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Abstract: We examine some of the consequences of the Exochronous (timeless) metric and the associ-
ated ΣGR cosmological model for the formation of galaxies, and, in particular, their characteristic
rotation curves. We show how the cumulative curvature from the multiple spatial hypersurfaces in
this model leads to a modified version of the Poisson equation, in which the gravitational potential
is computed over 4D space. Using this new form of the Poisson equation, we derive an analytic
expression for gravitational potential as a function of radial distance for a uniform gas cloud un-
dergoing gravitational collapse. We show that this results in a radial velocity profile that provides
an excellent fit with commonly observed galaxy rotation curves, and hence fully accounts for the
effects previously ascribed to dark matter. An expression can be derived for the equivalent matter
density profile corresponding to the ΣGR gravitational potential, from which it is evident that this
is very similar in form to the well-known Navarro–Frenk–White profile. As a further illustration
of the consequences of adopting the Exochronous metric, we show how the principle can readily
be incorporated into particle-mesh N-body simulations of large-scale structure evolution, using
a relaxation solver for the solution to the Poisson equation and the evolution of the gravitational
potential. Examples of the use of this simulation model are shown for the following cases: (a) the
initial evolution of a large-scale structure, and (b) galaxy formation from a gravitationally collapsing
gas cloud. In both cases, it is possible to directly visualise the build-up of the gravitational potential
in 3D space as the simulation evolves and note how this corresponds to what is currently assumed to
be dark matter.

Keywords: dark matter; galaxy rotation curves; NFW profile; gravitational potential

1. Introduction

The so-called ΛCDM ‘Concordance Model’ of cosmology is currently our best attempt
to describe the origin, evolution, and dynamics of the universe. (See [1] for an overview).
There is considerable prima facie evidence to support the main constituents of this model,
namely ‘dark energy’ in the form of a cosmological constant (Λ), and cold non-baryonic
‘dark matter’. However, this model is not without problems. Indeed, the continuing
inability of the scientific community to identify the origins of dark energy and dark matter
arguably constitute the two biggest unresolved questions in physics today.

1.1. Dark Matter

The history of dark matter dates back to 1933, when its existence was inferred by
Zwicky from the dynamics of galaxy clusters (see [2], for example). Since then, evidence
for the pervasive presence of dark matter has become overwhelming. Detailed accounts
of the history of dark matter are provided in [3,4]. One of the most compelling pieces
of evidence for dark matter comes from observations of galaxy clusters. These massive
structures are made up of hundreds or even thousands of galaxies, and are held together by
gravity. When the masses of these clusters are measured using the motions of their galaxies,
one finds that there is not enough visible matter to account for the observed motions. This
suggests that there must be some additional, invisible, mass present—the so-called dark
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matter. Another piece of evidence comes from the cosmic microwave background radiation
(CMB), which is the afterglow of the Big Bang. The CMB is almost perfectly uniform,
but there are tiny fluctuations in temperature that reveal the distribution of matter in the
early universe. These fluctuations can only be easily explained if there is a large amount
of dark matter present. There are many other lines of evidence that support the existence
of dark matter, including observations of galaxy rotation curves, gravitational lensing,
and large-scale structure formation. All of these observations suggest that there is a large
amount of invisible mass in the universe that interacts only through gravity. One final
argument for the existence of dark matter is provided by an analysis of the total energy
manifest of the universe. An analysis of the most recent Planck dataset [5] gave a value for
Ωm = 0.315, with a spatial curvature of zero, implying that Ωtot = 1 and that ΩΛ = 0.69.
However, astronomical observations are only able to identify sufficient baryonic matter
to account for Ωb = 0.045, which implies that dark matter is required to contribute the
balance, such that ΩDM = 0.26.

1.2. Galaxy Rotation Curves

There exist many references in the published literature to the phenomenon of anoma-
lous galactic rotation curves, and the implications for the existence of dark matter. (See [6],
for example, for a pedagogical overview.) The issue can be summarised reasonably suc-
cinctly: the observed velocities of stars orbiting in galaxies, instead of falling off in propor-
tion to 1/

√
R (where R is the radial distance of the star from the galactic centre), as might

be expected with a conventional Keplerian model in Newtonian gravity, appear to remain
virtually constant and extend out to distances several times greater than the radius of the
galaxy’s luminous core. This phenomenon appears to be ubiquitous to all observable galax-
ies. Figure 1 illustrates a typical collection of galaxy rotation curves, using data from [7].
Although various theories have been put forward to explain these anomalous rotation
curves, including MOND [8] and other modified gravity theories such as the metric-skew-
tensor-gravity (MSTG) theory described in [9], the currently favoured explanation is that
of non-baryonic dark matter (NBDM). Not only does this solution provide a good fit with
observation, but it is also consistent with the behaviour of other large-scale cosmological
phenomena, such as galaxy clustering. A detailed comparison of the respective merits of
the NBDM and MOND approaches to explaining galaxy rotation curves is provided in [10].
An even more in-depth review of MOND and several competing models is presented
in [11], which also discusses the various predictions made by each model and describes the
tests that any alternative model needs to pass in order to be considered a viable theory.

The effect of including a dark matter halo as one of the components of the mass
distribution in a typical galaxy is depicted in the plots of Figure 2. This shows that the
contributions to the galaxy’s gravitational potential arising from the galaxy’s central bulge
and extended disk give rise to a potential that falls off with increasing distance from
the galaxy’s centre (dashed orange line). The addition of a dark matter halo results in a
virtually flat rotation curve extending out to the visible limits of the galaxy and beyond
(solid blue line).
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Figure 1. Galaxy rotation curves from observations of 20 galaxies reported in [7].

Figure 2. Galaxy rotation curves. The solid blue line shows the flat galaxy rotation curve resulting
from the potentials contributed by baryonic matter in the galaxy core and disk and the dark matter in
the galaxy’s halo. The dashed orange line is the rotation curve that would be observed in the absence
of dark matter.
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1.3. N-Body Simulations

Observational data are not the only evidence for the presence of dark matter in galactic
halos. Results from numerous N-body simulations suggest that dark matter aggregates into
halos with a characteristic density profile, the Navarro–Frenk–White (NFW) profile [12],
as illustrated in Figure 3.

Figure 3. NFW density profile.

Although an NBDM halo exhibiting an NFW density profile is found to be in good
agreement with astronomical observations, it remains unclear how this matter distribution
arises. A detailed analysis of this problem is provided in [13], which examines the various
possible mechanisms for structure evolution within dark matter halos, including the forma-
tion of galaxies. The authors note that (as of 2011) numerical simulations have yet to be
able to model the formation of a pure disk within a cold dark matter halo, and speculate
that this could reflect problem with the standard cosmological paradigm.

In this paper, our objective is to describe an analytical model that is able to accurately
account for the observed galaxy rotation curves. In Section 2, we summarise the main
elements of the ΣGR paradigm, derived from the Exochronous metric described in [14].
Section 3 derives an equation for the gravitational profile generated by the progressive col-
lapse of a primordial gas cloud to form a galaxy in the context of ΣGR gravity. In Section 4,
we apply the new rotation curve formula to the observed rotation curves from a number of
galaxies to assess the quality of their fits. Finally, in Section 6, we review the implications
of this model in terms of the search for dark matter.

2. The Exochronous Metric

We now examine how a universe based on the Exochronous metric described in [14]
can give rise to behaviour that mimics the effects of dark matter, including extended
flat galaxy rotation curves, without there being any actual dark matter present. The Ex-
ochronous metric replaces the familiar time dimension found in the FLRW metric with
a hyperspatial ordering dimension, similar in principle to the concept of a configuration
superspace in [15]. This superspace can be thought of as containing multiple foliations of
three-spaces, each representing successive configurations of matter and/or quantum fields,
as depicted in Figure 4.
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Figure 4. Metric foliations.

The key feature of this configuration superspace, in contrast to the spacetime of GR,
is that it contains the cumulative histories of the metric. To illustrate this concept using a
visual metaphor, consider the bending of spacetime due to a matter field. With the notion
of a time dimension in standard GR spacetime, this curvature will evolve over time as the
configuration of the matter field changes, and all traces of its past configuration will be
erased (ignoring for now the concept of gravitational waves). This is illustrated by the
successive snapshots in Figure 5a.

Contrast this picture with the one illustrated in Figure 5b, where the time dimension is
replaced by the ordering dimension in configuration superspace, w. Now, we see that the
curvature of the metric induced by the evolving matter field leaves a permanent imprint
on the three-space slice. The cumulative effect is that of an aggregation of successive metric
deformations, all of which contribute to the gravitational mass associated with the matter
field that originally gave rise to this deformation.

If we now project the 4D configuration space onto conventional 3D space, we can see
that, in the case of a matter field that is shrinking in size, the historic effects of the field on
the fabric of space extend well beyond the present-day confines of the field, as illustrated
in Figure 5c.

The implication of this reinterpretation of spacetime is that the gravitational potential
ϕ arising from a body of matter (or indeed energy) is dependent on the sum of the matter
density ρ over each metric foliation, w:

ϕ(x, w) ∝
n

∑
w=1

ρ(x) (1)

This sum-over-foliations feature is the reason why we have termed this the ΣGR model.
In principle, there is no reason why this model should not apply irrespective of the scale of
the matter fields involved. In Section 3, we examine the application of the ΣGR model on
large scales: the evolution of galaxies.
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(c)
Figure 5. The Exochronous metric. (a) Standard spacetime. (b) Exochronous superspace. (c) Super-
space projection onto 3D space.

3. The Galaxy Halo Gravitational Potential Profile
3.1. The Modified Poisson Equation

The Lagrangian density for Newtonian gravity is given by

L(x, t) = −ρ(x, t)Φ(x, t)− 1
8πG

(∇Φ(x, t))2 (2)

Varying the Lagrangian with respect to x, t gives

δL(x, t) = −ρ(x, t)δΦ(x, t)− 2
8πG

(∇Φ(x, t)) · (∇δΦ(x, t)) (3)

from which we obtain Gauss’ law:

ρ(x, t) =
1

4πG
∇ · ∇Φ(x, t) (4)
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which in turn gives us Poisson’s equation for gravity:

∇2Φ(x, t) = 4πGρ(x, t) (5)

So, in order to calculate the potential arising from a matter distribution that extends
over the three spatial dimensions and the hyperspatial dimension of the Exochronous
metric, we need to perform the double integral, incorporating Equation (1):

Φ(r, w) = −4πG
r

∫ r

0

∫ w

0
r′2ρ(r′, w′)dw′dr′ (6)

where w denotes the foliation index in Exochronous hyperspace.

3.2. Calculating the Galaxy’s Gravitational Potential Profile

We now construct a ‘toy model’ to enable us to calculate the gravitational potential
generated by a typical galaxy during its initial formation and subsequent evolution. Con-
sider a spherical gas cloud of initial radius R0 and initial top-hat density ρ0 as depicted
in Figure 6. Over time, this cloud will progressively collapse under its own gravitational
attraction, with an increasing density given by

ρ(w) = ρ0

(
R0

r(w)

)3
(7)

Note that in the subsequent analysis we are assuming that this density relationship
will apply not only to the initial stage of galaxy formation during virialization, but also
to the subsequent gravitational contraction of the galaxy in which its size is assumed to
evolve as the inverse of the cosmological scale factor.

dr

0

RC

r

R0

Figure 6. Collapsing gas cloud galaxy model. The galaxy starts with an initial radius R0 and
density ρ0, and collapses down under gravity to a final core radius, Rc, depicted by the yellow circle.
The dashed blue circles depict a spherical shell of gas at radius r from the galactic centre, with a
thickness dr.

Recalling from Equation (6) that in Exochronous superspace, the gravitational effects
of a body of matter have to be summed over all metric foliations, then for a spherical shell
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of gas of thickness dr and at a radius r from the centre of the proto-galaxy we need to
calculate the density integral over the w hyperspatial dimension. Thus,

Φshell(R, r, w) = −4πG
R

r2
∫ w2

w1
ρ(r′, w′)dw′dr′ (8)

For ease of analysis, and in order to make the model independent of any specific
timescale, we make two simplifying assumptions:

i The timescale for the initial contraction of the gas cloud to the point where the gas is
largely virialized is small in comparison with the time between this point and the
present day, and can therefore be neglected in this analysis.

ii The rate of subsequent galaxy contraction (post-virialization) under gravity is linear,
such that dr/dw = k, where k is a constant velocity.

Then, using Equation (7), Equation (8) becomes

Φshell(R, r) = −
4πGρ0R3

0
Rk

r2
∫ R0

r

1
r′3

dr′ (9)

where R0 is the initial radius of the proto-galaxy gas cloud. Evaluating Equation (9) gives
an expression for the integral of the gravitational potential due to the shell as a function of
radial distance R from the galactic centre:

Φshell(R, r) = −
4πGρ0R3

0
2kR

r2
[
− 1

r′2

]R0

r

= −
2πGρ0R3

0r2

kR

(
1
r2 − 1

R2
0

)
(10)

Next, we integrate again to give the total potential due to the galaxy halo that lies
within a sphere of radius R, but beyond the radius of the visible core Rc:

Φhalo(R) = −
2πGρ0R3

0
kR

∫ R

Rc

(
1 − r2

R2
0

)
dr

= −
2πGρ0R3

0
kR

[
r

(
1 − r2

3R2
0

)]R

Rc

= −
2πGρ0R3

0
kR

[
R

(
1 − R2

3R2
0

)
− Rc

(
1 − R2

c

3R2
0

)]
(11)

We need to add the gravitational potential due to the galaxy’s baryonic core to
Equation (11) in order to calculate the total potential at a radial distance R:

Φ(R) = Φhalo + Φcore

In this simple model, we assume that the density ρcore within the core radius Rc is
constant, given by

ρcore =
ρ0R3

0
2k

[
1

R2
c
− 1

R2
0

]
(12)
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Hence, the gravitational potential due to the galaxy core becomes

Φcore(R) =



2πGρ0R3
0R3

3kR

[
1

R2
c
− 1

R2
0

]
for R < Rc

2πGρ0R3
0

kR

[
Rc

(
1 − R2

c

3R2
0

)]
for R ≥ Rc

(13)

Adding the potential from the galaxy core (Equation (13)) to the potential due to the
galaxy halo (Equation (11)) gives us the total potential Φtot within a sphere of radius R.
This is plotted as a function of radial distance in Figure 7, for a range of galaxy core radii,
corresponding to successive stages in the galaxy’s gravitational collapse. (Note that for the
purposes of this exercise, the simplest possible relationship between dr and dw has been
assumed, i.e., k = dr/dw = 1).

Figure 7. Evolution of the ΣGR potential over a range of galaxy core radii (Rc) as a function of the
fraction of initial radius (r/R0). The dashed lines plot the gravitational potential due solely to the
galaxy core. The solid curves show the total potential, including the galaxy halo.

3.3. Effective Density Profile

The foregoing derivation of the dark matter gravitational potential profile and resultant
galaxy rotation curve was based on the 4D solution to the Poisson equation. However, we
can use the expression for the gravitational potential due to a matter shell in Equation (10)
to derive an expression for what might be termed the ‘effective density’—in other words,
the baryonic matter density that would be required to give rise to this potential. We start
with the Poisson equation for gravity—Equation (5)—which for a spherically symmetric
source with constant density ρ = ρeff = const., with Φ = Φ(r) (only r-dependence), can be
expressed in spherical coordinates as

4πGρeff =
1
r2

∂

∂r

(
r2 ∂Φ(r)

∂r

)
(14)
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where ρeff is the effective matter density. Rearranging this equation and then integrating
both sides gives

∂

(
r2 ∂Φ

∂r

)
= 4πGρeffr2∂ r

r2 ∂Φ
∂r

=
4πGρeffr3

3

∂Φ =
4πGρeffr

3
∂r

Solving this differential equation, we obtain

Φ =
2πGρeffr2

3
(15)

Finally, equating this to the formula for the potential Φshell(R) from Equation 10 gives
an expression for the shell effective density as a function of the radial distance R from the
galactic centre:

ρeff(R) =
3ρ0R0

k

(
R2

0
R2 − 1

)
(16)

This density profile is plotted in Figure 8, together with the NFW profile discussed in
Section 1.3. From this, it is evident that the two density profiles are very similar over much
of the radial distance range, with the ΣGR density profile diverging as the radial distance
approaches the inherent cut-off point when r = R0, whereas the NFW profile extends to
infinity. Note the following:

i In practice, it is often useful to take the edge of the NFW halo to be the virial radius,
Rvir, which is related to the ‘concentration parameter’, c, and scale radius using
Rvir = cRs, where Rvir is the radius within which the average enclosed density is
200× the cosmic critical density in standard cosmology.

ii In plotting the density profile of Figure 8, we assumed that k = 1. In practice,
assuming a linear relationship between dw and dr, then k can be incorporated into
ρ0 as the two parameters are degenerate.

Figure 8. Comparison of the ΣGR effective density profile with the NFW profile.
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We can extend this treatment by considering the ‘effective mass’ due to the galaxy
halo. Integrating the effective density, ρeff, from Equation (16) over the whole spherical
volume of the halo from Rc to R0, we obtain

meff =
3ρ0R0

k

∫ R0

Rc

4πr2

3

(
R2

0
r2 − 1

)
dr (17)

=
4πρ0R0

k

[
r
(

R2
0 −

r2

3

)]R0

Rc

=
4πρ0R0

k

(
2R3

0
3

− R2
0Rc −

R3
c

3

)
(18)

We can simplify Equation (18) by replacing Rc with the concentration factor defined
as c ≡ Rc/R0, giving

meff =
4πρ0R4

0
k

(
2 − 3c − c3

3

)
(19)

This can be compared to the mass of the galaxy’s baryonic core, given by

mcore =
4πρ0R4

0
k

(
c − c3

)
(20)

to give an expression for the dark matter to baryon ratio in the galaxy:

mdm
mbary

=

(
2 − 3c − c3

3(c − c3)

)
(21)

We shall return to this measure at the end of Section 4.

3.4. Rotation Curve

We can use Equation (17) to calculate the cumulative effective mass associated with the
galaxy halo, i.e., the equivalent point mass located at the galaxy centre. This is illustrated
in Figure 9.

Figure 9. Cumulative effective halo mass as a function of radial distance from centre of galaxy.

Then we can use meff to calculate the gravitational potential Φ(r) and hence the orbital
velocity using v2/r = ∇Φ. The resulting rotation curve for our toy model galaxy is shown
in Figure 10, together with the rotation curve that would result from a purely baryonic core.
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Figure 10. Galaxy rotation curves.

4. Fitting to Observations

The overall shape of the velocity curve in Figure 10 is only dependent on the density–
time function. The scale of the curve, in terms of the radial extent and the range of orbital
velocities, is determined solely by three parameters: the initial radius of the gas cloud (R0),
the initial density (ρ0), and the radius of the luminous galaxy core (Rc). Using these three
parameters, we can now fit the ΣGR model rotation curve to the observed galactic rotation
curves for a sample of galaxies.

For this analysis, we chose to use the sample of galaxies in the Ursa Major cluster
provided in [16]. Within this sample, we selected galaxies that meet the criteria of having a
minimum of 15 data points spread evenly over the radial distance range, and which also
have at least 3 data points within the galactic core region. Figure 11 shows the results of
fitting the ΣGR rotation curve model to four of these galaxies.

To explore the relationship between dark matter halo mass and galaxy core baryonic
mass, we can take the best fit values for the R0 and Rc parameters, as listed in the boxes in
Figure 11, and use them to calculate the concentration parameter, c, for each of the galaxies
in the sample. We can then apply these values to Equation (21) to calculate the galaxy’s
dark matter to baryon ratio. Note that this ratio is independent of the values of k and ρ0
used in the fitting exercise. The results are summarised in Table 1.

Table 1. Concentration factor, c, and dark matter/baryon ratio for sample galaxies. Also shown are
the 1σ standard deviations for the fitted R0 and Rc parameters and the R2 goodness-of-fit score for
each curve.

Galaxy R0 1σR0 Rc 1σRc R2 Fit c DM/Baryon

N3877 21.7 1.71 2.50 0.01 0.999 0.12 4.8
N3917 33.6 9.54 3.30 0.11 0.996 0.10 5.8
N4217 19.6 0.76 2.24 0.05 0.996 0.11 4.9
N4100 18.6 0.51 2.97 0.14 0.973 0.16 3.2

Mean 0.12 5.4



Galaxies 2024, 12, 21 13 of 18

Figure 11. Rotation curves for selected galaxies in the Ursa Major cluster. The figures for ρ0, R0, and
Rc in the boxes are the best fit parameters for the ΣGR model, and are also summarised in Table 1.

We can compare this ratio with the equivalent results from the most recent Planck
CMB dataset [5], which gives estimates for Ωbh2 and Ωmh2 as 0.0224 and 0.143, respectively,
from which we can calculate

Ωdm
Ωb

=
(Ωmh2 − Ωbh2)

Ωbh2 = 5.39 (22)

The results from the new ΣGR dark matter halo profile formula would therefore appear
to be in close agreement with the values previously determined from the Planck data.

5. N-Body Simulation

In addition to validating the ΣGR density profile by fitting to observational galaxy
rotation curve data, we can in principle also use the output of N-body simulations as
another means of verifying the predictions from this model. However, no existing N-body
code currently supports the functionality required to emulate the key feature of the ΣGR
model: the ability to solve the Poisson equation in 4D by accumulating the gravitational
potential over the course of the simulation run. We therefore took the decision to develop
our own simple simulation code to implement the core ΣGR functionality as a proof-of-
concept demonstrator.

The decision was made to design the simulation code to be GPU-based. The advantage
of this approach is that it becomes possible to run modestly sized simulations extremely fast
on relatively inexpensive proprietary hardware; in this case, we used an Nvidia Geforce
graphics card. A side benefit of using GPU-based hardware for the simulation is that it
can generate on-the-fly video rendering of the simulation output, which greatly simplifies
the task of visualising the evolution of a structure within the simulation box. The main
features of our simulation code are as follows:

• GUI and control functionality written in C++.
• CUDA C used for the N-body compute kernels.
• The use of a mesh grid for storing (and displaying) the gravitational potential.
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• Progressive relaxation solver used for solving the Poisson equation.
• Initial conditions can be generated using Zel’dovich approximation.
• The ability to configure initial overdensity regions, for example when simulating

galaxy formation from a gas cloud.
• On-the-fly calculation and display of the following:

– Matter power spectrum.
– Velocity curves around a central mass.

• The ability to display gravitational potential as a contour map using the z-axis of the
mesh grid.

The main differences between our implementation and conventional N-body simula-
tion codes are as follows:

• The hyperspatial foliation index is used in place of the scale factor as the ‘time’ coordi-
nate in the simulation.

• Particle accelerations are determined solely by the gravitational potential gradients
from the surrounding mesh nodes, and particle–particle interactions are not calculated.

• The Poisson equation does not use any form of FFT solver to calculate long-range
potential, and relies exclusively on a relaxation solver.

• The simulation does not incorporate the viscous drag effect that would normally result
from implementing the Hubble flow in a co-moving reference frame.

• Gravitational forces are scale-invariant and do not evolve as the simulation progresses.
• Only baryonic matter is used in the simulation (ignoring baryonic particle–particle

interactions involving SPH) and no dark matter particles are present.

But arguably the key feature that distinguishes this simulation from others is the way
in which it implements the cumulative gravitational curvature inherent in the ΣGR model.
The relevant line of code from the simulation is

Φn = Φn−1 + 4πGρn/r + (Φ̄ − Φn−1)τ (23)

where Φn is the potential of a particular mesh node at time-step n, Φn−1 is the potential
at the preceding time-step, ρn is the matter density at the node location (calculated using
the CiC methodology), r = 1 is the mesh grid cell size, Φ̄ is the mean potential arising
from the six nodes surrounding the node at the centre of the calculation, and τ is the
potential diffusion period, which by determining the speed at which gravitational potential
is transmitted across the mesh grid, effectively sets the distance scale of the simulation.
Thus, it can be seen that, under this model, the total gravitational potential tracked by the
simulation increases without limit over the duration of the simulation. It is this potential,
represented by the values at the mesh grid nodes, that is the analog of the Einstein curvature
tensor, Gµν, but is also what gives rise to the effects that would previously have been
ascribed to dark matter in a conventional simulation.

5.1. Large-Scale Structure Formation

We ran the N-body simulation code for a range of simulation box sizes and particle
counts in order to verify that the ΣGR model, with an evolving gravitational potential
as defined in Equation (23), is capable of generating the range of large-scale structures
observed in conventional simulation models without the need for dark matter to be present.
Figure 12 shows a snapshot taken from a simulation carried out using a mesh size of
1283 and 107 matter particles. The initial conditions for this simulation were generated by
offsetting the particles from their initial positions on a Cartesian grid using the Zel’dovich
approximation [17]. The initial matter power spectrum was generated by the CAMB [18]
Boltzman solver, with a starting redshift of z = 70. This image clearly illustrates the range
of large-scale features encountered in standard simulations, including filaments, platelets,
and voids.
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250 Mpc/h

Figure 12. Snapshot from N-body simulation, showing typical “Cosmic web” structure, including
filaments, clusters, and voids.

The simulation code has the ability to display the gravitational potential corresponding
to a 2D slice as a contour map through a simulation snapshot, using the z-axis to depict the
field strength. This is illustrated in Figure 13, which clearly shows the peaks corresponding
to clusters of matter, and the extended gravitational field that takes the place of dark matter.

Figure 13. A contour plot of the gravitational potential for a 2D slice though the simulation volume.
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5.2. Galaxy Rotation Curve

We also wished to ascertain whether the ΣGR simulation code could mimic the effects
of dark matter on galactic scales by simulating the gravitational potential arising from
the collapse of a primordial gas cloud, as described in Section 3.2. This was achieved by
imposing a spherical top-hat matter overdensity on the initial particle distribution in the
simulation, then allowing the simulation to run. The expected behaviour was observed: the
matter particles collapsed into the centre of the matter overdensity and their gravitational
potential energy was converted into kinetic energy until the ensemble was fully virialized.
The visualisation features of the simulation code allow various features of the resultant
‘galaxy’ to be examined, as illustrated in Figure 14.

(a) (b)

(c)

R [kpc]

v [km/s]

50

200

0

(d)

Figure 14. Galaxy formation. (a) Elliptical galaxy from collapsing gas cloud. (b) Gravitational
‘halo’ surrounding galaxy. (c) Three-dimensional gravitational potential. (d) Halo plus rotation
curve overlay.

In Figure 14a, we can see the virialized baryonic core of the elliptical galaxy. Figure 14b
shows the potential halo surrounding the baryonic core (which extends as far as the initial
matter overdensity). We can visualise the 3D gravitational potential surrounding the galaxy
by taking a 2D slice though the simulation grid and using the z-axis to represent the
gravitational field strength, as illustrated in Figure 14c. The simulation code is capable
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of calculating a range of aggregate particle statistics for each simulation snapshot. In
Figure 14d, we see a plot of particle velocity as a function of radial distance, over-plotted
on the 2D gravitational potential (with the galaxy core hidden), which exhibits the flattened
rotation curve that would previously have been ascribed to the presence of dark matter in
the galaxy halo.

6. Discussion

In Section 3, we show that it is possible to derive an analytical expression for the
gravitational potential profile surrounding a galaxy, based on a collapsing gas cloud model
in the context of the Exochronous metric and ΣGR gravity, and we show that this is very
similar to the potential associated with the well-known NFW profile. In Section 4, we
demonstrate that the rotational velocity curves generated using this gravitational field
profile can be accurately fitted to the observed rotation curves obtained from a sample of
spiral galaxies. From this curve fitting exercise it is evident that, in spite of the simplifying
assumptions made in respect of galaxy contraction rates and core density, the ΣGR model
is able to account very precisely and predictably for the observed flattened rotation curves.
Essentially, what we are seeing is the effects of a galactic halo composed of what might be
more accurately termed ‘Ghost Matter’—the legacy of layers of gravitationally warped 3D
hypersurfaces laid down over time by the primordial galactic gas cloud as it condenses
and contracts. It should be noted that the foregoing analysis only concentrates on a small
sample of spiral galaxies that have, presumably, followed the simple collapsing gas cloud
model used here. However, it is reasonable to expect that the same concept of a galactic
gravitational halo will still be applicable to other more complex galactic evolution models,
such as, for example, galaxies formed from the merger of two smaller galaxies. The key
point to emphasise from this exercise is that the resultant flattened galaxy rotation curves
result solely from the action of baryonic matter, with so-called dark matter playing no part
in the process.

We developed a simple N-body simulation code designed to reproduce the effects of a
cumulative gravitational potential on the evolution of large-scale structures, as described
in Section 5. We used this simulation to demonstrate that the ΣGR model can, at least
qualitatively, reproduce the effects previously ascribed to dark matter in conventional
simulation codes, in terms of observable large-scale features such as platelets, filaments,
and voids. We also used this simulation code to model the gravitational collapse of a
primordial gas cloud to form a galaxy, and showed that this results in the typical flattened
galaxy rotation curve encountered in real-world observations. Again, the main conclusion
from this exercise is that the ΣGR model can account for cosmological observations without
the need to invoke dark matter. It should, however, be noted that the collapsing gas cloud
model described in Section 3 and the N-body simulations reported in Section 5 are both
applicable to the epoch where z < 100 and hence have no bearing on the presence or
absence of dark matter in the universe prior to the epoch of recombination at z ≃ 1100 or
on the CMB power spectrum.
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