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Abstract: This article deals with the consensus tracking problem for multi-agent systems (MAS) under
the influence of unknown time-varying delays. Each agent of the MAS is a quadrotor unmanned
aerial vehicle (UAV) represented as a linear continuous-time system. The main objective of this
paper is the stabilization of multi-agent systems where the control input is affected by unknown
time-varying delays, which are assumed to be upper-bounded, and where these bounds are not
required to be known. The proposed observer-based control scheme guarantees the consensus
tracking of multi-UAV systems with the desired H∞ performance, which adds a further level of
mitigation of unknown delays present in MAS systems by minimizing the H∞ norm, which measures
the maximum gain from the disturbance to the controlled output of the system. For each UAV agent,
an unknown input observer is employed to isolate the unknown time-varying delays in the state
estimation process. With the use of an unknown input observer-based consensus tracking control,
sufficient conditions are derived to ensure that all follower UAVs can reach a consensus with the
leader, despite the presence of distinct unknown time-varying delays. The stability of the proposed
scheme is proven using Lyapunov theory for the leader and follower agents. Finally, numerical
examples are provided to illustrate the effectiveness of the proposed method.

Keywords: multi-agent systems; unknown time-varying delay; consensus control; multi-quadrotors

1. Introduction

In recent years, the study of multiple unmanned aerial vehicles (UAVs) in forma-
tion has attracted attention, because of their diverse applications in target enclosure and
tracking, search and rescue, surveillance, and heavy payload transportation, among oth-
ers [1–4]. Compared with a single UAV, as in [5], using multiple UAVs working cooper-
atively has advantages, such as greater thrust force, high efficiency, wide coverage area,
and increased versatility.

A multiple UAV system can be conceptualized as a multi-agent system (MAS). MAS
formation and tracking control is considered a fundamental problem, in which agents are
required to produce a desired trajectory. This topic has been extensively studied in the
literature [6–8]. One of the most commonly proposed approaches for formation control
in MASs is consensus protocols [9–12]. Consensus means that a team of agents reaches
an agreement about a particular variable of interest by interacting with each other via
a communication network. Some studies [13–22] suggested that consensus protocols in
multi-agent systems provide benefits such as achieving agreement in various conditions
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(antagonistic interactions, noisy environments, and heterogeneous systems), enabling
distributed and adaptive solutions, and ensuring stability and finite settling times.

Consensus protocols can be affected by the presence of time-varying delays, which
can lead to reduced performance, instability, or prevent the desired agreement. Certain
protocol designs can compensate for these delays, ensuring proper system performance
and achieving consensus under specific conditions such as network topologies [23,24]
and design parameters [25]. Other authors have explored different approaches, such as
consensus protocols based on observation. For example, the authors in [26,27] addressed
this problem by designing a leader–follower consensus control strategy based on predictive
control, where an observer is used for estimation of the state of the agents when communi-
cation constraints exist. The authors in [28] presented a predictive extended state observer
(ESO) to estimate the consensus tracking error when having time-varying input/output
delays and mismatched disturbances in a linear MAS, and the ESO was used for designing
the controller. In addition, ref. [29] developed a distributed extended state observer and
a leader–follower consensus control based on the relative estimated states between each
agent and its neighbors in the presence of unknown external disturbances.

Moreover, the authors in [30,31] focused on the problem of fault detection for a MAS in
continuous time, where they used consensus protocols and unknown input observer (UIO)
schemes to deal with disturbances, failures, and time-varying delays, a where numerical
example demonstrated the effectiveness and feasibility of the proposed approach. The
authors in [32] implemented a fault diagnosis strategy based on the stages of detection,
isolation, and estimation for satellites in formation. In the isolation stage, a bank of
robust and non-linear UIOs were designed to isolate the faulty actuator, allowing the
unknown input disturbances to be decoupled and their effects attenuated. In addition,
UIOs can effectively track state errors in multi-agent systems with directed switching
topologies, enabling consensus tracking, even with external inputs affecting the leader [33].
For example, the authors in [34] used a UIO to estimate an unknown state affected by
simultaneous connectivity-mixed attacks, actuator/sensor faults, and disturbances, and
developed a leader–follower consensus control for a MAS. In summary, research indicates
that consensus in multi-agent systems can be achieved despite unknown input delays or
faults. Protocols that utilize UIOs to detect, isolate, or estimate these elements have been
developed, ensuring that the systems can reach consensus.

In general, time-varying delays are unavoidable in complex systems such as UAVs.
Time-varying delays in UAVs are primarily caused by factors related to communication and
computation, such as wireless communication issues, satellite communication transport
delays, or problems with vision-based navigation systems. In UAV systems, time-delays
can reduce the effectiveness of control performance, affecting the stability and making the
system vulnerable to an actuator, sensor, or process fault. These problems become more
critical in multiple-UAV systems in formation schemes. Therefore, developing formation
control schemes for multiple UAVs subject to delays has attracted the attention of academia
and industry. For example, the authors of [35] investigated the robust control problem
of time-varying formation flight for multiple-UAV systems with external disturbances
and time delay. However, ref. [35] only considered a model based on fixed-wing vehicles.
Moreover, the authors in [36] proposed an algorithm for leader–following consensus control
of multiple fixed-wing UAVs with time-varying delays and unknown external disturbances
but limited their study to the dynamic model of the attitude (aircraft orientation).

The time-varying delay problem for a single quadrotor was addressed in [37], where a
Lyapunov barrier was used to ensure that the tracking error was limited within a range,
and a Pade approximation was applied to compensate for the effect of input delay.

In the literature, many works have addressed the problem of observer-based consensus
formation control for different cases of multi-agent systems with time-varying delay. How-
ever, few studies have addressed this problem in the specific case of multi-UAV systems.
Therefore, the main contribution of this work is a new methodology to obtain mitigation of
an unknown input delay in a tracking control in the formation of multiple-UAV systems
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under consensus protocols, where the stability of the proposed scheme is proved in the
leader and followers, despite unknown time-varying delays. It is essential to mention that
unknown delays are assumed to be upper-bounded, and these bounds are not required
to be known. In addition, the proposed observer-based control scheme guarantees the
consensus tracking of multi-UAV systems with the desired H∞ performance, which adds a
further level of mitigation to unknown delays present in an MAS system by minimizing the
H∞ norm, which measures the maximum gain from the disturbance to the controlled output
of the system. In other words, in the proposed method, we address the problem related to
a distinct unknown delay of the input of cooperative control, where consensus tracking
control for the translation dynamics based on an unknown input observer is proposed.
Thus, the designed consensus control between the leader and followers is guaranteed, and
this scheme can be applied to solve the cooperative control problem of multiple UAVs in
the presence of distinct unknown delays.

The paper is organized as follows. Section 2 is related to the dynamic model of the
considered quadrotors and the problem formulation. Section 3 is dedicated to the control
strategy design, which involves the inner attitude control and the consensus tracking
control for translation. Section 3 analyzes the observer-based control strategy for the
tracking control of the leader and follower agents, which involves observers used to isolate
the unknown time-varying delays in the state estimation process; in addition, in this
section, consensus tracking control under unknown time-varying delays is presented.
Section 4 presents the results of numerical simulations, to show the effectiveness of the
observer-based consensus control applied to multiple UAVs subject to distinct unknown
time-varying delays. Finally, Section 5 ends the document with the conclusions.

2. System Dynamic Model

In this article, the MAS consists of a group of quadrotors under a leader—follower
scheme. Each of the quadrotors in the MAS is a system with six degrees of freedom that
consists of the translation coordinates ri(t) = (xi(t), yi(t), zi(t)); and three rotations, one
in each of the axes ηi(t) = (ϕi(t), θi(t), ψi(t)) called roll, pitch, and yaw, respectively. The
MAS can be described with respect to an inertial reference I, where the UAVs are considered
mass points. The translational and rotational dynamics of the vehicles are defined by the
second law of Newton and the external torque equation as follows [38]:

mr̈i(t) =

 0
0

−mg

+ R(ηi)

 0
0

Fi(t)

 (1)

Ir(ηi)η̈i = τi − η̇i × Ir(ηi)η̇i =

 τi2(t)
τi3(t)
τi4(t)

+

 Ci1
Ci2
Ci3

 (2)

where g, m, and r̈i(t) are the gravitational acceleration, mass, and lineal acceleration; η̇i(t)
and η̈i(t) are the angular velocity and angular acceleration of the vehicle, respectively.
In addition, Fi(t) = Fi1(t) + Fi2(t) + Fi3(t) + Fi4(t) is the total thrust of the vehicle and
Fip(t) = kFω2

ip(t), p = 1, 2, 3, 4. The term kF is a constant, and ωip(t) is the angular velocity
of each rotor. The terms R(ηi) represent the orientation relative to I, and Ir(ηi) is the inertia
tensor of the body:

R(ηi) =

 sθi cψi + sϕi cθi sψi

sθi sψi − sϕi cθi cψi

cϕi cθi

 Ir(ηi) =

 Ixxcθi 0 −Ixxcϕi sθi
0 Iyy Iyysϕi

Izzsθi 0 Izzcϕi cθi


where the shorthand notations sαi and cαi represent the sine and cosine of the angle αi(t),
respectively; τi are the torques defined as τi2(t) = L(Fi2(t)− Fi4(t)), τi3(t) = L(Fi3(t)− Fi1(t)),
τi4(t) = Mi1(t)− Mi2(t) + Mi3(t)− Mi4(t); L is the distance between the rotors and the
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center of mass, Mip(t) = kMω2
ip(t) is the reaction torque and kM is a constant. In addition,

Ci1, Ci2, and Ci3 have the following definitions:

Ci1 =
[
Ixx + Iyy − Izz

]
ϕ̇i(t)θ̇i(t)sθi +

[
−Ixx + Iyy − Izz

]
ϕ̇i(t)ψ̇i(t)sϕi sθi

+
[
Ixx + Iyy − Izz

]
θ̇i(t) ˙ψi(t)cϕi cθi +

[
Iyy − Izz

]
ψ̇2

i (t)sϕi cϕi cθi

Ci2 =
[
−Iyy + [−Ixx + Izz]c2

θ

]
ϕ̇i(t)ψ̇i(t)cθi + [−Ixx + Izz]

[
ϕ̇2

i (t)− ψ̇2
i (t)c

2
θi

]
sθi cθi

Ci3 =
[
Ixx − Iyy − Izz

]
ϕ̇i(t)θ̇i(t)cθi +

[
Ixx − Iyy + Izz

]
ϕ̇i(t)ψ̇i(t)sϕi cθi

+
[
−Ixx + Iyy + Izz

]
θ̇i(t)ψ̇i(t)cϕi sθi +

[
−Ixx + Iyy

]
ψ̇2

i (t)sϕi cϕi sθi

The Equations (1) and (2) are the nonlinear dynamic model of the quadrotor multi-
agent system. We use the Taylor series and obtain the following expressions:

mr̈i(t) =

 0
0

−mg

+

 θi(t)cψdi + ϕi(t)sψdi

θi(t)sψdi − ϕi(t)cψdi

1

Fi(t) (3)

η̈i(t) =


1

Ixx
τi2(t)

1
Iyy

τi3(t)
1

Izz
τi4(t)

 (4)

Thus, the linear representation of the quadrotor multi-agent system is defined as:

ẍi(t) =g
[
θi(t)cψdi + ϕi(t)sψdi

]
ÿi(t) =g

[
θi(t)sψdi − ϕi(t)cψdi

]
z̈i(t) =

1
m

Fi(t)− g

ϕ̈i(t) =
1

Ixx
τi2(t)

θ̈i(t) =
1

Iyy
τi3(t)

ψ̈i(t) =
1

Izz
τi4(t)

(5)

where ψdi is the desired yaw angle of each UAV.

3. Control Strategy

We consider a leader–follower strategy for the formation control of the MAS. The
system has the scheme shown in Figure 1, in which it is considered that the quadrotors are
underactuated systems. For all agents, the coordinates zi(t), ϕi(t), θi(t), and ψi(t) can be
controlled directly and individually, without sharing information between the vehicles. At
the same time, the translational movement is conducted in a coordinated way.

For the translational subsystem, it is considered that the xi(t) coordinate can be
controlled indirectly by the θi coordinate, and the yi(t) coordinate is controlled indirectly
using the coordinate ϕi(t). In this work, we address the problem of a possible actuator
time-varying delay affecting the motion in the x − y plane. Therefore, the coordinates θi
and ϕi are controlled by schemes based on state estimation to isolate the time-varying delay.
Specifically, a coordinated control of the translational movement based on a leader–follower
scheme is considered. Thus, a consensus tracking control based on an unknown input
observation is proposed, for the follower agents to maintain formation flight, with the
leader agent’s estimated translational position as the reference. In contrast, a disturbance
observer-based control is formulated for the leader agent, to follow a desired trajectory
despite the presence of time-varying delays.
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Figure 1. Control scheme for the multi-UAV system.

3.1. Altitude and Attitude Control

This section proposes using simple linear control laws for the altitude and attitude
subsystems, to ensure the stability of the flying attitude of the quadrotor multi-agent system.
Thus, the control inputs Fi(t), τi2(t), τi3(t), τi4(t) for each of the agents are denoted as

Fi(t) =mg + kpzezi(t) + kiz

∫
ezi(t)dt + kdz ėzi(t) (6)

τi2(t) =kpϕeϕi (t) + kdϕ ėϕi (t) (7)

τi3(t) =kpθeθi (t) + kdθ ėθi (t) (8)

τi4(t) =kpψeψi (t) + kdψ ėψi (t) (9)

where

ezi(t) = zd(t)− zi(t)

ėzi(t) = żd(t)− żi(t)

eϕi (t) = ϕdi(t)− ϕi(t)

ėϕi (t) = ϕ̇di(t)− ϕ̇i(t)

eθi (t) = θdi(t)− θi(t)

ėθi (t) = θ̇di(t)− θ̇i(t)

eψi (t) = ψdi(t)− ψi(t)

ėψi (t) = ψ̇di(t)− ψ̇i(t)

The control inputs are substituted in the equations of the linear multi-agent system (5);
thus, the following closed-loop expressions are obtained:

z̈i(t) =
1
m

[
kpzezi(t) + kiz

∫
ezi(t)dt + kdz ėzi(t)

] ϕ̈i(t) =
1

Ixx

[
kpϕeϕi (t) + kdϕ ėϕi (t)

]
θ̈i(t) =

1
Iyy

[
kpθeθi (t) + kdθ ėθi (t)

]
ψ̈i(t) =

1
Izz

[
kpψeψi (t) + kdψ ėψi (t)

]
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3.2. Translation Subsystem

From the linear quadrotor multi-agent system (5), the translation movement of the
quadcopter can be obtained:

ẍi(t) =g
[
θi(t)cψdi + ϕi(t)sψdi

]
ÿi(t) =g

[
θi(t)sψdi − ϕi(t)cψdi

] (10)

Now, since all orientation errors of the quadrotor multi-agent system tend to be zero,
it can be assumed that θi ≈ θdi

, ϕi ≈ ϕdi
. Moreover, if ψdi

is considered a constant equal
to zero, the dynamics corresponding to the xi and yi coordinates are described in the
following form:

ẍi(t) =gcψd θdi(t)

ÿi(t) =− gcψd ϕdi(t)
(11)

Then, one can define the following state vector ξi(t) =
[
ξ1

ik(t) ξ2
ik(t)

]T ∈ R6 for each
agent, where

ξ1
ik(t) =

[∫
exi(t)dt exi(t) ėxi(t)

]T
∈ R3, k = 1, 2, 3

ξ2
ik(t) =

[∫
eyi(t)dt eyi(t) ėyi(t)

]T
∈ R3, k = 1, 2, 3

(12)

Thus, the x and y coordinate errors are defined as follows:

exi(t) = xdi
(t)− xi(t)

ėxi(t) = ẋdi
(t)− ẋi(t)

eyi(t) = ydi
(t)− yi(t)

ėyi(t) = ẏdi
(t)− ẏi(t)

Considering xdi
and ydi

as constants, the elements of the derivative ξ̇i(t) =
[
ξ̇1

ik(t) ξ̇2
ik(t)

]T ∈ R6

are represented as follows:

ξ̇1
i1 =ξ1

i2

ξ̇1
i2 =ξ1

i3

ξ̇1
i3 =− gcψd θdi

ξ̇2
i1 =ξ2

i2

ξ̇2
i2 =ξ2

i3

ξ̇2
i3 =gcψd ϕdi

Therefore, the translation movement x-y of the quadcopter multi-agent dynamics can
be expressed in the following state-space form:

ξ̇i(t) =Aξi(t) + Bui(t)

ȳi(t) =Cξi(t)
(13)

where matrix C = I6×6 and

A =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 B =



0 0
0 0

−gcψd 0
0 0
0 0
0 gcψd

 ui(t) =
[

θdi(t)
ϕdi(t)

]

A practical problem in the position tracking and formation control of quadrotor multi-
agent systems is related to the time difference between the translation sensor as a global
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positioning system (GPS) that detects a position measurement and the force input that
applies torque to each motor (input signal) of the aerial vehicle. This time difference is due
to the communication or synchronization time between each servo controller, which entails
UAVs not receiving the proper real-time input, meaning the system has an inherent input
delay. Therefore, it is necessary to address the effect of variable time-varying delay in the
input application on the UAV tracking control design. Thus, an observer-based consensus
control is proposed, to ensure that all UAV agents can reach consensus with the leader,
despite the presence of distinct unknown time-varying delays.

Considering the previous problem, the lineal multi-agent system of the position
tracking error dynamics (13) has inherent input delays. Therefore, the following delayed
lineal multi-agent system is formulated:

ξ̇i(t) =Aξi(t) + Bui(t) + Bui(t − τi(t))

ȳi(t) =Cξi(t)
(14)

where ui(t − τi(t)) is the unknown control input under the effect of unknown time-varying
delay τi(t), which is present in every agent i, with i ∈ {0, . . . , N}. The delay problem
in multi-agent systems is focused on the unknown time-varying delay τi(t), where each
unknown delay is assumed to be continuous and bounded; i.e., 0 ≤ τi(t) ≤ τi,max, ∀t ≥ 0;
τi,max is the maximum delay of the i-th agent, which is assumed to be upper bounded,
and this bound is not required to be known; the assumptions about the control input and
the unknown time-varying delay are given in [39,40]. Thus, it is essential to note that
each agent has its own inherent unknown delay, unlike other approaches proposed in
the literature; e.g., in [31], a single random time-varying delay is present in the whole
multi-agent system.

Thus, considering the unknown delayed input in the translation movement of each
agent, the delayed linear multi-agent system in (14) is modified as follows:

ξ̇i(t) =Aξi(t) + Bui(t) + Būi(t)

ȳi(t) =Cξi(t)
(15)

where ūi(t) is the unknown input signal of each agent, which is given by
ūi(t) = ui(t − τi(t))− ui(t), as in [39].

3.3. Translation Control

According to Equation (5), the control inputs are computed to determine the desired
roll and pitch angles for all agents. These angles are functions of the tracking errors
in the yi and xi coordinates, respectively. Specifically, in the leader–follower scheme, a
disturbance observer-based control is implemented on the leader agent to enable it to track
the desired trajectory within the plane. Consequently, an observer-based consensus control
is formulated for the follower agents to maintain formation flight, with the leader agent
as the reference. Addressing the challenge of an unknown delayed input in Equation (15),
control schemes are developed based on estimating the state vectors for all agents.

Leader agent control

Thus, for the leader agent, the control inputs are as follows:

θd0(t) = K1
0 ξ̂1

0k(t) ϕd0(t) = −K2
0 ξ̂2

0k(t) (16)

where ξ̂1
0k and ξ̂2

0k are the estimations of ξ1
0k and ξ2

0k. The terms K1
0 ∈ R3 and K2

0 ∈ R3 are
the gain feedback matrices. Then, the signal u0 can be expressed as

u0 = K0ξ̂0(t) (17)
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where

K0 =

[
K1

0 0
0 −K2

0

]
ξ̂0(t) =

[
ξ̂1

0k ξ̂2
0k

]T

Therefore, the dynamics of the leader agent are given by

ξ̇0(t) =Aξ0(t) + Bu0(t) + Bū0(t)

ȳ0(t) =Cξ0(t)
(18)

where ū0(t) is the unknown input of the leader agent, which is affected by the time-varying
delay τ0(t).

Now, the following unknown input observer is proposed for the translation movement
of the leader agent under an unknown time-varying delay:{

ẇ0(t) = Nw0(t) + Hu0(t) + Jȳ0(t)
ξ̂0(t) = w0(t) + Eȳ0(t)

(19)

where w0(t) ∈ RNn and ξ̂0(t) ∈ RNn are the states of the observer, and the estimations
of the system states ξ0(t). The constant matrices N, H, J and E are chosen to make ξ̂0(t)
converge to ξ0(t) in the delay-free case.

Now, the following lemma is used in the design of the unknown input observer.

Lemma 1. Given any matrices C and B, equation ECB = B has a solution if and only if
rank(CB) = rank(B).

Then, the following theorem provides sufficient conditions that guarantee the conver-
gence of the observation error ē0(t).

Theorem 1. The unknown input ū0(t) of the leader agent system (18) can be decoupled form the
state estimation under the unknown input observer (19) if the following conditions are satisfied:

(A − ECA + NEC − JC − N) = 0 (20)

((I − EC)B − H) = 0 (21)

(I − EC)B = 0 (22)

where N is a Hurwitz matrix used to achieve exponential convergence of the observation error ē0(t).
This means the observer is not subject to an unknown time-varying delay τ0(t).

Proof. Now, the observation error is ē0(t) = ξ0(t)− ξ̂0(t); then, the dynamics of the
estimation error is

˙̄e0(t) =ξ̇0(t)− ˙̂ξ0(t) (23)

=(A − ECA)ξ0(t)− Nw0(t)− JCξ0(t)

+ ((I − EC)B − H)u0(t) + (I − EC)Bū0(t)

=Nē0(t) + (A − ECA + NEC − JC − N)ξ0(t)

+ ((I − EC)B − H)u0(t) + (I − EC)Bū0(t)

=Nēi(t) + (A − ECA + NEC − JC − N)ξ0(t)

+ ((I − EC)B − H)u0(t) + (I − EC)Bū0(t) (24)

Now, in order to obtain E and H matrices, from Lemma 1, one can deduce that the
general solution of E is as follows:

E = B(CB)† + X
(

I − (CB)(CB)†
)

, (25)
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where X is an arbitrary matrix. Thus, X = 0 is selected for ease of calculation, and one
obtains E = B(CB)†.

From the matrix E, H is obtained as follows: H = (I − EC)B. Now, this denotes that
M = (I − EC); thus, Equation (20) can be rewritten as

MA + NEC − JC = N

Then,
N = MA − LC (26)

where L = (J − NE). Now, N = MA − LC is a Hurwitz matrix used to ensure convergence
of the observation error. Thus, the matrix (MA − LC) should be placed anywhere in the
complex s-plane by a suitable selection of matrix L, where (C, YA) must be observable.
Subsequently, it is possible to find J, computed as J = (L + NE). Then, the unknown input
observer provides an easy-to-implement algorithm that eliminates the influence of the
unknown delayed input in the state estimation process.

Based on the above, if these conditions are fulfilled, the following dynamics of the
error of observation can be obtained:

˙̄e0(t) =Nē0(t) (27)

where N should be a Hurwitz matrix for achieving exponential convergence of the observa-
tion error. This means the observer is not subject to an unknown delayed input τ0(t). This
ends the proof.

Now, it is possible to design an observer-based control strategy to stabilize the leader agent
system (18), where the following observer-based control for the leader agent is considered:

u0 =K0ξ̂0(t) (28)

=K0(w0(t) + Eȳ0(t)) = K0(w0(t) + ECξ0(t))

=K0((In − EC)ξ0(t)− e0(t) + ECξ0(t))

≤K0ξ0(t)

Then, the closed-loop dynamics of the leader are

ξ̇0(t) = [A + BK0]ξ0(t) + Bū0(t) (29)

Now, it is evident that there is an influence of the unknown signal ū0(t) on the closed-
loop system (29). Therefore, the stability of the closed-loop system must be guaranteed.

Theorem 2. Consider the disturbance observer-based control (28) of the leader agent system (18),
which is exponentially stable if there exists a Pc > 0 such that the following inequation holds for
µ1 > µ2 > 0: [

Pc AT + WBT + APc + BW + µ1Pc B
BT −µ2 In

]
< 0, (30)

where the control gain is Ko = WP−1
c . Thus, the system’s stability is guaranteed, even in the

presence of the unknown time-varying delay τ0(t).

Proof. Considering the quadratic function V(ξ0(t)) = ξT
0 (t)Pξ0(t), one obtains the fol-

lowing dynamics:
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V̇(ξ0(t)) = ξ̇T
0 (t)Pξ0(t) + ξT

0 (t)Pξ̇0(t)

= ((A + BK0)ξ0(t) + Bū0(t))T Pξ0(t) + ξ0(t)T P((A + BK0)ξ0(t) + Bū0(t))

= ξ0(t)T((A + BK0)
T P + P(A + BK0))ξ0(t) + ū0(t)T BT Pξ0(t) + ξ0(t)T PBū0(t))

=

[
ξ0(t)
ū0(t)

]T[
((A + BK0)

T P + P(A + BK0)) PB
BT P 0

][
ξ0(t)
ū0(t)

]
(31)

The following proposition provides a criterion that guarantees the exponential stability
of the disturbance system (18).

Proposition 1. Taking into account the system (29). If there exist matrix P > 0 and positive
scalars µ1 > µ2 such that the following inequality holds:

V̇(ξ0(t)) + µ1V(ξ0(t))− µ2ū0(t)T Pū0(t) ≤ 0 (32)

where V(ξ0(t)) is set V(ξ0(t)) = ξT
0 (t)Pξ0(t) and V̇(ξ0(t)) is its derivative, then the closed-loop

system (29) is exponentially stable.

From Proposition 1, one can rewrite (31) as follows:

V̇(ξ0(t)) + µ1V(ξ0(t))− µ2ū0(t)T Pū0(t) =[
ξ0(t)
ū0(t)

]T[
((A + BK0)

T P + P(A + BK0)) + µ1P PB
BT P −µ2P

][
ξ0(t)
ū0(t)

]
Therefore, the following inequality must hold[

(A + BK0)
T P + P(A + BK0) + µ1P PB

BT P −µ2P

]
≤ 0 (33)

Now, the above equation is a bilinear matrix inequality; thus, a non-singular transfor-

mation, such as T =

[
P−1 0

0 In

]
> 0, must be introduced:

T
[
(A + BK0)

T P + P(A + BK0) + µ1P PB
BT P −µ2P

]
T = (34)[

P−1(A + BK0)
T + (A + BK0)P−1 + µ1P−1 B

BT −µ2 In

]
≤ 0 (35)

Defining P−1 = Pc, this yields[
Pc(A + BK0)

T + (A + BK0)Pc + µ1Pc BPc
PcBT −µ2 In

]
< 0. (36)

Thus, the following LMI is obtained,[
Pc AT + WBT + APc + BW + µ1Pc B

BT −µ2 In

]
< 0, (37)

where Ko = WP−1
c .

Using Proposition 1, the closed-loop dynamics of the leader (29) is exponentially
stable under (37). It is obvious that the effect of the unknown input ū0(t) is reduced, which
depends on the influence of the unknown time-varying delay τ0(t). This ends the proof.
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Follower agent control

For the follower agents, the consensus control for formation is based on the estimation
of the states ξi(t) of each agent, which are error states in the xi and yi coordinates. In the
consensus protocols, the communication between agents in a MAS can be described by
the graph G. Let G = (V , E), where V = {v1, . . . , vN} is a nonempty finite node set and
E ⊆ V ×V is an edge set. The edge (vi, vj) in the edge set E denotes that agent vj can obtain
information from agent vi, but not vice versa. The adjacency matrix A =

[
aij

]
∈ RN×N

associated to the graph G is defined such that aii = 0 and aij = 1 ⇔ (j, i) ∈ E for
i, j = 0, 1, . . . , N. The Laplacian matrix L =

[
Lij

]
∈ RN×N of the graph G is defined as

Lii = ∑j ̸=i aij and Lij = −aij, i ̸= j. In leader–follower schemes, L can be partitioned

as L =

[
0 01×N
L2 L1

]
, where L2 ∈ RN×1 and L1 ∈ RN×N . In addition, the constant

formation structure of the agents in the graph G in a reference coordinate frame is denoted
by H̃ = (h0, h1, . . . , hN) ∈ Rn×N , where hi ∈ Rn is the formation variable corresponding to
agent i.

Assuming that each agent has access to its own state and the states of its neighbors, the
agents achieve consensus in the sense of limt→∞ ∥(ξi(t)− hi)− (ξ j(t)− hj)∥ = 0, ∀i, j =
0, . . . , N. Thus, the following law of observer-based consensus control for the coordinates x
and y is considered:

θdi(t) =K1

N

∑
j=0

aij(ξ̂
1
ik(t)− ξ̂1

jk(t)− h1
i + h1

j ), i = 1, . . . , N. (38)

ϕdi(t) =K2

N

∑
j=0

aij(ξ̂
2
ik(t)− ξ̂2

jk(t)− h2
i + h2

j ), i = 1, . . . , N. (39)

The terms K1 ∈ R1×3 and K2 ∈ R1×3 are the feedback gain matrices, which will be
defined later; aij is the (i, j)-th element of the adjacency matrix associated with G, and ξ̂1

ik(t),
ξ̂2

ik(t), ξ̂1
jk(t), and ξ̂2

jk(t) are the state estimations of ξ1
ik(t), ξ2

ik(t), ξ1
jk(t), and ξ2

jk(t). Moreover,

h1
i , h2

i , h1
j and h2

j are constant vectors that describe the formation structure in coordinates x
and y.

Considering the vectors hi =
[
h1

i h2
i
]T , ξ̂ i(t) =

[
ξ̂1

ik(t) ξ̂2
ik(t)

]T
and ξ̂ j(t) =[

ξ̂1
jk(t) ξ̂2

jk(t)
]T

, the consensus control law based on state estimation can be formulated
as a single control input for each agent:

ui(t) = K
N

∑
j=0

aij(ξ̂i(t)− ξ̂ j(t)− hi + hj), i = 1, . . . , N. (40)

where

K =

[
K1 0
0 K2

]
Then, the follower agent dynamics are given:{

ξ̇i(t) = Aξi(t) + Bui(t) + Būi(t)
ȳi(t) = Cξi(t)

(41)

where ūi(t) is the unknown input of the follower agent, which is affected by time-varying
delay τi(t).

Substitute the observer-based control law (40) into the follower agent system (41) of
agent i. By making use of the properties of the Kronecker product, one can rewrite this in
the following form:



Machines 2024, 12, 337 12 of 22

{
ξ̇(t) = (IN ⊗ A)ξ(t) + (L1 ⊗ BK)ξ̂(t) + (IN ⊗ B)ū(t)
ȳ(t) = (IN ⊗ C)ξ(t)

(42)

where ξ(t) =
[
ξT

1 (t), . . . , ξT
N(t)

]T , ū(t) =
[
ūT

1 (t), . . . , ūT
N(t)

]T , ȳ(t) =
[
ȳT

1 (t), . . . , ȳT
N(t)

]T

and ξ̂(t) =
[
ξ̂T

1 (t), . . . , ξ̂T
N(t)

]T
denotes the follower agent’s state estimation. This yields

the following follower agent system:{
ξ̇(t) = Ãξ(t) + K̃ξ̂(t) + B̃ū(t)
ȳ(t) = C̃ξ(t)

(43)

with Ã = (IN ⊗ A), K̃ = (L1 ⊗ BK), B̃ = (IN ⊗ B), C̃ = (IN ⊗ C) .
Now, the same estimation approach is used in the follower agent system; thus, un-

known input observers are applied to isolate the external disturbances with the unknown
boundary ūi(t), where the unknown delayed input of each agent is present ui(t − τi(t)).
For isolation of each delayed control input, an observer like a nonlinear unknown input
observer on agent i is constructed as follows:{

ẇi(t) = Nwi(t) + Jȳi(t)
ξ̂i(t) = wi(t) +Eȳi(t)

(44)

where wi(t) ∈ RN and ξ̂i(t) ∈ RN are the states of the observer, and the estimations of the
system states ξi(t) for each agent i. The constant matrices N, , J and E are chosen to make
ξ̂i(t) converge to ξi(t) in a delay-free case.

Now, based on the properties of the Kronecker product, one can formulate the follow-
ing unknown input observer on the agent:{

ẇ(t) = Nw(t) + Jȳ(t)
ξ̂(t) = w(t) + Eȳ(t)

(45)

where w(t) =
[
wT

1 (t), . . . , wT
N(t)

]T , N = (IN ⊗N), J = (IN ⊗ J), E = (IN ⊗E) .
Now, the following theorem is provided to ensure convergence of the proposed observer:

Theorem 3. The unknown inputs ūi(t) of the follower agent system (41) can be decoupled from
the state estimation under the unknown input observer (45) if the following conditions are satisfied:(

Ã − EC̃Ã + NEC̃ − JC̃
)
= N −

(
I − EC̃

)
K̃ (46)(

I − EC̃
)

B̃ = 0 (47)

where [N −
(

I − EC̃
)
K̃] is a Hurwitz matrix to achieve an exponential convergence of the obser-

vation error ē(t). This means the follower observers are not subject to the unknown time-varying
delay τi(t).

Proof. Now, the observation error is ē(t) = ξ(t)− ξ̂(t), and using Equations (43) and (45),
one obtains the following dynamics:

˙̄e(t) =ξ̇(t)− ˙̂ξ(t)

=
(
N −

(
I − EC̃

)
K̃
)
ē(t) +

(
Ã − EC̃Ã + NEC̃ − JC̃ − N +

(
I − EC̃

)
K̃
)
ξ(t)

+
(

I − EC̃
)

B̃ū(t) (48)

Then,

˙̄e(t) =
(
N − MK̃

)
ē(t) +

(
MÃ + NEC̃ − JC̃ − N + MK̃

)
ξ(t) + MB̃ū(t) (49)
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where M =
(

I − EC̃
)
. Since MB̃ = 0, using Lemma 1, one can easily obtain the matrix E.

In addition, the following assumption must be satisfied:

MÃ + NEC̃ − JC̃ + MK̃ = N

MÃ − LC̃ = N − MK̃

MÃ − LC̃ = Ñ (50)

where L = (J − NE) and the matrix Ñ = N − MK̃. It is worth recalling that the matrix K̃
depends on the gain matrix of the consensus control, which will be further detailed below.
Therefore, to guarantee the convergence of the observation error ē, one should satisfy
that Ñ = MÃ − LC̃ is a Hurwitz matrix, to ensure convergence of the observation error.
Therefore, Ñ should be placed anywhere in the complex s-plane by a suitable selection of
matrix L.

Based on the above, the dynamics of the observation error is given by ˙̄e(t) = Ñē(t),
where the Hurwitz matrix Ñ achieves exponential convergence of the observation error.
This means that the followers’ observers will be not subject to the unknown time-varying
delays τi(t).

Now, it is possible to design an observer-based control strategy to stabilize the follower
agents’ system, where the following observer-based control is considered:

ui(t) =K
N

∑
j=0

aij(ξ̂i(t)− ξ̂ j(t)− hi + hj) (51)

=K
N

∑
j=0

aij(wi(t)− wj(t) +EC(ξi(t)− ξ j(t))− hi + hj)

=K
N

∑
j=0

aij((In −EC)(ξi(t)− ξ j(t)) +EC(ξi(t)− ξ j(t))− ēi(t) + ēj(t)− hi + hj)

=K
N

∑
j=0

aij(ξi(t)− ξ j(t)− ēi(t) + ēj(t)− hi + hj)

Since all estimation errors ēi(t) and ēj(t) tend to zero, the control law can be simplified as

ui(t) = K
N

∑
j=0

aij(ξi(t)− ξ j(t)− hi + hj), i = 1, . . . , N. (52)

For the follower agents, let

ξ̄i(t) =ξi(t)− hi

ξ̃i(t) =ξ̄i(t)− ξ0(t)

According to Equations (29), (41) and (51), for i = 1, . . . , N, we have

˙̃ξi(t) = ˙̄ξi(t)− ξ̇0(t)

=Aξi(t) + BK
N

∑
j=0

aij(ξi(t)− ξ j(t)− hi + hj) + Būi(t)− [A + BK0]ξ0 − Bū0(t)

=Aξ̄i(t) + Ahi + BK
N

∑
j=0

aij(ξ̄i(t)− ξ̄ j(t)) + Būi(t)− [A + BK0]ξ0 − Bū0(t)
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Considering the new variables ũi(t) = ūi(t)− ū0(t) and Ā = A − A0, where A0 =

[A + BK0] is a stable matrix according to the solution of the LMI in Theorem 2. Then, ˙̃ξi(t)
is now defined as follows:

˙̃ξi(t) = Āξ̃i(t) + Ahi + BK
N

∑
j=0

aij(ξ̄i(t)− ξ̄ j(t)) + Bũi(t) (53)

It is important to note that the achievable formation structures must satisfy the con-
straints Ahi = 0. Therefore, the closed-loop dynamic of the followers is

˙̃ξ(t) = (IN ⊗ Ā + L1 ⊗ BK)ξ̃(t) + (IN ⊗ B)ũ(t) (54)

where ξ̃(t) =
[
ξ̃1(t), . . . , ξ̃N(t)

]T and ũ(t) = [ũ1(t), . . . , ũN(t)]
T. Now, as happened with the

leader agent, it is evident that the dynamics of the followers are influenced by the unknown
signal ũ(t). Therefore, the stability of the closed-loop system must also be guaranteed.

Theorem 4. For a direct communications graph G, the agents (41) reach the formation H̃ under
the protocol (52) if there exists a Pc > 0 such that the following inequation holds for α1 > α2 > 0:[

IN ⊗ Pc ĀT + L1 ⊗ WT BT + IN ⊗ ĀPc + L1 ⊗ BW + IN ⊗ α1Pc IN ⊗ B
IN ⊗ BT IN ⊗−α2 IN

]
< 0, (55)

where the control gain is K = WP−1
c , and it satisfies that Ahi = 0, ∀i = 1, . . . , N. Thus, the

observer-based control (40) of the follower agent system (41) is exponentially stable, even in the
presence of unknown time-varying delays τi. Then, the formation described by H̃ can be accomplished
for the leader–follower system (41) via the protocol (40).

Proof. Considering the quadratic function V(ξ̃) = ξ̃T(t)(In ⊗ P)ξ̃(t), one obtains the
following dynamics:

V̇(ξ̃) = ˙̃ξT(t)(IN ⊗ P)ξ̃(t) + ξ̃T(t)(IN ⊗ P) ˙̃ξ(t)

= ((IN ⊗ Ā + L1 ⊗ BK)ξ̃(t) + (IN ⊗ B)ũ(t))T(IN ⊗ P)ξ(t)

+ ξ̃(t)T(IN ⊗ P)((IN ⊗ Ā + L1 ⊗ BK)ξ̃(t) + (IN ⊗ B)ũ(t))

= ξ̃(t)T((IN ⊗ Ā + L1 ⊗ BK)T(IN ⊗ P) + (IN ⊗ P)(IN ⊗ Ā + L1 ⊗ BK))ξ̃(t)

+ ũ(t)T BT(IN ⊗ P)ξ̃(t) + ξ̃(t)T(IN ⊗ P)Bũ(t)) (56)

Then, Equation (56) can be expressed in matrix form as

V̇(ξ̃) =

[
ξ̃(t)
ũ(t)

]T[IN ⊗ ĀT P + LT
1 ⊗ KT BT P + IN ⊗ PĀ + L1 ⊗ PBK IN ⊗ PB

IN ⊗ BT P 0

][
ξ̃(t)
ũ(t)

]
(57)

Proceeding as in the stability analysis of the leader system, one can use Proposition 1,
and making use of a non-singular transformation, one obtains the following LMI:[

IN ⊗ Pc ĀT + L1 ⊗ WT BT + IN ⊗ ĀPc + L1 ⊗ BW + IN ⊗ α1Pc IN ⊗ B
IN ⊗ BT IN ⊗−α2 IN

]
< 0, (58)

where the control gain is K = WP−1
c and the positive constants α1 > α2 > 0 guarantee

the above LMI, which can ensure the exponential stability and the H∞ performance of the
follower system in the presence of the unknown inputs, being affected by the unknown
time-varying delays τi.
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4. Simulation Results

A numerical simulation was performed to validate the performance of the control
scheme based on an unknown input observer for the formation flight of three UAVs. For
this formation, consider the communication graph G in Figure 2, where node 0 is associated
with the leader agent and the other nodes are associated with the follower agents. Then,
the Laplacian matrix of the graph G is defined as follows:

L =

 0 0 0
−1 2 −1
−1 −1 2

 (59)

Figure 2. Communication graph G.

The formation structure is shown in Figure 3, where the followers (gray) have a
distance of d = 1 m in the y coordinate from the leader (red). Therefore, because the
leader is the origin of the formation, the vector h0 = [0 0 0 0 0 0]T . For the fol-
lower agents, constant vectors that describe the formation structure are h1 = −h2 =

[0 0 0 0 d 0]T .

Figure 3. Formation structure of the UAVs.

Furthermore, the linear dynamic model of altitude and attitude is given by (5), and
the control scheme was implemented according to (6)–(9). The parameters used in the
simulation are presented in Table 1. The translation movement is described by Equation (15)
with input delays as shown in Table 2. The observer-based consensus control for the
coordinates x and y was designed according to Equations (40) and (44), the feedback gain
matrices K1 = −K2 = [2.5775 3.3450 1.1890] were obtained through Theorem 4 with
α1 = 6 and α2 = 5. In addition, the observer gain selected was as follows:

L =



1 1 0 0 0 0
0 2.7 1 0 0 0
0 0 0.81 0 0 0
0 0 0 1 1 0
0 0 0 0 2.7 1
0 0 0 0 0 0.81

 (60)
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Table 1. Parameters employed in the simulations for each agent.

Model Control

Parameter Value Parameter Value Parameter Value

m [kg] 0.4 kiz 0.09 kpθ 50.88
g [m/s2] 9.807 kpz 4.29 kdθ 3.97
Ixxx [kg·m2] 0.177 kdz 2.69 kpψ 98.33
Iyyy [kg·m2] 0.177 kpϕ 65.18 kdψ 8.27
Izzz [kg·m2] 0.354 kdϕ 3.99

Table 2. Signal of input delays created for each agent.

Time-Varying Delays

t [10 s, 80 s)
τ0(t) 0.6 + 0.6 sin(0.6 t)
τ1(t) 0.8 + 0.8 sin(0.6 t)
τ2(t) 1 + sin(0.6 t)

Moreover, the control law based on an unknown input observer for the leader agent was de-
signed using Equations (17) and (19), the gain matrices K1

0 = −K2
0 = [1.6108 2.0904 0.8038]

were selected according to Theorem 2 with µ1 = 1.5 and µ2 = 1. In this agent, the observer
gain is the same as in Equation (60).

The desired trajectory rd, the initial conditions of the agents, and the unknown input
observer were as follows:

r0 =[0 0 0]T

r1 =[0.15 − 0.5 0]T

r2 =[0.3 0.8 0]T

η0 =[0 0 3π/2]T

η1 =[0 0 3π/4]T

η2 =[0 0 2π/5]T

w0 =[0 0.3 0.3 0 0.2 0.2]T

w1 =[0 0.4 0.1 0 0.6 0.2]T

w2 =[0 0.3 0.1 0 0.1 0.3]T

rd(t) =



[0 0 1]T i f t ≤ 10 s

[0 1 1]T i f 10 s < t ≤ 25 s

[1 1 1]T i f 25 s < t ≤ 40 s

[1 0 1]T i f 40 s < t ≤ 55 s

[0 0 1]T i f 55 s < t ≤ 80 s

Figure 4 shows the trajectories of all agents under the formation structure and Figure 5
shows the time-varying delays trajectories affecting the system. Note that, in this simulation,
the linear control law provided good tracking in altitude of all UAVs, as shown in Figure 6,
where the errors in z and ψ coordinates are close to zero. These results were because the
control scheme was independent of the translational movements.

Tracking errors in x, y, ϕ and θ coordinates are shown in Figure 7. It is appreciated that
there are peaks in the errors due to the reference changes and the presence of time-varying
delays. However, the proposed scheme caused the error to converge to zero, despite the
presence of distinct unknown delays.

Figure 8 illustrates the evolution of the x, y, ϕ, and θ coordinates of the leader vehicle,
where it is shown that the tracking performance is quite satisfactory. We can note that
when the desired x position changed at t = 25 s and t = 55 s, and the desired y position at
t = 10 s and t = 40 s, the effects of the input time-varying delay were visible and caused a
small tracking error in both the translation and rotation of the leader vehicle.
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Figure 4. Trajectories of all agents in formation.

Figure 5. Time-varying delay trajectories.

Figure 6. Tracking error of all agents in z and ψ coordinates.
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Figure 7. Tracking error of all agents in x, y, ϕ, and θ coordinates.

Figure 8. Trajectories of Agent 0 (Leader) in x, y, ϕ and θ coordinates.

Figure 9 shows the behavior of follower Agent 1. We can observe that it is evident that
the input time-varying delay impacted the follower more significantly than the leader. The
trajectories of x, y, ϕ, and θ remained unaffected, except when the desired position changed.
Moreover, the x coordinate was more affected by time-varying delays than the y coordinate;
the reason for this behavior was that, during the time intervals when the x coordinate
changed position, the functions τ0(t), τ1(t) and τ2(t) had periods of greater amplitude, as
shown in Figure 5, thus resulting in a more significant delay in the control input.

Figure 10 illustrates the results of follower Agent 2. Notably, the behavior closely
mirrored that of Agent 1, except for the initial part of the simulation, due to the initial
conditions. This is characteristic of such control schemes, wherein any signal delay in the
leader agent’s state inevitably ripples through the entire agent system.

In Figure 11, the estimation errors between ξ̂1 and ξ1 of all agents are depicted. It
is evident that the error approached zero, indicating the convergence of ξ̂1 to ξ1. Finally,
Figure 12 shows the estimation errors between ξ̂2 and ξ2 of all agents, we can see that the
proposed algorithm caused the error to converge to zero; thus, the effectiveness of the
designed control schemes based on state estimation was verified by isolating these errors
in all agents, despite the presence of distinct unknown delays.
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Figure 9. Trajectories of Agent 1 in x, y, ϕ and θ coordinates.

Figure 10. Trajectories of Agent 2 in x, y, ϕ and θ coordinates.

Figure 11. Error estimation between ξ̂1 and ξ1 of all agents.
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Figure 12. Error estimation between ξ̂2 and ξ2 of all agents.

5. Conclusions

This paper addressed an observer-based consensus tracking control algorithm for
multiple quadrotor unmanned aerial vehicles under the presence of unknown time-varying
delays. The state estimation, consensus, and tracking errors of the closed-loop system
converged to small values, and the stability of the proposed strategy was guaranteed
using Lyapunov theory for the leader and followers, despite a distinct unknown time-
varying delay. Future work includes extending the scheme to a multi-quadrotor nonlinear
dynamic model and control, and considering external disturbances, measurement noise,
and parametric uncertainty, as well as the case of fault isolation.
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