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Abstract: The rapid and accurate estimation of aboveground forest phytomass remains a challenging
research task. In general, methods for estimating phytomass fall mainly into the category of field
measurements performed by ground-based methods, but approaches based on remote sensing
and ecological modelling have been increasingly applied. The aim is to develop the scientific
and methodological framework for the remote sensing estimation of qualitative and quantitative
characteristics of forest stands, using the combination of surveys and machine learning models to
determine phytomass of forest stands and calculate the carbon balance. Even-aged stands of different
tree species growing in the forest steppe zone of the East European Plain were chosen as test objects.
We have applied the modernized methodological approaches to compare and integrate forest and tree
stand characteristics obtained by ground-based and UAV-based comprehensive surveys; additionally,
we developed computer vision models and methods for determining the same characteristics by
remote sensing methods. The key advantage of the proposed methodology for remote monitoring
and carbon balance control over existing analogues is the minimization of the amount of groundwork
and, consequently, the reduction inlabor costs without loss of information quality. Reliable data
on phytomass volumes will allow for operational control of the forest carbon storage, which is
essential for decision-making processes. This is important for the environmental monitoring of
forests and green spaces of various economic categories. The proposed methodology is necessary for
the monitoring and control of ecological–climatic and anthropogenic–technogenic transformations
in various landscapes. The development is useful for organizing the management of ecosystems,
environmental protection, and managing the recreational and economic resources of landscapes with
natural forests and forest plantations.

Keywords: forest phytocoenoses; forest landscapes; canopy layer; morphometric parameters of
trees; forest survey; phytomass; carbon stock; terrestrial environmental monitoring; remote sensing;
vegetation indices; state of vegetation; landscape bioindication; synergy of methodological methods
and approaches; machine/deep learning
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1. Introduction

Global climate change has recently emerged as a serious long-term economic and
environmental issue of universal concern [1,2]. Forest ecosystems play a significant role in
the global carbon cycle; this has been confirmed by numerous scientific studies in recent
decades [3–6].L. Chen et al. [7], C.I. Braga et al. [8], Y. Zhou et al. [9], A. Zielonka et al. [10],
and other authors concluded that forest ecosystems contain approximately 80% of terrestrial
carbon. It has been established that forest ecosystems play a significant role in reducing the
concentration of greenhouse gases and mitigating global climate change [11–17].

Taking into account intensive forest management [18–20], deterioration of meteorological–
climatic [21–24], and ecological [25–29] environmental parameters, the assessment of the
bioproductivity of tree stands and forests [30–34] seems to be an urgent scientific and
practical task. The long-term accumulation of stored carbon in forest ecosystems results in
a biospheric effect related to the absorption of greenhouse gases, counteracting changes
in the climate system of the planet [35,36]. Estimates of forest carbon stocks typically
identify five primary pools: aboveground phytomass, belowground phytomass, deadwood
(including standing and fallen dead wood), litter, and soil organic matter [3]. Aboveground
phytomass is the key indicator of ecosystem productivity, forming qualitative and quantita-
tive indicators of forest stands [37], as well as providingthe basis for the release of oxygen
and carbon sinks [38]. Furthermore, determining the amount of carbon in soil and forest
vegetation below ground is extremely difficult (and often impossible) when calculating
plantation carbon stocks using remote sensing. The problem also lies in the obvious short-
comings of existing methods for the environmental monitoring of phytocoenoses through
remote sensing.

The monitoring of the emissionand absorption of greenhouse gases by means of
ground-based and remote sensing methods is extremely relevant and widely used in sci-
entific and applied research [35]. Knowledge in the field of forest carbon accounting is
currently increasing. However, different methodological approaches [38–43] and compu-
tational models [44–48] have been found to produce inconsistent results, highlighting the
need for further methodological improvements.

This requires obtaining reliable information on the quantitative characteristics of forest
stands and calculating the amounts of live and dead phytomass. Reliable estimation of
phytomass in the context of climate change can provide a theoretical basis for the study
of carbon cycling in terrestrial ecosystems [17,49], which has a crucial role in the response
of forest ecosystems to greenhouse gas emissions [16,50]. The majority of authors [51–53]
believe that a reliable assessment of aboveground forest phytomass will enhance the
efficiency of management decisions in forest protection, conservation, and regeneration.

The most accurate method for estimating phytomass is in situ inventory with ground-
based forest inventory methods [54]. The main disadvantage of the ground-based moni-
toring is high labor intensity, as this type of work involves a significant number of field
surveys being conducted over an entire study area [55]. In addition, the problems with
ground-based monitoring are related to the remoteness of the number of study sites from
roads and settlements, the difficulty of moving across the study area, and often the inability
to reach the forest area. This is especially true for the Central Forest Steppe zone of the East
European Plain.

Rapid and accurate estimation of the aboveground forest phytomass remains a chal-
lenging research task [56,57]. In general, methods for estimating phytomass fall mainly
into the category of field measurements made by ground-based methods, but remote sens-
ing [58,59] and ecological modelling approaches have been increasingly applied [60,61].

It should be noted that remote sensing methods are of primary importance for over
70% of the Russian Federation's territory [62]. This is the optimal (and sometimes the
only) method of obtaining statistically reliable and current information about forests for
geographically remote and hard-to-reach areas [55].

Currently, satellite monitoring and assessment methods of forest states and structures
are widespread in Russia and are used to estimate carbon balance [63,64]. With proper
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attribution of natural (disturbance) and anthropogenic (degradation) losses [65], the re-
search has the potential to inform decision-making by governments across. It is well known
that management and organizational decisions in relation to the rationalization of forest
management, afforestation, the creation of plantings, and the environmental and economic
control of plantings of different target categories are not sufficiently substantiated. This
is observed in different administrative territories and geographical regions of the world.
Focusing on research material on this issue is characterized by relevance and has practical
benefits. Optical remote sensing images of Earth at various spatial, spectral, and temporal
resolutions are freely available and are used to assess forest stands at various scales. This is
reflected in the scientific works of many researchers [66–69]. Despite the obvious advan-
tages of obtaining spatial data from satellite systems, this method of assessing forest stand
phytomass has a significant disadvantage: the determination of forest tree stand character-
istics is performed by analyzing the canopy of stands, but the resolution of satellite images
does not provide detailed information. In addition, deadwood and understory vegetation
are not taken into account. Assessments of carbon sequestration in the plantations often
does not take into account the layering and structure of the forest stand. Carbon stock
calculations are often very fragmented and based on approximate calculations.

Therefore, it is necessary for spatial data acquisition sources (camera type used, spa-
tial resolution, survey age, etc.) to be enhanced. New methodologies and technologies
need to be developed and implemented for the objective accounting of the carbon sink,
allowing for the rapid estimation of phytomass in the forest stands, including the use of
artificial intelligence (AI) [56]. Lidar technology based on the collection and analysis of data
obtained using the laser scanning is widely used in the forestry sector [70]. Particularly,
it can be successfully applied to improve our understanding of the three-dimensional
structure of the forest environment [71]. It should be noted that there is practically lack of
data on carbon sequestration in the lower layers of the forest phytocoenoses (including
undergrowth and undergrowth) of the Central Forest Steppe of the East European Plain. In
this regard, modern data are required on the state and productivity of forest ecosystems
with differentiation according to different components of phytocoenoses.

Many researchers and scientists [72–77] have noted significant prospects for the au-
tomatic decoding of forest stands and analysis of forest ecosystems, including by laser
scanning methods [78,79]. Specific vertical structuresare successfully recognized by the
pattern of obtained dense point cloud and its shape using Lidars, including those based
on UAVs [80]. In our study we used a combination of Lidar, RGB, and hyperspectral
cameras. The effectiveness of the joint use of various types of sensors has been confirmed
by many authors [81–84]. Their use corresponded to the purpose, theme, and problems
of the work under consideration, as well as the idea of ensuring the synergy of advanced
methodological approaches and technical means. This was necessary in accordance with
the scientific idea and the specifics of our work.

Thus, the application of integrated ultra-high-resolution equipment during aerial
survey [85,86] significantly increases informative and expands functional capabilities in
phytomass assessment; it allows all silvicultural, bioecological, and tree stand characteristics
to be identified, enabling us to determine carbon sinks in forests. Remote sensing is an
extremely relevant and rapidly developing research area in the forestry industry. Remote
sensing methods are widely in demand for use in assessing and monitoring forest stands.

The aim of the work is to develop the scientific and methodological basis for remote
estimation of quantitative and qualitative characteristics of tree stands and ecosystems us-
ing colored light (RGB), Lidar, and hyperspectral surveys based on UAV and the presently
widely accessible machine learning models (artificial intelligence)to determine above-
ground phytomass of the forest stands and phytocoenoses.

Our proposed methodological approach for the remote ecological monitoring of the
productivity of aboveground phytomass of forest ecosystems based on UAVs will provide
more accurate and objective information about the state and structure of phytocoenoses.
This methodological approach makes it possible to determine the carbon stock in natural
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forest stands and plantings and to carry out an accounting of forest resources. Our approach
also allows us to monitor fire, environmental, and sanitary safety in forests.

2. Materials and Methods
2.1. Study Area

Considering the diversity of the forest vegetation in the Central Forest Steppe, this
study assessed forest stands growing in the forest steppe zone using the example of the
Suburban Forestry of the East European Plain (using the example of the Voronezh Region).
The objects of the research were selected based on similar phytocoenotic, ecological, and
physical–geographical conditions of the Central Forest Stepperegion. This ensured that the
sample was representative and that reliable results were obtained for the general population.
The location of the study sites is shown in Figure 1.
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Figure 1. Scheme of the study area location.

The research program included the following steps:

1. Establishing sampling plots (Figure 2) in even-aged stands of different tree species
composition and conducting the complete inventory on them with measurement of
tree coordinates, species identification, trunk height and diameter, crown diameter,
and tree state using ground-based inventory methods.

2. Performing aerial surveys using the RGB, hyperspectral, and Lidar imagery from
the UAVs to determine similar silvicultural and taxation characteristics using remote
sensing methods.

3. Generating training samples, designing computer vision models, and developing
methods for determining the forest tree stand characteristics to calculate the phy-
tomass of the forest stands using remote sensing methods.

4. Comparing and integrating forest and taxation parameters of the stands obtained
during ground-based inventories and parameters of the forest areas obtained using
the RGB, hyperspectral, and UAV-based Lidar surveys.

5. Application of the mathematical statistics and modelling methods to assess the
accuracy of the results obtained, to verify the model validity, and to verify the
developed algorithms.

6. Development of the methodology for remote sensing of aboveground phytomass of
forest stands for subsequent calculation of carbon stock in the forest area.
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Figure 2. Location of trial plots on the territory of suburban forestry (numbers indicate the num-
berssampling plots): (a) sampling of the sites location; (b) placement of trees on SP 10.

Fifteen sample plots (50 × 50 m) were established in the coniferous, deciduous, and
mixed forest stands located in different forest growth conditions with moderately moist
(fresh) types according to P.S. Pogrebnyak and in the different forest types according to
V.N. Sukachev classification [87]. We studied even-aged (conditionally even-aged) stands
growing in the following forest growth conditions: A2 (fresh pine forest), B2 (fresh pine–oak
forest), C2 (fresh pine forest with birch, aspen, and oak participation), C2D (fresh pine forest
with oak participation), D2 (fresh oak forest). The age of the forest stands was 80–100 years.
The tree stand characteristics of the studied stands are shown in Table 1.

Table 1. Species composition, tree stand characteristics, and forest growth conditions of the
sample plots.

No of
Sample Plot Location Composition of Tree

Species, % Age, Years DBH, cm H, m f Volume Stock,
m3 ha−1 FGC

1 Quarter 44;
site 26

70% Scots pine
30% English oak 90 35 27 0.6 266 C2

2 Quarter 51;
site 44

80% Scots pine
20% English oak 90 31 28 0.6 220 C2

3 Quarter 27;
site 14

90% English oak
10% Linden 90 30 26 0.6 250 C2D

4 Quarter 11;
site 25

80% English oak
20% English oak 90 28 24 0.6 210 D2

5 Quarter 6;
site 11 100% European birch 85 40 28 0.6 210 C2D

6 Quarter
110; site 13

90% European birch
10% Scots pine 75 22 23 0.7 190 A2

7 Quarter 9;
site 28

80% Scots pine
20% European birch 90 30 26 0.7 310 C2

8 Quarter 46;
site 10

80% Scots pine
20% English oak 90 32 28 0.8 350 B2

9 Quarter 48;
site 44

80% Scots pine
20% Scots pine 90 30 24 0.8 330 A2

10 Quarter 6;
site 3 100% Scots pine 90 28 25 0.7 320 A2
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Table 1. Cont.

No of
Sample Plot Location Composition of Tree

Species, % Age, Years DBH, cm H, m f Volume Stock,
m3 ha−1 FGC

11 Quarter 76;
site 21 100% Scots pine 90 30 26 0.6 290 A2

12 Quarter 78;
site 7 100% Scots pine 90 31 28 0.7 350 B2

13 Quarter 48;
site 79 100% Aspen 95 32 26 0.7 290 C2D

14 Quarter 8;
site 10 100% Aspen 100 30 26 0.6 230 C2D

15 Quarter 48;
site 17 100% Scots pine 95 32 28 0.7 350 B2

Note: H—mean height; DBH—mean diameter on breast height; f—density of tree placement in the PRP (corre-
sponds to the canopy density); FGC—forest growth conditions.

2.2. Ground-Based Forest Inventory

The full count was performed in all sample plots to determine tree species and the
coordinates of individual trees, trunk diameter, tree height, crown diameter, and tree health
state. Undergrowth, shrub layer, and the degree of coarse woody debris were identified
and recorded.

The fieldwork was conducted utilizing modern geodetic and forest inventory equip-
ment, including the SOUTH G2 GNSS receiver, Haglof Vertex Laser Geo altimeter. The
methods employed were in accordance with the prevailing norms and legal frameworks in
Russia [88–90].

Undergrowth and shrub layer were taken into account on the basis of the reforestation
rules [91] and the forest management guidelines [92]. Undergrowth density degree (dense—
over 8000 pcs. ha−1, medium—2–8000 pcs. ha−1, sparse—up to 2000 pcs. ha−1) and size
categories (1—up to 0.5 m; 2—0.6–1.5 m; 3—over 1.5 m) were determined and species
determination was performed. The shrub layer was estimated according to the following
criteria: density degree (dense—more than 5000 pcs. ha−1, medium—2–5000 pcs. ha−1,
sparse—less than 2000 pcs. ha−1), size (1—up to 1 m; 2—1–2 m; 3—more than 2 m), and
species affiliation [90].

2.3. Estimation of the Aboveground Phytomass and Its Fractions

The estimation of aboveground phytomass stocks and its fractions (stem, branches,
leaves) was conducted using allometric Equation (1) for each tree based on data on stem
diameter at 1.3 m and tree height [93]:

ln Pi = a0 + a1 ln H + a2 ln DBH, (1)

where Pi—phytomass stocks and its fractions (i; stem with bark, branches, needles/leaves),
kg dry weight; H—tree height, m; DBH—stem diameter at 1.3 m, cm; a0, a1 and a2—species-
specific coefficients of allometric equation.

To calculate the phytomass of pear (Pyrus communis L.), apple (Malus sylvestris L.),
and mountain (Sorbus aucuparia L.) ash, the equation for bird cherry (Prunus padus L.)
was used as the most closely related systematic category. The aboveground phytomass
of undergrowth and shrubs with the DBH less than 8 cm was calculated for each species
using their height according to allometric Equation (2) [94]:

Pag = a × Hb, (2)

where Pag—aboveground phytomass, kg dry weight; H—tree height, m; a and b—species-
specific coefficients of allometric equation.
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Statistical analysis was performed using STATISTICA-13 [95]. Pearson correlation (3)
and ANOVA analysis (4), as well as mathematical modelling techniques, were used [96].

The study employed regression analysis methods [97]. Parameter estimates for linear
models, as well as those reduced to linear form, were calculated using least squares, and
nonlinear least squares for all other cases. Student’s t-test was used to test the null hypoth-
esis of statistical significance for the estimated parameter values. Grouped data (by sample
area) were analyzed using both linear and nonlinear mixed-effects models. The accuracy
of linear mixed-effects models was assessed by conditional and marginal coefficients of
determination (R2) [98] (see Equation(5)). Pearson χ2-test of agreement [99] was used to
determine the consistency between the results obtained from the machine learning models
and the actual distribution series obtained during fieldwork (see Equation(6)).

The following criteria were used to assess the quality of the models:
Correlation coefficient:

R =
∑
(
xj − x

)
·
(
yj − y

)√
∑
(
xj − x

)
·
(
yj − y

)2
(3)

Reliability of differences:

t =
M1 − M2√
m2

1 +
√

m2
2

(4)

Coefficient of determination:

R2 = 1 −
∑
(
yj − yj

)
2

∑
(
yj − yj

)
2

(5)

Pearson agreement criterion:

χ2 = ∑
(
yj − yj

)
2

yj
(6)

where M—mean value, m—standard error; xi, yi—actual value; ŷi—predicted value;
ŷ—mean of actual values.

2.4. Flight and Survey Process

The data array was generated using the UAV payload (using combined equipment—
RGB, Lidar, hyperspectral camera, and GNSS receiver). The Lidar and hyperspectral
survey were performedfrom an unmanned aerial vehicle (UAV), Luftera LQ-5 (take-off
weight 9.5 kg); digital photography in visible spectrum was performed from an unmanned
aerial vehicle (UAV), Luftera LQ-4 (take-off weight 5.2 kg). The spatial resolution of the
orthophotomaps was 2–2.5 cm/pixel.

The flights were performed at two altitudes, 60–70 m and 120–130 m, with horizontal
speeds not exceeding 3 m/s and 6 m/s, respectively, to ensure sufficient overlap at the shoot-
ing interval of the 1 frame per second and to minimize blur. Hyperspectral imaging was
performed using a Cubert S185 hyperspectral camera. Each frame taken by this camera is a
combination of a panchromatic image in JPG format with a resolution of 1000 × 1000 pixels
and a geometrically coinciding hyperspectral data cube of 50 × 50 = 2500 spectra. The
spectral range is 450–950 nm; the number of spectral channels is 125.

2.5. Interpretation of the Tree Stand Characteristicsfrom High-Resolution Images

It should be noted that machine learning methods are not the primary focus of this
paper. Moreover, the advances of machine learning methods have achieved such progress
that they can be easily used in many practical problems. In this respect, the presented meth-
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ods are well-known and universal, but require careful parameter tweaking for application
for concrete forest plots.

For the neural network models, individual trees were labeled (tree species and its
crown contour) on the small portion of each of the forest plots on the RGB geotiff-image.
Data was prepared of the neural network classifier (bounding box rectangle were build)for
each of the tree partitioning contours and data augmentation was applied for each of the
images to improve robustness/generalizability. In particularsuch dataset was used to learn
the model that was used to determine the tree species.

The neural network classifies the species of the individual trees. The condition and
diameter of the crown were derived from this result. The computation of the hard-to-
define taxation parameters was based on the identified relationships between the stand
characteristics measured in the sample plots, the canopy digital model parameters, and the
spectral characteristics of the aerial images. Training samples were generated from above
mentioned labeled dataset and the YOLO neural network model was trained.

The characteristics of the forest stand were determined as follows:

• Tree canopy cover—by processing the RGB geotiffs;
• Tree height—by processing the Lidar imagery data;
• Precise tree location—by processing the Lidar imagery data;
• Tree species composition—from the RGB imagery using neural network models;
• Tree health state—with the hyperspectral data processing, based on the vegetation

indices (NDVI, EVI, CVI);
• Crown diameter—using the RGB data processing and Lidar imagery;
• Stem diameter—by indirect indicators, based on the relationships identified using

empirical relationships.

Traditional digital image processing techniques were used to separate trees from the
background. The Lidar imagery uses geometric methods to interpolate the ground surface,
namely by searching for the top of the forest canopy and then the height of the trees.
Based on the Lidar imagery, the density of undergrowth and undergrowth in the stands
was determined.

The complex of the calculation parameters includes the simplest indices NDVI, EVI,
and CVI (Equations (7)–(9)), which allowed us to assess the condition of the tree stands (to
identify the presence of dead or weakened trees).

NDVI =
B∼0.8−0.9 − B∼0.63−0.75

B∼0.8−0.9 + B∼0.63−0.75
(7)

EVI = 2.5 × (NIR − RED)

NIR + 6RED − 7.5BLUE + 1
(8)

CVI =
NIR

GREEN
× RED

CREEN
(9)

where B—intensity of spectral radiation in the corresponding bands (µm); NIR—reflection
in the near infrared region of the spectrum; RED—reflection in the red region of the
spectrum; BLUE—reflection in the blue region of the spectrum; GREEN—reflection in the
green region of the spectrum.

2.6. Remote Estimation of Aboveground Phytomass and Carbon Stocks

The main objective of the remote estimation methodology for aboveground phytomass
and carbon stocks was to significantly minimize ground surveys. The methodology is
based on a sequence of steps that include the implementation of automated methods for the
remote estimation of vegetation using UAVs, based on the application of machine learning
models (use of artificial intelligence).
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1. UAV-based determination using machine learning models:

• Study area’s coordinates, terrain features, and delineation boundaries for forest
inventory;

• “Direct” silvicultural and stand characteristics, such as composition, height,
crown diameter;

• Condition and degree of debris, especially deadwood, in the stands.

2. Determination of “indirect” silvicultural stand characteristics such as age, stem di-
ameter, canopy closure, and volume stock using reference materials and allometric
equations, based on “direct” silvicultural and stand characteristics values.

3. Determination of the density of the undergrowth and shrub layer based on UAVs
using the Lidar transect developed by the authors, as well as calculation of the
phytomass of subordinate layers based on the generated tabular model.

4. Calculation of the carbon stock in the aboveground part of the forest stands (living
and dead vegetation phytomass). Phytomass-to-carbon conversion factors were
used according to IPCC guidelines [99]: 0.51 for coniferous tree species and 0.48 for
broadleaved tree species.

3. Results

The methodological toolkit has been developed and a work algorithm has been defined
that allows us to conduct remote assessment of the quantitative and qualitative forest
characteristics with an accuracy that is comparable to that of traditional ground-based
methods. The basis of the work algorithm is the integrated use of the Lidar, hyperspectral,
and RGB survey materials using UAVs. This is necessary to obtain reliable information
about the amount of aboveground phytomass and to calculate carbon reserves in the
plantation by fraction. Information obtained online is extremely important for timely
management decisions, for planning reforestation, and for environmental protection work.

3.1. Development of Technical and Methodological Tools for Determination of the Main Tree Stand
Characteristics
3.1.1. State of Tree and Shrub Vegetation

Determination of tree health category is based on vegetation indices calculation. The
vegetation indices are constructed from hyperspectral data according to well-known for-
mulas, based on the entire spectrum. Figure 3 shows selected areas in the forest area for
the contrasting comparison and mapping of the proposed methodology. Dead trees are
marked in red (NDVI-0.051), while fully viable trees are marked in yellow (NDVI-0.694).

Life 2024, 14, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 3.Selected areas for comparison of calculated indicators in the coniferous forest stands. 

The point quantitative data of the vegetation indices reflecting the qualitative char-
acteristic of the vegetation condition in the selected areas are collected in Table 2. Higher 
index values correspond to denser and greener vegetation in the analyzed fragment. The 
plots with dead trees have lower index values (NDVI less than 0.15). Vegetation indices 
are characterized by the greatest accumulation of chlorophyll in the plants. Therefore, the 
higher this value, the better the sanitary condition of the planting and the phytocenoses 
formed by them. 

Table 2. Calculation of some indices for selected areas. 

Vegetation Index Indicator Value in the Red Area Indicator Value in the Yellow Area 
NDVI  0.0515 0.6944 
CVI 1.1382 2.9996 

 
Figure 4 shows the forest plot with trees of different health categories. The calculated 

NDVI layer is superimposed on the original image, whereby the presence of dead and 
viable trees in the area can be identified: yellow (tree stand, understorey, shrub layer) 
reflects viable vegetation, black reflects dense ground cover, and red reflects the reduced 
NDVI value and allows for the identification of dead trees.  

  
(a) (b) 

Figure 4.Fragment of images of trees with dead/lost foliage and healthy trees: (a) RGB photo; (b) 
superimposed NDVI calculation layer. 

Figure 3. Selected areas for comparison of calculated indicators in the coniferous forest stands.



Life 2024, 14, 632 10 of 29

The point quantitative data of the vegetation indices reflecting the qualitative char-
acteristic of the vegetation condition in the selected areas are collected in Table 2. Higher
index values correspond to denser and greener vegetation in the analyzed fragment. The
plots with dead trees have lower index values (NDVI less than 0.15). Vegetation indices
are characterized by the greatest accumulation of chlorophyll in the plants. Therefore, the
higher this value, the better the sanitary condition of the planting and the phytocenoses
formed by them.

Table 2. Calculation of some indices for selected areas.

Vegetation Index Indicator Value in the Red Area Indicator Value in the Yellow Area

NDVI 0.0515 0.6944
CVI 1.1382 2.9996

Figure 4 shows the forest plot with trees of different health categories. The calculated
NDVI layer is superimposed on the original image, whereby the presence of dead and
viable trees in the area can be identified: yellow (tree stand, understorey, shrub layer)
reflects viable vegetation, black reflects dense ground cover, and red reflects the reduced
NDVI value and allows for the identification of dead trees.
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3.1.2. Determining Tree Coordinates and Measurement of Stem Height and
Crown Diameter

The initial task of remote sensing data analysis (RGB complex, Lidar, and hyperspectral
imagery) is to determine the location (coordinates) of trees in order to determine the main
taxonomic characteristics of the tree stand.

The vegetation height matrices derived from the Lidar data are used for this pur-
pose(Figure 5). The square window of fixed size is created in the center of each matrix cell;
if the maximum of the window is reached at this point, the cell coordinates are declared
to be tree coordinates, i.e., the tree coordinates coincide with the coordinates of their tops.
Heights are then calculated at the derived points (Figure 6), and then the coordinates of the
points are deduced from the coordinates of the las-file.
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Tree Species Identification

Tree species identification was performed based on the computer vision process,
consisting of expert partitioning of the tree species composition (Figure 7), training samples,
and generating machine learning models based on convolutional neural networks on the
YOLO architecture. Training an object-detection model such as the YOLOv5 requires
a dataset containing object images and the coordinates of the bounding boxes of the
objects themselves.

The species composition of the forest stand was determined from RGB images using
machine learning models. The algorithm for decoding species composition using artificial
intelligence (based on neural networks) was conducted as follows:

1. Manual marking was completed—the operator carried out contour and analyti-
cal interpretation, as a result of which the species composition of the forest stand
was determined.

2. Integration of manual marking data and RGB images.
3. Formation of training samples using neural network analysis.
4. Testing and calibration of machine learning models created based on neural networks.
5. Hyperspectral data were used to clarify the species identity and correct the breed

composition.
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Determination of Crown Diameter

The tree crown diameter decoding process was based on the processing of point clouds
obtained during the Lidar imagery processing. Knowing the coordinates (centers) of the
trees, it is possible to determine both the heights and the crown diameters of individual
trees. Pre-processing is performed manually in specialized point cloud software (e.g., QGIS,
https://qgis.org/ru/site/ accessed on 8 May 2024) (Figure 8).
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Following training of the AI-based on the neural network method, crown diameters
were determined automatically.

Determination of Tree Height and Height of Crown Base

The process of determining tree heights was based on working with the Lidar point
clouds. Each point cloud file contains information about the coordinates of the points,
which allows us to determine the ground surface and the forest canopy; by subtracting one
from the other, one candeterminethe stand height in meters (Figure 9).

https://qgis.org/ru/site/
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Figure 9. Measurement of tree height (meters) from the Lidar data: (a) maximum tree height on SP 8;
(b) maximum tree height on SP 10.

Automated tree height estimation involves calculating ground and vegetation surfaces,
and then estimation of heights is performed by subtraction of the ground surface coordinate
from the vegetation surface.

3.1.3. Shrub Layer and Understory Phytomass Assessment

The shrub layer and the understory in the stand are not always fully accounted for in
carbon balance estimations [65,100–103]. However, the density and height of undergrowth
can have a significant impact on the carbon content of phytomass. To improve the accuracy
of determining the forest stand phytomass, the scale for accounting undergrowth and
undergrowth by remote sensing methods using hyperspectral and the Lidar survey data
was developed.

To calculate the amount of undergrowth using remote methods, a Lidar section was
created (Figure 10), covering an area of 50 × 1 m. Based on the obtained value from
Tables 3 and 4, the phytomass was calculated.

The scale was compiled on the basis of the experimental materials (field samples
obtained both in this study and in earlier studies), with the application of mathematical
modelling methods for interpolation and approximation of the results. The phytomass was
calculated considering categories of density and height (see Tables 3 and 4).

The Lidar transect was performed using the developed tools with the web interface
shown in Figure 10a. At least three Lidar transects should be made in the studied area
(Figure 10b) and then the average number of shrubs and understory should be determined.

The scientific novelty of working with hyperspectral cubes is their processing algo-
rithm. Clustering of spectra for each image is performed; here, 2500 spectra are grouped
into several clusters with the k-means clustering algorithm. The resulting median spectra
are compared with the spectra of reflected light from the plants, on the basis of which
they are combined into clusters. The spectra belonging to the clusters that clearly do not
correspond to the plant spectra are then excluded from further consideration, while the
remaining spectra are involved in computer vison methods. In partitioning mode, training
samples are generated from them. The example of the complex data processing is shown
below (Figure 11).
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Table 3. Reference values of the shrub phytomass in the stands growing in the fresh forest growth
conditions, kg ha−1 dry weight (range of variation/mean value).

Criteria
Density Degree, pcs. ha−1

Dense (More than 5000) Medium (2–5000) Sparce (Less than 2000)

Number, pcs.
transect−1 >25 11–25 1–10

Average height, m >2.0 1.1–2.0 <1.0 >2.0 1.1–2.0 <1.0 >2.0 1.1–2.0 <1.0
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Table 4. Reference values of the understory phytomass in the stands growing in the fresh forest
growth conditions, kg ha−1 dry weight (range of variation/mean value).

Criteria
Density Degree, pcs. ha−1

Dense (More than 8000) Medium (2–8000) Sparce (Less than 2000)

Number,
pcs. transect−1 > 40 11–39 1–10

Average height, m >1.5 0.6–1.5 <0.5 >1.5 0.6–1.5 <0.5 >1.5 0.6–1.5 <0.5

Understory
phytomass in

coniferous stands

5000–22,000
7500

500–9900
1900

100–900
450

1100–13,500
2500

90–6100
750

20–300
150

10–3950
550

5–1150
150

1–50
25

Understory
phytomass in

deciduous stands

3500–24,000
6000

380–5500
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800–18,000
2700

60–3500
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5–850
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Understory
phytomass in
mixed stands

3200–16,000
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Figure 11. Combining the RGB (a) and Lidar (b) images by common attributes.

The hyperspectral and Lidar devices provide separate categories of data to describe
forests at individual tree level. The hyperspectral imagery contains meaningful plant
reflectance characteristics or spectral features, while Lidar data enables the analysis of a
canopy’s structural properties. Combining these two data sources improves the quality of
the forest mapping (Figure 12).
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This requires different data collection methods, appropriate processing algorithms,
and classification and/or regression techniques. Remote sensing method integration
aims to generate integrated information based on data with different spatial and spectral
resolutions. These integrated data are more reliable and accurate than individual sources of
information. Consequently, their integration improves the quality of the work and provides
increased accuracy in calculating phytomass stock and estimating the carbon storage of the
forest stands.

3.2. Determination of Correlations between Stand Characteristics in Order to Indirectly Identify the
Deciphering Characteristics of the Forest Stand for Analytical Interpretation

Tree stem diameter was determined by indirect methods based on the empirical data
and developed regression equations. Crown diameter and tree height have a diagnostic
function and are in close correlation with the stem diameter at breast height. This makes
it possible to develop regression models to estimate various characteristics of individual
trees, which can then be used in aerial monitoring.

Preliminary correlation analysis of the data has shown that, for individual tree species,
there is a fairly close relationship between stem diameter at 1.3 m height and crown diameter
(R = 0.56 and 0.67 in coniferous and deciduous plantations, respectively) or tree height
(R = 0.71 and 0.68); the strength of the relationship with the height parameter was generally
higher than the corresponding relationship with crown diameter (Figures 13 and 14).
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Tree height and crown diameter are essential for remote forest monitoring since they
can be accurately determined from the RGB and Lidar imagery. Based on the results of the
multivariate regression analysis, models were developed to determine tree stem diameter
at 1.3 m using these most informative morphometric indicators of trees (see Equation(10)).
The results of the calculation of the equation coefficients are summarized in Table 5.

Y = a0 + a1 H + a2 Dcr (10)

where Y—stem diameter at breast height 1.3 m (cm); H—tree height, m; Dcr—average
crown diameter, m; a0, a1, and a2—regression coefficients.

Table 5. Linear regression equation constants (a0–a2) for calculating stem diameter of different
tree species.

Tree Species
Regression Coefficients

R R2 SE
a0 a1 a2

Scots pine (Pinus sylvestris L.) –2.7626 ± 0.1490 0.8739 ± 0.0123 2.2386 ± 0.0653 0.955 0.913 4.055
Oak (Quercus robur L.) 2.4860 ± 1.7332 1.0969 ± 0.0781 0.4070 ± 0.2163 0.634 0.402 9.039

Birch (Betula pendula L.) –3.8368 ± 0.3637 0.6860 ± 0.0247 2.2120 ± 0.1015 0.920 0.846 4.223
Aspen (Populus tremula L.) –3.6842 ± 0.4640 0.8152 ± 0.0626 1.9195 ± 0.2784 0.965 0.932 3.820

Species-specific coefficients are represented as an ± 95% confidence interval.

The calculated coefficient of determination (R2) in the considered options exceeded
0.84 and confirmed the agreement of the linear regression models with the experimental
data. The exception is oak (R2< 0.5), which requires an adjustment to the model used.

The results of the regression analysis improve the explanatory capacity of the models
by 30–40% when several of the most significant morphometric indicators are used for pre-
diction. Therefore, preference should be given to two- and multifactor models. Calculations
based on the developed allometric models provide the acceptable error in determining
stem diameter of almost all tree species (except for oak)—for aspen, pine, and birch, the
equations provide the most accurate estimates of the considered taxation characteristics
(Figure 15) and therefore could be applied in the analysis of the Lidar survey results.
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3.3. Validation of the Proposed Phytomass Estimation Toolkit

The next stage of the study comprised testing the toolkit developed to determine the
phytomass of the forest stands. The comparison was made between the results obtained
by interpretation of imagery and the results of the ground-based inventory of trees on the
sample plots.

The estimation of the phytomass by remote sensing was carried out using data on
species composition and stand health (based on the RGB and hyperspectral imagery),
stem diameter (derived from the allometric equations), and stand height (derived from the
Lidar imagery). Average data from Tables 4 and 5 were used to calculate understory and
shrub phytomass. Additionally, dead wood was taken into account, based on the RGB and
hyperspectral surveys.

The detailed data on the amount and fractional structure of phytomass obtained by
ground-based inventory of sampling plots are shown in Table 6.

Table 6. Phytomass stocks of the forest stands (age of 90–100 years) on the sample plots (SP)
in the fresh forest growth conditions of the Central Forest Steppe of the East European Plain
(kg ha−1 dry weight).

No of
SP

Tree Stand, Including
Shrub
Layer Understory Total

Phytomass
Stems Branches Needles/Leaves

Total
M ± SE Total M ± SE Total M ± SE Total

1 494 ± 21 248,800 80 ± 6 40,368 15 ± 0.8 7342 296,510 418 6078 303,006
2 404 ± 23 163,127 73 ± 7 29,467 13 ± 0.9 5091 197,686 549 1954 200,189
3 513 ± 29 203,294 90 ± 6 35,634 7 ± 0.3 2644 241,572 461 3025 245,059
4 493 ± 29 206,855 92 ± 6 38,447 7 ± 0.4 2757 248,060 622 2121 250,804
5 644 ± 31 252,281 129 ± 8 50,576 14 ± 0.8 5467 308,324 168 926 309,418
6 224 ± 13 102,361 33 ± 2 15,031 7 ± 0.4 2974 120,366 142 75 120,583
7 345 ± 21 177,882 46 ± 4 23,482 14 ± 0.9 7309 208,672 954 1480 211,107
8 483 ± 28 274,535 86 ± 9 49,100 14 ± 0.8 7874 331,508 764 8044 340,317
9 288 ± 12 177,569 39 ± 3 23,832 12 ± 0.4 7400 208,801 562 998 210,361

10 288 ± 15 128,924 33 ± 2 15,003 12 ± 0.6 5526 149,452 210 324 149,987
11 315 ± 14 128,454 38 ± 2 15,388 14 ± 0.6 5584 149,426 510 3259 153,194
12 351 ± 15 180,927 37 ± 2 19,339 15 ± 0.7 7710 207,976 665 1018 209,659
13 378 ± 8 177,015 60 ± 2 28,023 10 ± 0.3 4781 209,819 347 142 210,308
14 362 ± 17 141,827 55 ± 4 21,487 9 ± 0.4 3352 166,667 281 246 167,193
15 414 ± 20 207,249 55 ± 4 27,474 18 ± 1.1 8774 243,497 381 2478 246,356

M—mean value of the sign; SE—standard error.

An analysis of Table 6 suggests that the maximum aboveground phytomass stocks in
the forests of the Voronezh Region were in mixed oak–pine stands, reaching 303.0–340.3 t ha−1

(SP 1 and SP 8). Significant stocks of the aboveground phytomass (up to 309.4 t ha−1) were
also found in the birch forest with ash and linden. The lowest values of the phytomass
were observed predominantly in the coniferous stands (dominated by Scots pine)—up to
153.2 t ha−1 (SP 10, SP 11).

Understory and shrub layer together contribute about 1–2% of total phytomass. The
lowest contribution of the lower forest layers to the total forest stand phytomass was
observed in mixed birch–pine forest stands—0.2% (SP 6, SP 13)—and the highest proportion
of the total phytomass was in subcanopy layers of mixed oak–pine forest stands—2.6%
(SP 8) (Figure 16).

Generally, the fraction in tall (over 2 m in height) undergrowth tends to be higher
than in the comparable category of undergrowth. The undergrowth fraction varies over
the wide range of two orders of magnitude, from 75 to 8044 kg ha−1. Contribution of the
undergrowth to the total phytomass on the investigated sample plots was not significant
and did not exceed 0.5%. Its stocks vary from 142 kg ha−1 in mixed birch–pine forests to
954 kg ha−1 in mixed stands with Scots pine predominance.
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Stem wood accounts for at least 81% of the total phytomass of the stand. The analysis of
the ratio of woody phytomass fractions clearly shows the pattern of increasing contribution
of branches in mixed forests with the predominance of deciduous species, and deciduous
forests—up to 15–16%—while the proportion of branches in coniferous forests accounts for
less than 9–10% of total phytomass.

The statistical processing of the results was performed using the ANOVA (Table 7)
to determine the significance of differences between the average values of the tree stand
characteristics and the total amount of phytomass in stands, determined by ground-based
and remote sensing methods (Figure 17).

Table 7. Significance of differences between the mean values of phytomass in the forest stands (ta-b)
determined by ground-based (a) and remote sensing (b) methods.

Type of Tree
Stands

Sample Plots (Differences in Phytomass, a–b)
t0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Coniferous −1.6 * −1.7 * 0.8 * 2.3 0.2 * 1.96
Deciduous 1.7 * 1.8 * 5.5 0.5 * 1.4 * 1.96

Mixed 5.2 −3.1 −2.6 1.8 * 0.6 * 1.96

* Insignificant differences between the means.

Significant differences (at the significance level of p < 0.05) between the average
values of the total phytomass from the ground-based and remote sensing methods were
found in 33% of the cases. However, the maximum difference (observed at SP 5) in the
approximation of the data did not exceed 15%. In 66% of the cases, the average phytomass
values determined by the different methods did not differ significantly from each other.
This demonstrates the high accuracy of the information obtained by remote sensing, using
the proposed technical–methodological approach.

Remote sensing performed on the basis of the proposed methodology is comparable
in accuracy to ground-based methods for determining the carbon stock in aboveground
phytomass. This is achieved by taking into account undergrowthand dead wood.
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Figure 17. Total phytomass of different tree stand types on the sample plots (SP) determined by
ground-based (GB) and remote sensing (RS) methods.

The similarity of phytomass values obtained by the ground-based and the remote sens-
ing methods was statistically confirmed: Pearson criterion χ2 (0.05; 5) = 2.79; P(χ2) = 0.68 > 0.05
was found to causeslight differences in the results of calculating phytomass by different
methods. Consequently, we can reliably use the distance-based phytomass estimation
technique to calculate the carbon storage of forest stands.

3.4. Calculation of Carbon Stock from Phytomass Measurements

The carbon stock calculations for the aboveground phytomass of the forest stands in
the sample plots are summarized in Table 8.

Table 8. Aboveground carbon stock of the forest stands (age of 90–100 years) on the sample plots
(SP) in the fresh forest growth conditions of the Central Forest Steppe of the East European Plain
(kg ha−1).

No of SP
Tree Stand, Including

Shrub Layer Understory Total
Carbon StockStems Branches Needles/Leaves Total

1 123,128 19,794 3690 146,612 200 2918 149,730
2 80,952 14,427 2559 97,937 263 938 99,139
3 97,581 17,104 1269 115,954 221 1452 117,628
4 99,291 18,455 1323 119,069 299 1018 120,386
5 121,095 24,276 2624 147,995 81 444 148,520
6 49,766 7282 1457 58,504 68 36 58,608
7 89,823 11,767 3708 105,297 458 711 106,466
8 135,648 23,991 3947 163,586 367 3861 167,814
9 89,450 11,896 3748 105,093 270 483 105,846
10 65,411 7574 2808 75,793 101 156 76,049
11 65,061 7754 2836 75,652 245 1564 77,460
12 92,159 9843 3928 105,931 319 490 106,740
13 84,967 13,451 2295 100,713 166 68 100,948
14 68,077 10,314 1609 80,000 135 118 80,253
15 104,951 13,814 4460 123,225 183 1192 124,600
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The total carbon stocks in the forest stands varied from 58.6 t ha−1 in birch-dominated
stands (SP6), where minimal stem wood stocks were observed, to 167.8 t ha−1 in mixed
pine-dominated stands (SP8). The shrub layer and understory contributed no more than
3.8 t C ha to the total carbon stocks. In most cases, the carbon stocks in their aboveground
phytomass did not exceed 1.0 t ha−1.

4. Discussion

The hyperspectral and Lidar data complement each other. The synergy between the
technologies used can be referred to as 3D-imaging spectroscopy, which has been explored
in the works of several authors [104,105]. The proposed methodology is primarily based on
the use of the RGB and Lidar sensors estimating as much of the forest stand phytomass as
possible and allows consideration of all carbon pools for the rapid and reliable calculation
of the carbon storage [106–108].

Similar methods for remotely estimating stands and determining the accumulation of
forest phytomass using the Lidar system were used for the tree species Quercus semicarpifolia
(Sm.) and Pinus roxburghii (Sarg), when calculating the carbon stock in the subtropical and
temperate forests of India [108–110]. The proposed method was based on the assessment
of ground phytomass and carbon only for the tree layer, which is not appropriate and
objective when assessing forest phytocoenosis as the whole. Please note that the machine
learning models used are developed on a regional basis.

In monitoring the ecological state of vegetation and carbon reserves, great importance
belongs to the qualitative and quantitative characteristics of the productivity of above-
ground phytomass of individual plants and phytocoenoses. Moreover, in contrast to the
traditionally implemented assessment of the carbon pool in the aboveground phytomass of
tree stands [33,34,64], we have studied the parameters of the accumulation of aboveground
phytomass and carbon in other tiers of the forest phytocoenoses. This also indicates the
feasibility and objectivity of the assessment.

In addition to the required technical and software tools, adequate methodological
apparatus is required. In our case, a comprehensive technical and methodological approach
was used. We believe that the assessment required data from our ground-based monitoring
on the morphometric characteristics of plants and their condition. This was confirmed
by a correlation analysis. Positive correlations between the morphometric parameters of
the woody plants were obtained. In particular, the parameters of tree height and crown
diameter are important for remote environmental monitoring of the forest phytocoenoses.
They can be determined by ground-based methods and remotely (from RGB images and
through Lidar surveys). Multivariate regression analysis makes it possible to develop
models for determining the diameter of the tree trunk, using morphometric parameters.
The values of the species-specific coefficients for the number of the tree species are given.
Priority should be given to two- and multifactor models when predicting the necessary
morphometric parameters of ecologically and economically valuable plants. The validation
of the proposed set of tools is disclosed and explanations are given for estimating phytomass
using the example of the forest phytocoenoses.

The data obtained from ground-based monitoring and remote monitoring were com-
pared differentially for the tree stands, undergrowth, shrub layer, and in general (Table 6).
The major advantage of the methodology proposed for remote monitoring and control of
the carbon storage compared to existing analogues is the minimization of the amount of
groundwork and, consequently, the reduction inlabor costs without loss of information
quality. Reliable information on the phytomass volumes will allow for operational control
of forest carbon storage, which is essential for timely management decisionmaking. The
proposed methodology is useful for analyzing the possibilities of sequestration of carbon
and other elements in plant phytomass and soils in forested, agricultural, and populated
areas. Of great importance is the application of the described methodology for studying the
ecosystem-related, ecological–protective, and phytomeliorative properties of tree stands
and other vegetation elements in relation to agrophytocoenoses.
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Wu et al. [111], Reinmann et al. [112], Junfang et al. [113], and thenumber of other
researchers [114–116] believe that the quantification of the aboveground forest phytomass
and carbon cycle studies in general is a highly relevant and current issue, which will
provide the theoretical basis for the study of the carbon cycle and global climate change.
Obtaining information on the forest ecosystems and carbon storage will make it possible
to identify the inverse relationship between the processes occurring in forests and climate
change. It also seems promising to analyze the state of tree plantations and forests, the
accumulation of their phytomass to consider the balance of the carbon and nutrient cycles,
to assess degradation processes due to environmental and climatic transformations in the
environment and in the forest natural ecosystems and cultural ecosystems [117–119]. Data
on the formation of the phytomass of the forests and plantations can be used as the basis
for environmental and climate–economic management of natural and cultural ecosystems.
This is consistent with the results of other authors [120–123]. This seems possible in
geographically, ecologically, and economically diverse areas. The presented methodology
for integrated carbon monitoring allows us to identify the ecological state, the limits of
sustainability, and the resource base of the corresponding natural phytocoenoses and
agrophytocoenoses. The proposed universal methodology can be of decisive importance
in the selection of plant species and varieties for afforestation, landscaping, horticulture,
protection, and restoration of soil ecosystems, and the protection of and increase in the
resource attractiveness of landscapes on the East European Plain and other territories.

5. Conclusions

The use of UAVs for the remote sensing of forest ecosystems in the Eastern European
Plain is the issue that is becoming more and more important. Estimating the amount of
carbon stored in forests is the critical undertaking. At present, there is no single system
that integrates the collection, storage, and analysis of data on forest ecosystem health and
structure, leading to significant uncertainties in current biomass assessment methods. It
is crucial to enhance existing methods and develop new approaches for estimating forest
phytomass and calculating carbon stocks.

The estimation of the carbon storage of the forests is based on the calculation of the
phytomass of the stand and other components of the forest ecosystem. Meanwhile, woody
phytomassis based on the application of allometric equations or conversion factors, defined
as the ratio of total stand phytomass (including aboveground, belowground, and under-
story) to the stemwood stock. The conversion factors are differentiated according to the age
of the stand and other taxonomic indicators obtained by ground-based forest inventory.

In the study area, on average, up to 81% of the total volume of formed phytomass
is stem wood. To complete the assessment, the contribution of other layers of forest
vegetation was also established. The undergrowth and shrub layer are responsible for the
formation of aboveground phytomass in the volume of up to 2% of the total volume of
aboveground phytomass of forest phytocenoses. Phytocenoses of the oak, oak–pine, pine,
and birch forests are natural ecological frameworks for the ecosystems they form and for
the ecosystems adjacent to them. The total carbon reserves in the aboveground phytomass
of phytocenoses varied, depending on their composition. The total carbon reserve reached
its maximum value (163.6 t ha−1) in plantations of mixed species composition with the
predominance of the pine.

To integrate and approximate data obtained during ground surveys and data obtained
during remote monitoring based on the UAVs, technical and methodological tools have
been developed. This toolkit allows you to analyze and decipher information. The technical
and methodological tools used in forest sensing using the UAVs are based on machine
learning technology using the neural network method. The proposed integrated approach
makes it possible to determine taxation indicators of plantings and volumes of aboveground
phytomass in the automated mode (or with elements of automation). To achieve automation
of the process, data of three categories (RGB, Lidar, hyperspectrum) were collected and
artificial intelligence methods based on the ultra-precise neural network were applied.
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The remote determination of the main forest stands’ taxation indices and, accordingly,
the volume of the phytomass of the key carbon pools will also make it possible to remotely
determine the carbon storage of forest ecosystems. This will allow the remote monitoring
of carbon storage over large areas.

The similarity of phytomass values obtained by ground-based and remote sensing
methods was statistically confirmed: Pearson criterion χ2 (0.05; 5) = 2.79. Consequently, we
can reliably use the distance-based phytomass estimation technique to calculate the carbon
storage of forest stands.

The use of the UAVs with appropriate hardware will make it possible to obtain the
forest characteristics necessary for the determination of the carbon storage as the need
arises: to determine baseline characteristics at the start of forest climate projects, when
monitoring the dynamics of carbon storage, and so on. It is also possible to determine the
characteristics of forests after selective logging and after fires of different intensities. Of
great importance is the possibility of using the scientific idea of the work and the described
methodology to assess and predict the condition of the trees and shrubs as ecological
frameworks and complex phytomeliorants on lands of different target categories. The
methodological approach we propose is easily compatible with current technologies in the
field of conservation, protection, and reproduction of forests in the Central Forest Steppe
Region in the East European Plain. This allows the approach to be successfully integrated
into the general system of forest monitoring and the assessment of stocks of wood and
other plant resources, and into environmental and economic management in different types
of cultural and natural ecosystems and in different landscapes.
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