
Citation: Vasilev, A.P.; Dyakonov,

A.A.; Danilova, S.N.; Makarov, I.S.;

Okoneshnikova, A.V.; Okhlopkova,

A.A. Effect of Nano-CuO and

2-Mercaptobenzothiazole on the

Tribological Properties of Ultra-High

Molecular Weight Polyethylene.

Lubricants 2024, 12, 174. https://

doi.org/10.3390/lubricants12050174

Received: 16 April 2024

Revised: 8 May 2024

Accepted: 10 May 2024

Published: 12 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

lubricants

Article

Effect of Nano-CuO and 2-Mercaptobenzothiazole on the
Tribological Properties of Ultra-High Molecular
Weight Polyethylene
Andrey P. Vasilev 1,* , Afanasiy A. Dyakonov 1,2, Sakhayana N. Danilova 1 , Igor S. Makarov 1,
Anastasia V. Okoneshnikova 1 and Aitalina A. Okhlopkova 1

1 Department of Chemistry, Institute of Natural Sciences, North-Eastern Federal University,
677000 Yakutsk, Russia

2 V. P. Larionov Institute of Physical and Technical Problems of the North SB RAS, 677000 Yakutsk, Russia
* Correspondence: gtvap@mail.ru; Tel.: +7-924-869-47-92

Abstract: In this study, the tribological properties of nanocomposites based on ultra-high molecular
weight polyethylene (UHMWPE) filled with nano-CuO and 2-mercaptobenzothiazole (CuO/MBT)
in mass ratios of 1:1 and 2:1 were investigated. In the supramolecular structure of UHMWPE
nanocomposites, spherulites of several hundred micrometers in size are formed. The density of
UHMWPE nanocomposites slightly increases relative to the pure polymer, reaching a maximum at
2 wt.% CuO/MBT in both ratios. The Shore D hardness and compressive stress of the UHMWPE
nanocomposites showed an improvement of 5–6% and 23–35%, respectively. The wear resistance and
coefficient of friction of UHMWPE nanocomposites were tested using a pin-on-disk configuration
under dry friction conditions on #45 steel and on P320 sandpaper. It was shown that the wear rate of
UHMWPE nanocomposites filled with 2 wt.% CuO/MBT decreased by ~3.2 times compared to the
pure polymer, and the coefficient of friction remained at the level of the polymer matrix. Abrasive
wear showed an improvement in UHMWPE nanocomposites filled with 1 wt.% CuO/MBT compared
to the polymer matrix and other samples. The worn surfaces of the polymer composites after dry
friction were examined by scanning electron microscopy and IR spectroscopy. The formation of
secondary structures in the form of tribofilms that protect the material from wear was demonstrated.
Due to this, the wear mechanism of UHMWPE nanocomposites is transformed from adhesive to
fatigue wear. The developed materials, due to improved mechanical and tribological properties, can
be used as parts in friction units of machines and equipment.

Keywords: ultra-high molecular weight polyethylene; nano-CuO; 2-mercaptobenzothiazole; polymer
composite materials

1. Introduction

Ultra-high molecular weight polyethylene (UHMWPE) is a type of engineering ther-
moplastic that has been widely used as a self-lubricating polymer in friction units due
to its superior tribological properties such as low coefficient of friction, wear resistance,
high impact toughness, corrosion resistance, water absorption, and biocompatibility [1,2].
However, UHMWPE also has disadvantages such as low surface hardness, poor abrasion
resistance and flexural strength, and poor creep resistance [3,4]. Therefore, to introduce
UHMWPE more broadly into engineering and its application in the harsh conditions of
modern industry, it is necessary to modify its mechanical and tribological properties. The
most common way to improve the mechanical and tribological properties of UHMWPE is
the introduction of dispersed and fiber fillers [5,6].

In polymers, fillers are responsible for the formation of performance characteristics
and for providing the material with various desired properties (e.g., mechanical strength,
thermal conductivity, or wear resistance). In the work of Selim Gürgen et al. [7], it was
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shown that in SiC/UHMWPE composites, excessive loading of fillers into the polymer
matrix leads to a loss of anti-wear properties. Also, the properties are strongly influenced
by the surface modification of the filler when introduced into the polymer, as demon-
strated in [8]. Thus, the main factors determining the properties of polymer composites
are the types of fillers, their content and the compatibility between fillers, and the poly-
mer matrix [9,10]. In many cases, both physicochemical and mechanical bonding work
simultaneously to increase the degree of compatibility between fillers and the polymer
matrix [11–15]. In addition, to obtain polymer composites with an improved complex of
performance properties, it is necessary to select components that have a complex effect on
the polymer matrix [16,17].

Recently, a new class of composite materials based on polymer matrix and nanoscale
particles has been widely used due to their superior mechanical and physical properties
compared to the pure polymers at low mass content [18]. Among the multifunctional
nanoscale particles, copper oxide is particularly noteworthy. Copper oxide (CuO) has a
number of significant advantages. CuO can be easily synthesized and its nanoparticles
have more superior properties in terms of wear resistance and reduction in the coefficient
of friction than other nanoparticles such as aluminum, zirconium, iron, and cobalt ox-
ide [19,20]. However, the literature review showed that there are not many papers where
nanoscale copper oxide is used as a modifier in the development of UHMWPE-based com-
posites [21–25]. Ushakov A.V. et al. demonstrated that the properties of UHMWPE-based
composites depend on the concentration of nanoscale fillers and are in the range of 1–2 wt.%
CuO [25]. Cao Z. et al. showed that copper oxide nanoparticles were filled with UHMWPE
in situ to inhibit possible agglomeration during preparation by mechanical mixing [24]. It
is shown that the average sliding friction coefficient of UHMWPE decreased to 34% after
filling with CuO nanoparticles, and the wear mechanism changed from adhesive wear to
fatigue wear. 2-mercaptobenzothiazole (MBT) is a bicyclic heteroatomic molecule that is
used as a rubber vulcanization accelerator and is widely used in the production of tires,
rubber shoes, and other rubber products [26]. We have previously investigated the effect of
wollastonite and 2-mercaptobenzothiazole on the mechanical and tribological properties of
UHMWPE [27].

In this work, 2-mercaptobenzothiazole and nano-CuO are proposed to prepare wear-
resistant UHMWPE nanocomposites. One of the drawbacks of UHMWPE is its low resis-
tance to abrasive wear. However, few works are devoted to studying the abrasive wear
of UHMWPE-based composites. In this context, it is of interest to evaluate the tribolog-
ical properties of friction on steel #45 and abrasive paper under dry friction conditions.
Therefore, the aim of the present work is to study the tribological properties of UHMWPE
nanocomposites with copper oxide and 2-mercaptobenzothiazole.

2. Materials and Methods

Commercial ultra-high molecular weight polyethylene (UHMWPE, grade GUR-4130)
powder with an average molecular weight of 6.8 × 106 g/mol and density of 0.93 g/cm3

was supplied by Celanese (Nanjing, China). Nanoscale copper oxide (CuO, purity > 99.8%)
with an average particle size of 50 nm and specific surface area of 15–20 m2/g was supplied
by LLC “PPT” (Tomsk, Russia). 2-Mercaptobenzothiazole (C7H5NS2)—light yellow powder
colors were manufactured according to the Russian standard GOST 739-74 [28].

In this work, fillers were prepared by mixing the components CuO and MBT, and
this was carried out in the planetary mill Activator-2S (Activator, Russia) at 600 rpm for
10 min. The obtained were mixed in the mass ratio of CuO:MBT—1:1 further 1CuO/1MBT
and CuO:MBT—2:1 further 2CuO/1MBT. Then, UHMWPE powders and CuO/MBT were
mixed in a high-speed blade mixer in dry form with stirring device rotation speed of
1200 rpm for 2 min. The mass content of CuO/MBT in the polymer matrix was 0.5, 1, and
2 wt.%. The prepared materials of UHMWPE composites were carried out by hot pressing
at a temperature of 175 ± 5 ◦C, pressure of 10 ± 0.5 MPa, and a holding time of 20 min
followed by cooling to 80 ◦C.
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Determination of compressive properties of specimens was carried out in accordance
with ISO 604:2002 at a fixed speed of 1 mm/min. The density of specimens was determined
by hydrostatic weighing method according to the Russian standard GOST 15139-69. Hard-
ness of UHMWPE nanocomposites was measured by hardness tester TBP-D (Vostok-7,
Moscow, Russia) on Shore hardness scale type D according to ISO 868-2003. A CETR
UMT-3 tribometer (CETR, Mountain View, CA, USA) was utilized to evaluate the tribo-
logical properties of the UHMWPE nanocomposites under dry conditions on the scheme
of friction “pin-on-disk”. The counterpart was #45 steel disk with hardness 45–50 HRC,
roughness Ra = 0.06–0.08 µm. The normal load was fixed at 150 N. The sliding velocity is
0.42 m/s with a sliding distance of 4522 m. Prior to the tribological test, the surfaces of the
specimens were cleaned and weighed on an analytical scale (0.00001 g). The specific wear
rate (mm3/N·m) was estimated as follows in Equation (1):

k =
∆m

ρ·FN·d
(1)

where FN—normal force, N; d—sliding distance, m; ∆m—mass lost during sliding, g;
ρ—density of specimens, g/cm3.

Abrasive wear characteristics were evaluated using the friction scheme “pin-on-disk”
on abrasive paper P320 (aluminum oxide, grain size ~50 µm), the friction track was—200 m,
load—10 N, at a constant sliding velocity—0.2 m/s. After each experiment, the abrasive
paper was changed, and the sample was cleaned and weighed on an analytical scale
(0.00001 g). The wear was measured by the weight difference before and after the experi-
ment, and the volume loss wear was calculated.

The supramolecular structure and worn surfaces of the polymer matrix and nanocom-
posites were observed by scanning electron microscopy (SEM) Jeol JSM-7800F (JEOL, Tokyo,
Japan). The samples were taken in the secondary electron mode at an accelerating voltage
of 1–2 kV. The Fourier transform infrared spectroscope (Varian 7000 FT-IR, Palo Alto, CA,
Varian, USA) was scanned from 550 to 4000 cm−1. The surface roughness (Ra, in µm)
of UHMWPE nanocomposites was measured using a contact mode surface profilometer
TR220 Surface Roughness Tester (TIME Group, Beijing, China).

3. Results and Discussion

It is known that the parts of friction units require high indices of mechanical properties;
in particular, the compressive stress determines the bearing capacity and plays an important
role in changing the parameters of the friction surface [2,29]. Table 1 shows the results of
compressive stress at a specified relative strain of 10%, Shore D hardness, and density of
the pure UHMWPE and UHMWPE nanocomposites as a function of the content and mass
ratio of components.

Table 1. Results of compressive stress at a specified relative strain 10%, Shore D hardness, and density
of UHMWPE nanocomposites.

Sample Compressive Stress, MPa Shore D Hardness Density, g/cm3

Initial UHMWPE 17 ± 1 62 ± 1 0.93
UHMWPE + 0.5 wt.% 1CuO/1MBT 21 ± 1 65 ± 1 0.94
UHMWPE + 1 wt.% 1CuO/1MBT 22 ± 1 66 ± 1 0.94
UHMWPE + 2 wt.% 1CuO/1MBT 22 ± 1 65 ± 1 0.95
UHMWPE + 0.5 wt.% 2CuO/1MBT 21 ± 1 66 ± 1 0.93
UHMWPE + 1 wt.% 2CuO/1MBT 22 ± 1 66 ± 1 0.94
UHMWPE + 2 wt.% 2CuO/1MBT 23 ± 1 65 ± 1 0.95

As can be seen from Table 1, the value of compressive stress at a specified relative
strain of 10% UHMWPE nanocomposites increased in all composites by 23–35% and Shore
D hardness by 5–6% compared to the initial polymer. It can be seen that for UHMWPE
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nanocomposites, there is practically no difference between compressive stress and hardness
depending on the content and ratio CuO/MBT. This may be due to the fact that CuO and
MBT were used, which strengthen the polymer matrix to the same extent. In addition, it
is known that with a low filler content in UHMWPE, the mechanical properties remain
approximately at the same level, as has been shown in other works [30–32]. The improve-
ment in compressive stress when CuO/MBT is added to the polymer may be due to the
fact that the fillers are well dispersed in the bulk UHMWPE. Another effect may be the
excellent compatibility of the polymer matrix with CuO/MBT so that the load transfer
mechanism is efficient [33,34]. In the case of increasing Shore D hardness, in addition to
the above effects, it is also the case that CuO is a hard metal oxide, which can prevent the
indenter from penetrating into the polymer matrix. Thus, the addition of CuO/MBT to
UHMWPE confirmed their reinforcing effect. The density of UHMWPE nanocomposites
slightly increases relative to the pure polymer, reaching a maximum at 2 wt.% CuO/MBT
in both ratios. It is likely that such a change in the density of the samples is associated
with a higher density of copper oxide, as well as increased interfacial binding due to the
organic filler MBT. Similar results of changes in the density of UHMWPE with the addition
of nanoparticles have been published in the works of other authors [24,35].

Figure 1 shows the results of the investigation of the initial UHMWPE by SEM. The
supramolecular structure of pure UHMWPE is a lamellar crystal structure, which has been
well studied [36].
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Figure 1. SEM image of the initial UHMWPE.

Modification of UHMWPE by the introduction of CuO/MBT fillers leads to changes in
the supramolecular structure. The results of the SEM study on the supramolecular structure
of UHMWPE nanocomposites depending on the filler content and the ratio of CuO/MBT
are shown in Figure 2.

As can be seen from Figure 2a,d, the supramolecular structure of UHMWPE nanocom-
posites with 0.5 wt.% CuO/MBT loading shows they form spherulites with a homogeneous
structure and a size of several hundred micrometers (some are indicated by yellow arrows).
The UHMWPE nanocomposites containing 1 wt.% of CuO/MBT show a change in the
supramolecular structure with the formation of a large number of smaller spherulites
(Figure 2b,e). When the filler content is increased up to 2 wt.% in UHMWPE, a hetero-
geneous and defective spherulite-like structure is formed (Figure 2c,f). The formation
of a disordered structure is probably due to the high filler content, which prevents the
formation of more organized spherulites. It is worth noting that a marked difference in
the supramolecular structure can be seen when comparing UHMWPE nanocomposites
containing 1 wt.% fillers with each other, depending on the filler ratio CuO/MBT. This
can be explained by the fact that nanocomposites with a mass ratio of 2:1 contain a larger
amount of nanoscale filler CuO, other conditions being equal.
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In order to determine the possible use of the obtained materials in friction units of
machines and equipment, studies were carried out to evaluate the tribological properties
under conditions of dry sliding friction at room temperature on #45 steel and P320 sand-
paper. The tribological properties of UHMWPE nanocomposites under conditions of dry
sliding friction at room temperature against #45 steel are depicted in Figure 3.
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From Figure 3a, it can be seen that the wear resistance of the UHMWPE nanocompos-
ites increases in all specimens compared to the pure polymer. As the CuO/MBT content in
UHMWPE increases, the wear resistance reaches a maximum at a content of 2 wt.% with a
component ratio of 2:1. It has been found that the smallest reduction in the specific wear
rate of UHMWPE nanocomposites in a 1:1 ratio is achieved at a content of 1 wt.%, which is
2.9 times lower relative to the polymer matrix. In the case of UHMWPE nanocomposites at
a mass ratio of 2:1, the decrease in the specific wear rate occurs at 2 wt.%, which is 3.2 times
lower compared to pure polymer. The specific wear rate of UHMWPE nanocomposites with
0.5 wt.% 1CuO/1MBT is 23% higher compared to UHMWPE + 0.5 wt.% 2CuO/1MBT. The
value of the specific wear rate in the remaining UHMWPE nanocomposites at 1 and 2 wt.%
contents is approximately the same. The coefficient of friction of UHMWPE nanocomposites
in all samples is in the range of 0.39–0.41 (Figure 3b). Thus, the UHMWPE nanocomposites
retain a relatively low value of the coefficient of friction corresponding to values of the
initial polymer.

The surface roughness results of the UHMWPE nanocomposites before and after
the friction test are summarized in Table 2. The introduction of CuO/MBT fillers into
UHMWPE leads to an increase in the roughness values—Ra. As the filler content increases
from 0.5 to 2 wt.%, Ra increases by about ~25 to 31%; i.e., the surfaces become rougher.
Similar results for the introduction of fillers into UHMWPE were obtained in [7]. After
friction tests of UHMWPE nanocomposites, their surface roughness decreases. The higher
the CuO/MBT filler content in UHMWPE, the greater the reduction in surface roughness.
Depending on the filler content in the polymer, similar results are observed, which do not
depend on the mass ratio of the filler components.

Table 2. Results of surface roughness of UHMWPE nanocomposites before and after friction test.

Sample Ra, µm before
Friction Test

Ra, µm after
Friction Test

Initial UHMWPE 0.33 0.29
UHMWPE + 0.5 wt.% 1CuO/1MBT 0.35 0.31
UHMWPE + 1 wt.% 1CuO/1MBT 0.39 0.34
UHMWPE + 2 wt.% 1CuO/1MBT 0.46 0.35
UHMWPE + 0.5 wt.% 2CuO/1MBT 0.36 0.31
UHMWPE + 1 wt.% 2CuO/1MBT 0.38 0.32
UHMWPE + 2 wt.% 2CuO/1MBT 0.45 0.34

Figure 4 shows SEM images of the worn surface of the initial UHMWPE, which is
characterized by grooves along the friction direction (indicated by yellow arrows). The
formation of such grooves is due to the plowing effect and a micro-cutting process by
the surface of a steel counterpart, which increases the loss of material. This type of worn
surface is typical of this polymer [37,38].
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Further, Figure 5 shows SEM images of the worn surface of UHMWPE nanocomposites
depending on mass ratio and content of CuO/MBT.

Lubricants 2024, 12, 174 7 of 13 
 

 

Further, Figure 5 shows SEM images of the worn surface of UHMWPE nanocompo-
sites depending on mass ratio and content of CuO/MBT. 

   

   
Figure 5. SEM images of worn surface of UHMWPE nanocomposites: (a) UHMWPE + 0.5 wt.% 
1CuO/1MBT; (b) UHMWPE + 1 wt.% 1CuO/1MBT; (c) UHMWPE + 2 wt.% 1CuO/1MBT; (d) 
UHMWPE + 0.5 wt.% 2CuO/1MBT; (e) UHMWPE + 1 wt.% 2CuO/1MBT; (f) UHMWPE + 2 wt.% 
2CuO/1MBT. 

As can be seen from Figure 5, the worn surfaces of the UHMWPE nanocomposites 
show small structural formations along the sliding direction (indicated by yellow arrows) 
that are not characteristic of the initial polymer. At higher magnification, the formation of 
new structural elements on the worn surface of the composites can be seen in Figure 5b,e. 
These structures are identified as secondary structures (tribofilms) consisting of filler par-
ticles and polymer. The formation of tribofilms improves the wear resistance of UHMWPE 
nanocomposites compared to the polymer matrix. It can be seen that tribofilms on the 
friction surface form a protective layer in the form of contact spots, where frictional 
stresses between the contacting surfaces are localized. As a result, plastic deformation and 
adhesive wear of the material surface are reduced, thus increasing the resistance of the 
material to wear. The formation of secondary structures in the form of tribofilms on the 
worn surface of polymer composites is one of the key mechanisms for adaptation of pol-
ymer composites during friction [39]. This also changes the wear mechanism of polymer 
composites from adhesive to fatigue wear. Thus, the friction of UHMWPE nanocompo-
sites results in the localization of frictional loads on separate contact spots (tribofilms), 
which are more resistant to wear, i.e., reduce wear of the material. 

Figure 6 shows the results of IR spectroscopy of the surface of polymer nanocompo-
sites before and after the friction test. IR spectra of UHMWPE nanocomposites revealed 
strong peaks in the surfaces before the friction test in the region of 2915, 2847, 1465, and 
~719 cm−1, which are attributed to the polymer matrix [37,40]. These main absorption 
bands of the UHMWPE are still present in all the nanocomposite specimens investigated 
after the friction test. 

Figure 5. SEM images of worn surface of UHMWPE nanocomposites: (a) UHMWPE + 0.5 wt.%
1CuO/1MBT; (b) UHMWPE + 1 wt.% 1CuO/1MBT; (c) UHMWPE + 2 wt.% 1CuO/1MBT;
(d) UHMWPE + 0.5 wt.% 2CuO/1MBT; (e) UHMWPE + 1 wt.% 2CuO/1MBT; (f) UHMWPE + 2 wt.%
2CuO/1MBT.

As can be seen from Figure 5, the worn surfaces of the UHMWPE nanocomposites
show small structural formations along the sliding direction (indicated by yellow arrows)
that are not characteristic of the initial polymer. At higher magnification, the formation of
new structural elements on the worn surface of the composites can be seen in Figure 5b,e.
These structures are identified as secondary structures (tribofilms) consisting of filler parti-
cles and polymer. The formation of tribofilms improves the wear resistance of UHMWPE
nanocomposites compared to the polymer matrix. It can be seen that tribofilms on the
friction surface form a protective layer in the form of contact spots, where frictional stresses
between the contacting surfaces are localized. As a result, plastic deformation and adhesive
wear of the material surface are reduced, thus increasing the resistance of the material to
wear. The formation of secondary structures in the form of tribofilms on the worn surface
of polymer composites is one of the key mechanisms for adaptation of polymer composites
during friction [39]. This also changes the wear mechanism of polymer composites from
adhesive to fatigue wear. Thus, the friction of UHMWPE nanocomposites results in the lo-
calization of frictional loads on separate contact spots (tribofilms), which are more resistant
to wear, i.e., reduce wear of the material.

Figure 6 shows the results of IR spectroscopy of the surface of polymer nanocomposites
before and after the friction test. IR spectra of UHMWPE nanocomposites revealed strong
peaks in the surfaces before the friction test in the region of 2915, 2847, 1465, and ~719 cm−1,
which are attributed to the polymer matrix [37,40]. These main absorption bands of the
UHMWPE are still present in all the nanocomposite specimens investigated after the
friction test.
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As can be seen from Figure 6, new peaks appear on the worn surfaces of polymer
nanocomposites in the region of ~750 to 757 and ~1006 to 1590 cm−1, which are due to the
presence of MBT filler content and belong to the mercapto group [41,42]. At the same time,
no peaks were detected in relation to CuO. From the bands of IR spectra of UHMWPE
nanocomposites, it can be seen that the intensity of peaks belonging to the MBT group
decreases after friction. This may be due to the fact that after friction on the worn surface,
MBT particles are discretely distributed, which was evident from the SEM results. In
the IR spectra of the UHMWPE + 2 wt.% 1CuO/1MBT composite after the friction test,
the presence of absorption bands in the region of ~3450 and ~1596 to 1651 cm−1 was
registered related to oxygen-containing groups [43,44]. The identified absorption bands
in the indicated regions are caused by the oxidation of UHMWPE in the process of wear
during friction testing, and indicate the occurrence of tribo-oxidative processes [45]. At
the same time, in other composites, these absorption bands in the IR spectra are rather
weak in intensity, which is due to insignificant oxidative reactions during the wear process,
indicating the inhibition of oxidative reactions. Thus, the appearance of new absorption
bands on the UHMWPE nanocomposite surface generally agrees with the results of the
analysis of the worn surface by SEM, where structural formations in the form of tribofilms
consisting of fillers and polymer matrix were revealed.

Figure 7 shows the results of volume loss and the coefficient of friction of UHMWPE
nanocomposites after the friction test against P320 sandpaper under dry friction conditions.
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As seen from Figure 7a, the abrasive wear resistance of UHMWPE with 0.5 wt.%
of fillers is at the level of the polymer matrix, as well as the coefficient of friction. The
relatively low abrasion resistance at 0.5 wt.% CuO/MBT content in UHMWPE in both
ratios is probably due to plastic deformation of the polymer and composites, thus relatively
high values of the coefficient of friction are observed. It can be seen that at the content
of 1 wt.% of CuO/MBT in UHMWPE, there is a 34–57% decrease in volume loss, and
at the content of 2 wt.%, by 34–48% relative to the polymer matrix. The coefficient of
friction of the UHMWPE nanocomposites is reduced by 9–13% at 1 wt.% content and by
7–13% at 2 wt.% content (Figure 7b). This is possibly due to the fact that CuO/MBT can
accumulate on the worn surface and form a lubricating film. Similar results of a reduction
in the coefficient of friction of UHMWPE nanocomposites due to the effect of interlayer
sliding have been described in [38]. It can be seen that, as a result of abrasive wear, the
volume loss value passes through a minimum as the CuO/MBT content in the polymer
increases. The volume loss value of UHMWPE + 1 wt.% 2CuO/1MBT is 34% lower than
that of UHMWPE + 1 wt.% 1CuO/1MBT. In the case of UHMWPE + 2 wt.% 2CuO/1MBT,
it is 21% lower compared to the UHMWPE + 2 wt.% 1CuO/1MBT. It was also observed
that a higher nano-CuO content (2:1 ratio) in UHMWPE was more effective than a 1:1 ratio
for the same loading in the matrix.

Figure 8 shows SEM images of the abrasive wear surface of pure UHMWPE. It can be
seen that on the worn surface of pure UHMWPE, an abrasive wear mechanism is observed
with the formation of deep grooves in the direction of friction (indicated by yellow arrows),
caused by hard abrasive particles of sandpaper. In addition, the formation of elongated
ribbon-like outgrowths causing an adhesive wear mechanism due to detachment from the
substrate under strong shear action is observed [46].
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Figure 9. SEM images of abrasive wear surface of UHMWPE nanocomposites: (a) UHMWPE +
0.5 wt.% 1CuO/1MBT; (b) UHMWPE + 1 wt.% 1CuO/1MBT; (c) UHMWPE + 2 wt.% 1CuO/1MBT;
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Figure 9 shows that on the worn surface of the UHMWPE nanocomposites, as well
as in the polymer matrix, grooves along the friction direction and elongated ribbon-like
chips can be seen. This is due to the high plasticity of the matrix due to micro-cutting and
micro-ploughing actions, which are the main causes of abrasive wear [46,47]. However,
the surfaces of the UHMWPE nanocomposites after abrasive wear are different from each
other, depending on the mass content of the fillers. It is observed that as the filler content
increases from 0.5 to 2 wt.% in UHMWPE, the wear reduces, and the groove depth and the
number of elongated ribbons on the worn surface decreases. This tendency is especially
evident in composites at a ratio of 2:1. The surfaces of UHMWPE + 1 wt.% 2CuO/1MBT
and UHMWPE + 1 wt.% 2CuO/1MBT composites are the smoothest, contributing to their
minimal abrasive wear.

Figure 10 shows high-magnification SEM images of UHMWPE nanocomposites at
1 wt.% filler loading.
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Figure 10 shows that in the nanocomposite at a ratio of 1:1, a larger amount of MBT
fillers is observed on the worn surface compared to at a ratio of 2:1. At the same time,
nano-CuO particles cannot be seen on worn surfaces. The coefficient of friction of pure
UHMWPE was lower than that of composites for abrasive wear in papers [46,47]. In this
work, the coefficient of friction value of the initial polymer is higher in abrasive wear
compared to UHMWPE nanocomposites with 1–2 wt.% CuO/MBT loading. The fillers
accumulate on the worn surface and produce a solid lubricant effect. Consequently, they
demonstrate the formation of a lubricating film on the friction surface, which reduces the
coefficient of friction and abrasive wear. Thus, the optimal amount of CuO/MBT is 1 wt.%
at a ratio of 2:1, and less or more CuO/MBT does not promote the formation of a protective
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surface film and, at the same time, increases the plastic deformation of UHMWPE, thereby
increasing the coefficient of friction.

4. Conclusions

The tribological properties of UHMWPE nanocomposites with CuO/MBT fillers at
different ratios of 1:1 and 2:1 were investigated. The studies showed that the compressive
stress of UHMWPE nanocomposites increased by 23–35% and the Shore D hardness in-
creased by 5–6%. Structural studies using SEM showed that when CuO/MBT is added
to UHMWPE, spherulites are formed in the supramolecular structure. Tribological tests
showed improved wear resistance in all nanocomposites compared to the polymer matrix.
The best results were obtained in the UHMWPE nanocomposite with 1 wt.% 1CuO/1MBT
and 2 wt.% 2CuO/1MBT, which is 2.9–3.2 times higher than the pure polymer. The re-
sults for abrasive wear show that the best results are obtained with 1 wt.% CuO/MBT
in UHMWPE. When comparing the composites relative to each other, it was found that
the resistance to abrasive wear is higher in UHMWPE nanocomposites with a CuO/MBT
ratio of 2:1. Thus, UHMWPE + 1 wt.% 2CuO/1MBT is characterized by high resistance
to abrasive wear, which is 34% lower than that of UHMWPE + 1 wt.% 1CuO/1MBT. It is
revealed that the surface roughness of UHMWPE nanocomposites increases with increasing
filler content and decreases in composites after friction tests. Studies of the worn surfaces
of UHMWPE nanocomposites have shown the formation of secondary structures in the
form of tribofilms consisting of filler particles and polymer. Such tribofilms on the friction
surface increase the wear resistance of the material by localizing the frictional loads on
themselves. Thus, from the above studies, UHMWPE + 2CuO/1MBT with a filler content
of 1–2 wt.% has the best tribological properties. The developed materials, due to improved
mechanical and tribological properties, can be used as parts in friction units of machines
and equipment, as well as protective coatings and linings.
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