focus on data enhancement to expand the data distribution of the single-source
domain and improve the generalization performance of the model to the unknown target
domain, as shown in Figure 1b. Recently, single-source domain generalization approaches
have blossomed in the computer vision (CV) field [8,9]. However, they have not yet been
applied to the prediction RUL of bearings. This can be attributed to two main reasons
as follows.

Firstly, the existing single-source domain generalization approaches do not consider
the stage discrepancy of time series data. Different from the image data in the CV field,
the vibration data of the full life cycle of bearings have significant time domain stage
discrepancies. In the early health stage of the bearing, the fluctuation of its vibration
time domain data is very tiny. Such vibration data of the health stage have a subtle,
sometimes even negative, influence on describing the degradation trend of the bearing.
Therefore, it is very important to divide the vibration data of the full life cycle to eliminate
the effects of the early health stage data. In addition, the current single-source domain
generalization methods strive to enhance the data distribution diversity using image-
oriented augmentation techniques. However, such techniques may produce “counterfactual
data” that completely deviate from the authentic vibration data distribution of bearings,
which will deteriorate the generalization ability of the model.

To address the issues mentioned earlier, we suggest a more universal RUL prediction
model, trained on a single bearing, that can be applied directly to other bearings, termed as
the adaptive stage division and parallel reversible instance normalization (AsdinNorm)
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model. The problem of predicting the RUL for unknown bearings has been approached as
a single-source domain generalization learning challenge through two key steps: firstly,
determining the degradation point locations of different bearings using an adaptive thresh-
old stage division method to adaptively and iteratively lock the degradation trend and
finding the final degradation point locations after many iterations to divide the health and
degradation stages of the run-to-failure vibration data of bearings, and combining instance
normalization and instance denormalization of the bearing data into a unified GRU-based
RUL prediction network for the purpose of leveraging the distribution bias in instance
normalization, as well as to obtain a better overall prediction accuracy and improve the
generalization performance of the model.

The main contributions of this paper can be summarized as follows:

1. The proposed AsdinNorm model comprises three modules: instance normalization,
adaptive threshold stage division, and parallel reversible normalization RUL predic-
tion, respectively, used for enhancing the diversity of data distribution, degradation
stage division, and leveraging the distribution bias in instance normalization of the
vibration data of the source bearing, which improve the prediction accuracy and
generalization ability of the model.

2. We designed an adaptive threshold-based degradation point identification method
to effectively divide the health and degradation stages of the full life cycle vibration
data of bearings. The designed adaptive threshold algorithm iteratively updates the
degradation point locations to quickly and efficiently obtain the final degradation
point locations of different bearings. Correspondingly, the vibration data of the
degradation stage are selected for the model training for the purpose of reducing
the interference of early fluctuations of the health stage, as well as eliminating the
influence of the data distribution discrepancy between the training bearings and
unknown testing bearings on the model performance.

3. We explored the parallel instance normalization and denormalization algorithm of the
source bearing data and then combined it into a unified GRU-based RUL prediction
network, which avoids the generation of “counterfactual” data, as well as the dis-
tribution bias in data enhancement, and achieves a better prediction accuracy while
improving the generalization performance of the model.

2. Related Works

The single-source domain generalization approaches [10,11] use data augmentation
techniques to expand the data distribution of the training set (single-source domain) to
cover the data distribution of the unknown target domain as much as possible and, further,
to improve the generalization performance of the model. They are usually categorized as
GAN-based, meta-learning-based, and scaling-based approaches.

GAN-based [10,12,13] methods can create additional data resembling the source do-
main by using generative and discriminative models. HSIGAN [14] allows the discrim-
inator to perform classification in addition to distinguishing between real and synthetic
data, i.e., it learns to generate overall real samples and also encourages the generator to
learn the representation of different classes of samples. DAGAN [15] learns a large number
of data-enhanced transformations by training the autoencoder. BAGAN [16] trains the
autoencoder to learn the multivariate normal-terrestrial distribution to the image, which
represents the distribution of the overall dataset.

The meta-learning [17] approaches use the training data as a meta-training set, while
the generated data serve as a test set to learn robust feature representations using a meta-
learning strategy. Qiao et al. [18] increased the source sample size in the input and label
space and evaluated the guidance based on uncertainty. This method is used for data
enhancement, domain generalization, and the effective training of models in a Bayesian
meta-learning framework. The findings indicate that the proposed approach is effective
and outperforms others in various tasks.
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The scaling-based [19] approaches are the general technology for single-source do-
main generalization. ASR-Norm [20] uses neural networks to adaptively normalize and
scale statistics to match various domains. SORAG [21] uses the manual synthesis of new
samples to improve the robustness of the model to tackle the problem of sample imbalance.
SamplePairing [22] performs basic data enhancement (e.g., random flipping) and then
superimposes the data by pixels in the form of averaging to synthesize new samples, which
can expand the diversity of the samples and enhance the generalization ability of model.

In short, the single-source domain generalization methods are currently used mainly
for classification tasks of images. However, when dealing with the prediction problem
for bearing vibration data, the interference of vibration data at different stages and the
distribution bias in data enhancement must be considered. Therefore, it is crucial to
develop a novel single-source domain generalization method that is more suitable to the
characteristics of vibration data for RUL predictions of unknown bearings.

3. Proposed Method

To briefly describe the RUL prediction problem for bearings, given two sets of
bearing vibration signals in different working conditions: the source bearing dataset
Hs =

{
h1

s , h2
s , · · · hR

s
}

and the unknown target bearing dataset Ht =
{

h1
t , h2

t , · · · hM
t
}

, where
R, M represents the total count of the samples.

Our model captures the degradation feature from the vibration data of the source
bearing hi, hi+1, · · · hi+t; then, the model predicts the vibration data hi+t+1 [23]:

P
(

hi
s, hi+1

s , · · · hi+t
s , θ

)
→ hi+t+1

s , (1)

where θ is the parameter of the model, and hi
s denotes the ith vibration data of the

source bearing.
The model parameters are optimized via the iterative training, expressed as shown:

θ = arg max
θ̂

p
(
θ̂/Hs

)
. (2)

Finally, inputting the target bearing Ht to the trained model, the model predicts the
i + t + 1 vibration data of the testing bearing hi+t+1

t = P
(

hi
t, hi+1

t , · · · hi+t
t

)
.

The AsdinNorm model’s architecture is depicted in Figure 2 and consists of three
main components: an instance normalization module, an adaptive threshold stage division
module, and a parallel reversible normalization RUL prediction module.

3.1. Instance Normalization

The instance normalization module is designed to preserve the non-stationary infor-
mation from vibration data while reducing the difference in data distribution from target
bearings. Firstly, we obtain the peak-to-peak values S =

{
s1, s2, · · · , sR} from the vibration

signal data of the source bearing Hs, which can alleviate the interference of noise and
facilitate a clear representation of the degradation trend, expressed as follows:

si = max
(

hi
s

)
− min

(
hi

s

)
. (3)

Next, we convert the peak-to-peak values S into a time series X =
{

x1, x2, · · · xn}
using a sliding window. At last, we normalize the input time series xi by applying the
instance mean and standard deviation. The variable Lx represents the length of the input
sequence, and the mean µi and standard deviation ρi of each instance of the input sequence
are calculated as follows:

µi =
1
Lx

Lx

∑
j=1

xi
j, (4)
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where xi
j denotes the jth sample of the ith sliding window.

ρi =
1
Lx

Lx

∑
j=1

(
xi

j − µi
)2

. (5)

Figure 2. The structure of the proposed AsdinNorm model.

With these statistics, we derive the normalized [24] input sequence data x̂i from the
input sequence data xi.

x̂i = α

(
xi − µi√

ρi + ε

)
+ δ, (6)

where α, δ, ∈, and R1 are the learnable affine parameter vectors used in the instance
normalization method to equalize the effective information across the bearings.

Importantly, we merge the normalized data with the time series data xi to form a new
time series input X̂ =

{
xi, x̂i}n

i=1, which serves as the input to the adaptive threshold stage
division module.

3.2. Adaptive Threshold Stage Division

In this section, an adaptive threshold stage division method is proposed to determine
the location of the bearing degradation points for the purpose of the segregation of the
health stage and the fast degradation stage. This critical step facilitates the accurate
prediction RUL of unknown target bearings via using the bearing data of the degradation
stage. The specific procedure involves the following steps, as shown in Figure 3.

Calculate to obtain the degradation path: Firstly, we adopt the isotonic regression
algorithm to transform the irregular bearing data into segmented incremental step data.
Suppose that function F is the mapping function of the isotonic regression algorithm,
the input of the algorithm is the peak-to-peak value of the vibration data s, and the
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output is D∗
1→R = F(S) =

{
d∗1 , d∗2, · · · d∗R

}
with a monotonically increasing trend. This

transformation ensures that the degradation trend of the bearing data is monotonically
increasing and eliminates the noise interference from the original data. Figure 3a illustrates
the original degradation trend of the bearing data via the isotonic regression algorithm.
Several jump points can be found in the figure, which make it difficult to determine the
proper degradation point positions.

Figure 3. Adaptive threshold stage division algorithm: (a) degradation path; (b) gradient path;
(c) adaptive threshold iteration process.

The algorithm generates the gradient path: Correspondingly, we use the least square
method [25] with a sliding window to calculate the gradient ∆i with the window size m, as
shown in Figure 3b. The specific formula is as follows:

∆i =
∑i−m+1

j=i qjd∗j −
1
m ∑i−m+1

j=i qj∑i−m+1
j=i d∗j

∑i−m+1
j=i q2

j −
1
m

(
∑i−m+1

j=i qj

)2 , (7)

where qj is the subscript of the corresponding peak-to-peak value S, and qj = 1, 2 · · · R−m+ 1.
Adaptive threshold iteration process: In order to determine the proper degradation

point from a number of jump points and determine the position of the stage division, we
further propose an adaptive threshold algorithm to compare the incremental gradients
of degradation over multiple iterations. Specifically, we use the initial position point d∗1
as the first point dstart for the initialization of this iterative algorithm and the final point
d∗R position as the tail dend. We calculate the average value of the gradient, denoted as
Av = mean{∆start, ∆start+1, · · · , ∆end}.

This algorithm requires two key conditions: the first is the gradient increment of degrada-
tion with a continuous fluctuation; that is, for any ∆i greater than zero,
{∆i, ∆i+1, · · · , ∆i+C−1} ∈ {∆start, ∆start+1, · · · , ∆end}, there are C in total. The second is
that there is a gradient increment of Q, which is greater than Av. C and Q are set by
human experience.

Update the position of the degradation points dposition by iterating repeatedly until
the optimal degradation point is chosen at the end of the iteration. The algorithm flow is
illustrated in Figure 4, and the algorithm process is described as follows:

1. Proceed to the second step only if the count of incremental gradients with consecutive
jumps is at least C (where (C > 0)); otherwise, halt the process.

2. If the number of incremental gradient points meeting condition (1) is at least Q (where
(0 < Q ≤ C)), proceed to step 3; otherwise, halt the process.

3. If condition (2) is met, the starting point of the selected gradient is set as the new
degradation point, and the final point of the gradient with continuous jumps becomes
the new gradient’s end. The updated gradient average Av is then calculated for round 4.

4. The algorithm converges to the final degradation point and stops; if not, return to step 1.

As illustrated in Figure 3c, the adaptive threshold stage division algorithm determines
the proper degradation point position to eliminate the interference caused by multiple
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jump points. Subsequently, the final degradation point is used to divide the bearing data
into two stages: the health and fast degradation stages. We use the bearing data from
the degradation stage as the input X̂ =

{
xi, x̂i}n

i=dposition
of the prediction module in the

later section.

Figure 4. Flow chart of the adaptive threshold algorithm.

3.3. Parallel Reversible Instance Normalization RUL Prediction

As previously mentioned, the training set input to this module consists of two
branches: the normalized data X̂ and the time series data xi. Therefore, the parallel
reversible instance normalization RUL prediction module is accordingly designed with
two branches to process the input data of these two parts. Firstly, X̂ =

{
xi, x̂i}n

i=dposition
is

the input of the prediction module, and the output is Y = P
(
X̂
)
=
{

yi, ŷi}n
i=dposition

. Con-

sidering that the direct RUL prediction results ŷi from the normalized data x̂i may result
in a distribution bias from the actual data, we further calculate the reverse normalized [5]

predicted value
∼
y

i
from the the predicted value ŷi, expressed as follows:

∼
y

i
=
√

ρi + ε ∗
(

ŷi − δ

α

)
+ µi. (8)
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Importantly, the weights of the two prediction values are simultaneously optimized
via model training to achieve a better overall prediction accuracy. The representation is
as follows:

Ŷ =
∼
y

i
∗ φ + yi ∗ (1 − φ). (9)

Among these, φ ∈ [0, 1] are the elements of the learnable affine parameter vector.
In terms of the design of the RUL predictor, it is necessary to use a network model

that extracts deep information features well and has a lighter neural network structure.
Therefore, we construct the GRU-based predictor P to predict the RUL Ŷ. The RUL predictor
is composed of two single-layer gated cyclic unit GRUs and three fully connected layers.
The GRU-based predictor’s parameters are listed in Table 1.

Table 1. Model structural parameters.

No. Layer Operator Dimensions

1 Input Input samples (12,1)
2 GRU1 Prediction (None,12,30)
3 GRU2 Prediction (None,12,30)
4 FC1 Fully connected (None,60)
5 FC2 Fully connected (None,120)
6 FC3 Fully connected (None,1)

The pseudocode of the proposed method is shown in Algorithm 1.

Algorithm 1: AsdinNorm for RUL prediction.

1: Input: (Training stage) Source domain: Hs =
{

hi
s}R

i=1 , where hi
s shows the ith sample, and R shows the number of samples.

2: Data preprocessing: peak-to-peak values extract.
3: for I1 epochs, do
4: Randomly initialize the weight of the AsdinNorm model θ.
5: Instance normalization from Equations (3) to (5).
6: Use the adaptive threshold stage division module to select the degradation stage data.
7: Use Equation (10) to calculate the margin loss.
8: Use Equations (8) and (9) to obtain the RUL prediction values and update the affine parameters δ, α, and φ.
9: end for
10: Output: The AsdinNorm model with optimal θ.

11: Input: (Test stage) Unseen target domain Ht =

{
hi

t

}M

i=1
, where hi

t shows the ith sample, and M shows the number of samples.

12: peak-to-peak values extract.
13: Use the adaptive threshold stage division module to select the degradation stage data.
14: Use Equations (8)–(10) to obtain the RUL prediction values and calculate the evaluation indicators.
15: Output: RMSE of the target bearings.

4. Experiment and Discussion
4.1. Experiment Description

We conducted experiments using two public datasets: the IEEE PHM Challenge 2012 bearing
dataset and the XJTU-SY bearing dataset. The IEEE PHM Challenge 2012 bearing dataset is pro-
vided by the bearing degradation experiments on the PRONOSTIA test stand. The PRONOSTIA
experimental setup includes three primary components: rotational components, load components,
and data measurement components, as illustrated in Figure 5a. The load is 4000 N. Vibration
signals are captured every 10 s, with each recording lasting 0.1 s. Table 2 displays the dataset
description under three operating conditions. We use the vibration signal of bearing 1_1 as the
training set and test the other 12 bearings.

The XJTU-SY bearing datasets are provided by the Institute of Design Science and
Basic Component at Xi’an Jiaotong University (XJTU), encompassing vibration signals from
15 rolling bearings operating under three distinct conditions. The vibration signals depict
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the operational-to-failure transitions of the 15 rolling bearings across these three conditions.
The dataset is sampled at a frequency of 25.6 kHz with a sampling period of 1 min, as
shown in Figure 5b. Comprehensive details of the two datasets are presented in Table 2. In
the PHM 2012 dataset, bearing 1_1 is utilized as the training set, with the remaining
bearings serving as the test set. For the XJTU-SY dataset, bearing 3_1 is employed as the
training set, while the remaining bearings constitute the test set to evaluate the model’s
generalization performance.

Figure 5. Test platforms: (a) PRONOSTIA experimental platform; (b) XJTU-SY test platform.

Table 2. Description of the datasets.

Data Set Rotation
Speed (rpm) Load Component Dimension Division

PHM2012

800 4000

Bearing1_1 (2803,2560) training
Bearing1_2 (871,2560) testing
Bearing1_3 (2375,2560) testing
Bearing1_5 (2463,2560) testing
Bearing1_6 (2448,2560) testing

1650 4200

Bearing2_1 (911,2560) testing
Bearing2_2 (797,2560) testing
Bearing2_3 (1955,2560) testing
Bearing2_4 (751,2560) testing
Bearing2_5 (2311,2560) testing
Bearing2_6 (701,2560) testing

1500 5000
Bearing3_1 (515,2560) testing
Bearing3_2 (1637,2560) testing

XJTU-SY

2100 12,000
Bearing1_1 (123,2560) testing
Bearing1_2 (161,2560) testing
Bearing1_3 (158,2560) testing

2250 11,000
Bearing2_1 (491,2560) testing
Bearing2_2 (161,2560) testing
Bearing2_3 (533,2560) testing

2400 10,000

Bearing3_1 (2538,2560) training
Bearing3_2 (2496,2560) testing
Bearing3_3 (371,2560) testing
Bearing3_4 (1515,2560) testing

We designed experiments in three aspects (Comparison Results Using Full Life cycle
Data and Fast Degradation Data; Ablation Experiments; Comparison Experiments) to
validate our method. Figure 6 illustrates the experimental flow chart of the verified
procedure of the proposed method.
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Figure 6. Experimental flow chart.

4.2. Adaptive Threshold Stage Division Experiment

Figure 7 presents the iterative process of the adaptive threshold stage division algo-
rithm applied on bearing 1−3 and bearing 2−2 of the PHM 2012 dataset, along with the
final degradation point position. It can be seen that the method can variously determine
the positions of the degradation points for each iteration and continuously update the
mean degradation gradient value. The iterative convergence of the algorithm identifies the
final degradation points by filtering out several interference jump points, which accurately
captures the subtle variations in the bearing data.

Figure 7. The iterative process of the adaptive threshold stage division algorithm: (a) bearing 1_3;
(b) bearing2_2.
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As depicted in Figure 7a, it can be observed that bearing 1−3 converges to the degradation
point at 1323 after three iterations. Similarly, Figure 7b illustrates that bearing 2−2 converges to
the degradation point at 228 after three iterations. The specific iteration counts and degradation
point positions for each bearing can be referenced in Table 3.

Table 3. Adaptive threshold stage division results.

Data Set Number of Iterations Sample Size Degenerate Point

Bearing 1_1 3 2803 1350
Bearing 1_2 3 871 720
Bearing 1_3 3 2375 1323
Bearing 1_5 2 2463 2240
Bearing 1_6 3 2448 1620

Bearing 2_1 6 911 130
Bearing 2_2 3 797 228
Bearing 2_3 1 1955 1840
Bearing 2_4 2 751 635
Bearing 2_5 2 2311 2165
Bearing 2_6 2 701 585

Bearing 3_1 3 515 390
Bearing 3_2 4 1637 1501

Using the proposed algorithm, all bearings are stage-divided, and Table 3 lists the
number of iterations and final degradation point positions. The vibration data of the
degradation stage are selected for the RUL predictions.

4.3. Comparison Results Using Full Life Cycle Data and Fast Degradation Data

To verify the effectiveness of stage division in the proposed method, we, respec-
tively, use full life cycle data and fast degradation data of the bearings to predict the RUL.
We choose the root mean square error (RMSE) [26] as the metric to evaluate the model
performance, expressed as follows:

RMSE =

√
1
N ∑N

i=1

(
Ŷi − Yi

)2, (10)

where Yi represents the actual RUL value, Ŷi is the estimated RUL value, and N indicates
the total number of samples. The smaller the value of the RMSE, the superior the prediction
performance of the model.

Figure 8 illustrates the prediction results of the GRU model and our proposed model
for the full life cycle and fast degradation data of all test bearings, respectively. It is observed
that the RMSE of two models for the fast degradation stage data are smaller than those
for the full life cycle data. This is because the data distribution discrepancy between the
health stage and the fast degradation stage is significant. The distribution of data in the
health stage can bias the model learning and affect the prediction performance in the fast
degradation stage of the bearing data.

Further, we train our proposed model with the full life cycle data of bearing 1−1 of the
PHM2012 dataset and the data of the fast degradation stage, respectively. Figure 9 shows
the prediction results of bearing 1−2. The blue curve is the real values of bearing 1−2. The
red curve is the prediction results of bearing 1−2 trained on the data of the fast degradation
stage of bearing 1−1. The green curve is the one trained on the full life cycle data of bearing
1−1. It can be seen that the model trained with the data of the fast rapid degradation stage
has a superior fitting to the vibration data with the rapid variation.

Two sets of experimental results demonstrate that dividing the bearing data into two
stages and using fast degradation stage data for the RUL prediction results in a superior
performance than using the full life cycle data for the prediction.
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Figure 8. Prediction results for the full life cycle and fast degradation data of all test bearings: (a) GRU
model; (b) our proposed model.

Figure 9. Prediction results of bearing 1_2 using different training data of bearing 1_1.
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4.4. Ablation Study

In this section, we conduct three ablation experiments to verify the effectiveness of
each module of our proposed method. Specifically, the model with the adaptive threshold
stage division module and GRU module (termed as Adapstage+GRU); the model with
the adaptive threshold stage division module, instance normalization module, and re-
versible normalization-based RUL prediction module (termed as Adapstage+IN+RevIN);
and the model with the manual threshold stage division module, instance normalization
module, and parallel reversible normalization-based RUL prediction module (termed as
Manualstage+IN+RevIN) are constructed, respectively.

For the PHM 2012 dataset, we train three models on bearing 1−1. The predictive
results for the 12 test bearings are depicted in Figure 10. Similarly, for the XJTU-SY dataset,
the training bearing is 3−1, and the predictive results for nine test bearings are illustrated
in Figure 11.

Figure 10. Ablation experimental results on the PHM 2012 dataset.

As shown in Figure 10, the above bolded data is the best result for all the ablation
models. In the experiments on the PHM2012 dataset, the Manualstage+IN+RevIN model
exhibits the worst prediction performance, with an average RMSE value of 2.15. The
next-worst prediction performance is the Adap-stage+GRU model, with an average RMSE
value of 1.86. Then comes the Adap-stage+IN+RevIN model, with an average RMSE value
of 1.68, and finally, the best prediction is our proposed method, with an average RMSE
value of 1.44, and it can be seen that both the average RMSE value and the RMSE values of
individual bearing predictions are the smallest for our proposed method, which proves that
the prediction performance of our proposed method is better than the other models. This is
because the degradation trends of different bearings under different operating conditions
differ obviously. Using fixed thresholds to perform stage division for all bearings will result
in non-negligible bias in selecting degradation points for some bearings with significantly
different data distributions. Meanwhile, the Adapstage+IN+RevIN model has a suboptimal
prediction performance. Although the normalization and inverse normalization methods
are used in that model, the lack of learnable parallel processes affects the generalization
ability of the model.

As shown in Figure 11, the above bolded data is the best result for all the ablation
models. In the experiments on the XJTU-SY dataset, it can be seen that the GRU+FC model
exhibits the worst prediction performance, with an average RMSE value of 1.88. The
next-worst prediction performance is the GRU+RevIN model, with an average RMSE
value of 1.70. Finally, it was our proposed method, which predicts an average RMSE value



Lubricants 2024, 12, 175 14 of 19

of 1.53. From the above results, the effectiveness and generalization ability of the parallel
reversible normalized RUL prediction module proposed in our method can be seen.

Figure 11. Ablation experimental results on the XJTU-SY dataset.

However, as seen in Figures 10 and 11, it can be seen that the prediction accuracy of
the proposed model for some bearings (e.g., bearing 1−6 and bearing 3−1) is not much
different or even the same compared to the prediction accuracy of other ablation models.
This is because we use bearing 1−1 for training and other bearings as test bearings, the
peak-to-peak height of bearing 1−1 reaches more than 50, the degradation trend is smoother
in the early stage, and the performance is more dramatic in the later stage. The maximum
peak-to-peak values in bearing 1−6 and bearing 3−1 are not more than 10, and the data
distribution of their degradation trend is more different from that of bearing 1−1. Our
model performs very well in the prediction of other bearings that have peak-to-peak
heights and degradation trends closer to the training bearings, and the data distribution
differences between them are smaller, so the model shows a better generalization ability
and prediction accuracy.

Summarizing the experimental results shows that our proposed model can obtain
more accurate degradation positions, as well as a better prediction accuracy, than any
other model.

4.5. Comparison with State-of-the-Art Methods

In this section, we compare our model with six state-of-the-art methods on the PHM
2012 dataset to verify its superiority. The comparison models include the AE (Autoen-
coder) [27], SA (Self-Attention) [28], MMD (Maximum Mean Discrepancy) [29], TCA [30],
Transformer [31], and AOA models [32] listed in Table 4. Among them, SA, AE, and Trans-
former are the prevalent learning models; TCA and MMD belong to the domain adaptive
models; and AOA belongs to the domain generalization model.

Figure 12 shows the prediction results of different comparison models for all tested
bearings, the above bolded data is the best result for all the comparison models. As well
as the average RMSE values. From the average RMSE values, it can be seen that the AE
model predicts an average RMSE value of 1.87, which is the worst prediction accuracy
among all the comparison models, followed by the AOA model, which predicts an average
RMSE of 1.82, then the TCA model, which predicts an average RMSE of 1.76, and the
SA model, which predicts an average RMSE of 1.69; it is worth noting that the MMD
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model and Transformer model predict an average RMSE value of 1.61 and 1.6, respectively.
Finally, our proposed model predicts an average RMSE value of 1.44.

Table 4. Description of the comparison models.

Method Description

SA

The Self-Attention model obtains more information by globally associating weights and then performs
weighted sum of inputs, i.e., using information from other regions. We use the Self-Attention model to

transform the features of different time series as the input parameter matrix, gain the weights by the similarity
measure, and then weighted sum them.

AE_PCA

The AE_PCA model extracts the features from multi-class bearing data and then maps the high-dimensional
features to low-dimensional features by the principal component analysis method to retain the effective
features. Hence, we input the input information into the AE model for feature extraction, and then, the

downscaled features by the PCA method are used for the prediction.

TCA
When the source and target domains have different data distributions, the TCA model maps the two domain
bearing data together into a high-dimensional regenerated Hilbert space, preserving the respective internal

properties to the maximum extent and improving the prediction performance of the model.

MMD The MMD model is to minimize the distributional distance between latent features, followed by inputting
these latent features into a predictor for the RUL prediction.

Transformer
The Transformer model uses the idea of an attention mechanism to process time series data. We take all

training bearing data as the input word vector matrix and select the important information to improve the
model performance by globally associating the weight factors and weighted summation.

AOA
The GAN consists of downsampled convolution and upsampled transposed convolution to form the generator.
Resnet18-1d is used to form the discriminator for generating pseudo samples, and then, the pseudo samples,

as well as the source domain samples, are trained together with the predictor to predict the RUL.

Figure 12. Experimental results of the comparison models on the PHM 2012 dataset.

It is observed that all the RMSE values of our model are lower than the other compared
models. Among these, the AE and SA only extract the significant features of the training
bearings and ignore the variations in data distribution across the different test bearings;
therefore, the two models fail to obtain satisfactory prediction results. The TCA and the
MMD models enhance the prediction accuracy by reducing the distance between the source
domain bearing and the known target domain bearing. However, since the vibration data
of different bearings have the different time series lengths with respect to the full life
cycle, the distance metric-based domain adaptive approaches produce a certain distance
bias, which has an obvious impact on the prediction performance. The AOA model uses
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GAN to generate pseudo samples, which expands the data distribution of the samples, but
the expansion range is uncontrollable, which will affect the prediction progress. As the
conditions of generalization are strict, the prediction effect will be affected.

However, as can be seen in Figure 12, in the comparison experiments, the difference
in prediction accuracy between our proposed model and the comparison model on some
bearings is not large, or the results are even the same. Comparing the learning conditions
of the models, it can be seen that our proposed single-source domain generalization model
relies on only one bearing training and makes predictions under the condition that the
target domain bearing is unknown. It can be seen from the figure that the prediction
accuracy of the domain adaptive model is also better; the reason is that this kind of model
can use the target bearing to perform some adaptive methods, thus bringing the distance
between the source domain and the target domain closer, which makes the domain adaptive
model perform very well for predictions in cross-domain scenarios. Learning models and
domain generalization models, on the other hand, do not perform as well. If the bearings of
the target domain are not visible to the domain adaptive model, then its prediction accuracy
drops drastically.

It should be pointed out that bearing 2−3 is the worst case among all the tested
bearings. This is because the degradation stage of bearing 2−3 lasts for a short time.
The data vary widely, and correspondingly, the data distribution of bearing 2−3 differs
considerably from the other eleven bearings; therefore, the prediction results of bearing
2−3 perform more poorly than any other test bearings on each comparison model.

4.6. Generalization Error Bound Analysis

It should be pointed out that, in Figure 12, the RMSE of bearing 1−3 and bearing
2−3 are obviously larger and even exceed several times those of the other bearings. There-
fore, we analyze the reason from the perspective of the generalization error bound.

The generalization error usually indicates the generalization performance of the model
for unknown target data, which are obtained by subtracting the training error from the
error expectation over the entire input space. The generalization error bound [33] is the
maximum allowed value of the generalization error, beyond which the feasibility of model
is problematic, defined as follows: when the space is assumed to be a finite function set
F = { f1, f2, · · · fd}, the following inequality holds for any function f ∈ F, with a probability
of 1 − δ at least.

R( f ) ≤ R̂( f ) + ϵ(d, N, δ), (11)

ϵ(d, N, δ) =

√
1

2N

(
1og d + log

1
δ

)
, (12)

where the left-hand side of the inequality R( f ) denotes the generalization error, the right-
hand side denotes the generalization error bound, R̂( f ) denotes the empirical risk, and
ϵ(d, N, δ) corresponds to a correction quantity, which is a monotonically decreasing function
of the corresponding sample N. d denotes the number of functions, and the more functions,
the larger the correction. Correspondingly, the empirical risk R̂( f ) is defined as follows:

R̂( f ) =
1
N

N

∑
i=1

RMSE
(
Yi, Ŷi

)
, (13)

where Yi represents the true values, and Ŷi represents the predicted values.
In the PHM 2012 experiment dataset, the amount of training sample N is 1440, and

the number of functions d is 150. The range of values of the probability δ is set to [0, 1], and
according to Equation (12), the larger δ is, the smaller ϵ is. When the value of δ is set to
1, the minimum value of ϵ is 0.0274. According to Equation (13), R̂ f is 1.422. Following
Equation (11), we obtain the value of the generalization error bound as 1.44. The specific
results are listed in Table 5.
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Table 5. Generalization error bound analysis.

Empirical
Risk R̂(f)

Sample Size N Assume
Functions d Probability δ

Correction
Quantity ϵ

Generalization
Error Bound

1.422 1440 150
1.0 0.024 1.44

0.00001 0.049 1.47

As can be seen from Figure 13, except for bearing 1−3 and bearing 2−3, all other
bearings meet the above generalization error bound inequality on the PHM dataset. This
indicates that the model does not have generalization ability for bearings 1−3 and 2−3; there-
fore, the two prediction result RMSE values are larger than that of the other test bearings.
The experimental results of our model are in accordance with the theoretical calculations.

Figure 13. Generalization error analysis of the experimental results.

5. Conclusions

In this paper, to tackle the problem that the unknown target bearing data are unavail-
able or unknown for model training, we propose a novel single-source domain generaliza-
tion method for the RUL predictions of bearings, termed as the adaptive stage division and
parallel reversible instance normalization model. Firstly, we raise an adaptive threshold
stage division approach to determine the degradation point in the full life cycle vibration
data of bearings. Further, we explore the instance normalization and denormalization algo-
rithms of the source bearing data and then combine them into a unified GRU-based RUL
prediction network, avoiding the distribution bias in data enhancement and concurrently
enhancing the generalization performance of the model for unknown bearings. In the two
ablation experiments of the PHM2012 dataset and XJTU-SY bearing dataset, it can be seen
that the average prediction accuracy (RMSE value) of the proposed method is 1.44 and
1.53, respectively, which are 17% and 11% higher than that of the second-best models,
i.e., the Adap-stage+IN+RevIN and GRU+RevIN models. In the comparison experiment of
the PHM2012 dataset, the average prediction accuracy of the proposed model is 1.44, which
is 11% superior to that of the suboptimal comparison model (Transformer model). Com-
parison of the experimental results shows that the model offers a good generalization
performance for predicting the RUL of unknown bearings. This method introduces a novel
approach to single-source domain generalization for RUL predictions.

It is noted that the generalization ability of our model on bearings 1−3 and 2−3 is
still unsatisfactory. In future works, we can attempt to increase the training samples and
explore advanced data augmentation techniques to expand the data distribution, such that
the model has a wider generalization error bound and generalization ability.
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