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Abstract: Hypercomplex numbers, which are multi-dimensional extensions of complex numbers,
have been proven beneficial in the development of advanced signal processing algorithms, including
multi-dimensional filter design, linear regression and classification. We focus on multicomplex
numbers, sets of hypercomplex numbers with commutative products, and introduce a vector repre-
sentation allowing one to isolate the hyperbolic real and imaginary parts of a multicomplex number.
The orthogonal decomposition of a multicomplex number is also discussed, and its connection with
Hadamard matrices is highlighted. Finally, a multicomplex polar representation is provided. These
properties are used to extend the standard complex baseband signal representation to the multi-
dimensional case. It is shown that a set of 2n Radio Frequency (RF) signals can be represented as the
real part of a single multicomplex signal modulated by several frequencies. The signal RFs are related
through a Hadamard matrix to the modulating frequencies adopted in the multicomplex baseband
representation. Moreover, an orthogonal decomposition is provided for the obtained multicomplex
baseband signal as a function of the complex baseband representations of the input RF signals.

Keywords: multicomplex numbers; Hadamard matrices; polar representation; orthogonal basis;
radio frequency; baseband signals
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1. Introduction

Hypercomplex numbers are multi-dimensional extensions of complex numbers provid-
ing convenient representations of vector signals and images [1,2]. Hypercomplex numbers
have been proven beneficial in the development of advanced signal processing algorithms,
including multi-dimensional filter design [3,4], adaptive algorithm optimization [5–8],
linear regression and classification [9]. While significant research effort has been devoted
to quaternions [10,11], a four-dimensional extension of complex numbers, several families
of hypercomplex numbers exist with different properties and are suitable for different
applications [3,12,13]. Quaternions are effective in representing 3D rotations [10] and have
the potential to capture relationships between different data channels [6]. However, they
feature a non-commutative product, which is seldom reflected in signal processing applica-
tions. For this reason, commutative hypercomplex algebras have been considered [8,14,15].
In [15], a set of commutative reduced biquaternions is introduced: this is a four dimensional
space with a commutative product. It is isomorphic to bicomplex numbers [16,17] and
tessarines [18]. All these sets have the potential to provide compact and effective signal
representations for four-dimensional signal processing. In the following, the term “bicom-
plex numbers” is used to denote four-dimensional commutative hypercomplex numbers.
Bicomplex numbers belong to the family of multicomplex numbers [17,19], which are
2n−1-dimensional extensions of complex numbers, where n defines the dimension of the
specific multicomplex space. Complex numbers are obtained for n = 1, whereas bicomplex
numbers are characterized by n = 2. Multicomplex numbers feature commutative products
and are suitable for representing systems where the order of factors in a product should
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not matter. For instance, bicomplex numbers are applied in Linear Time Invariant (LTI)
system design [20] and dual-frequency Global Navigation Satellite System (GNSS) signal
processing [21].

The purpose of this paper is twofold: first, to provide useful properties, including an
effective vector representation, for manipulating multicomplex numbers, and second, to
describe a possible application of multicomplex numbers for jointly representing signals
from different RFs. These contributions enable advanced applications such as the derivation
of multi-frequency acquisition and tracking algorithms for signal demodulation.

Multicomplex numbers are at first reviewed and a vector representation, in terms of
pure imaginary and hyperbolic units [12,22], is provided. The orthogonal decomposition
of a multicomplex number is also discussed and its connection with Hadamard matri-
ces highlighted [12,23]. Finally, a multicomplex polar representation is provided. This
representation involves vectors with imaginary and hyperbolic units and allows one to
segregate hyperbolic modulus and phase components. These properties are used to extend
the well-known baseband representation of an RF signal [24] to the multi-dimensional case.
In one dimension, an RF signal can be represented as the real part of the product between a
complex baseband signal and a complex exponential up-converting the signal to RF [24].
When two RF signals are considered, bicomplex numbers can be used to represent them as
the real part of the product between a bicomplex signal and a bicomplex exponential [21].
This exponential is modulated by two frequencies: the first up-converts the bicomplex
baseband signal to a common frequency, whereas the second splits it around the final
RFs. Analogously, a set of 2n RF signals can be represented as the real part of a single
multicomplex signal modulated by several frequencies. These frequencies are related to
the original signal RFs through the multiplication by a Hadamard matrix. Moreover, an
orthogonal decomposition is provided for the multicomplex baseband signal as a function
of the complex baseband representations of the input RF signals.

This work generalizes the analysis conducted in [21] that provided a baseband signal
representation formula for the bicomplex case. In the bicomplex case, these representation
formulas proved beneficial for algorithm design. The compact notation developed using
bicomplex numbers eased algorithm development and result interpretation. The properties
provided in the paper for multicomplex numbers have the potential to enable similar results
in more general cases, for instance, with more signal components.

The remainder of this paper is organized as follows: Section 2 introduces multicomplex
numbers, their representation in terms of hyperbolic and imaginary vectors and some basic
properties. Section 3 discusses the orthogonal decomposition of a multicomplex number,
whereas its polar representation is detailed in Section 4. Section 5 provides the multicomplex
baseband representation of 2n RF signals, and Section 6 concludes the paper.

2. Multicomplex Numbers

Multicomplex numbers are commutative algebras featuring the following:

• 1 real unit,
• 2n−1 imaginary units, which square to −1,
• 2n−1 − 1 hyperbolic units, which square to 1.

Each unit multiplies a real coefficient, making Cn isomorphic to R2n
. In the following,

the notation introduced by [17] is adopted, and the symbol Cn denotes a multicomplex
space of order n. C1 is used to denote the algebra of complex numbers, whereas C2 denotes
the space of bicomplex numbers [16].

C1 has one imaginary unit and no hyperbolic units, whereas bicomplex numbers are
characterized by one real unit, two imaginary units and one hyperbolic unit.

In order to represent a multicomplex number, it is convenient to introduce two vectors
containing the different real, imaginary and hyperbolic units generating Cn. Let jn be the
vector with 2n−1 imaginary units

jn = [j0, j1, ..., jM−1]
T , with M = 2n−1, (1)
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and kn be the vector with real and hyperbolic units

kn = [1, k1, ..., kM−1]
T , with M = 2n−1. (2)

Both jn and kn are column vectors of size M × 1. A multicomplex number, zn ∈ Cn, can
then be expressed as a function of jn and kn:

zn = kT
n aM + jT

n bM, (3)

where aM and bM are two real vectors of size M × 1. For n = 1, standard complex numbers
are found

z1 = kT
1 a1 + jT

1 b1 = a + j0b, (4)

where a and b are two real coefficients.
Vectors (1) and (2) can be constructed recursively. In particular,

• for n = 1,
j1 = [j0]T , k1 = [1]T (5)

• for n = 2,

j2 = [jT
1 j1kT

1 ]
T = [j0 j1]T

k2 = [kT
1 j1jT

1 ]
T = [1 j1 j0]T = [1 k1]

T
(6)

• for n = 3,

j3 = [jT
2 j2kT

2 ]
T = [j0 j1 j2 j2k1]

T = [j0 j1 j2 j3]T

k3 = [kT
2 j2jT

2 ]
T = [1 k1 j2 j0 j2 j1]T = [1 k1 k2 k3]

T
(7)

• in general,

jn = [jT
n−1 j2n−2 kT

n−1]
T

kn = [kT
n−1 j2n−2 jT

n−1]
T .

(8)

When passing from Cn−1 to Cn, a new imaginary unit j2n−2 , not available in Cn−1, is intro-
duced. The multiplication of j2n−2 with the elements of jn−1 leads to 2n−2 new hyperbolic
units, whereas the multiplication with the elements of kn−1 leads to 2n−2 new imaginary
units. This process is at the basis of the recursive construction of Cn from Cn−1 (Chapter 5)
of [17]. The validity of (8) can be proved by induction and requiring a commutative product
for Cn. The fact that the elements of j2n−2 kn−1 are new imaginary units can be shown
through simple algebraic manipulations. In particular, the square of the hth elements of
j2n−2 kn−1 is given by(

j2n−2+h
)2

= (j2n−2 kh)
2 = j2n−2 kh j2n−2 kh = j22n−2 k2

h = −1, (9)

where a commutative product has been assumed. By appending j2n−2 kn−1 to jn−1, one
finds the vector jn with all the imaginary units of Cn. In (9), the index of j2n−2+h is consistent
with the ordering of the elements in jn. This proves the first part of (8). The vector with
the real and hyperbolic units of Cn is found in a similar way. Note that (3) provides a
component-wise Cartesian representation of multicomplex numbers.
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2.1. Unit Representation and Multiplication

From recursive construction (8), it emerges that the different imaginary and hyperbolic
units are constructed as the product of basic imaginary units progressively introduced with
the construction of higher-order multicomplex spaces. These units are

j0, j1, j2, · · · , j2n−2 (10)

and Cn is characterized by n such units. A notation where only basic units, (10), are used
was adopted in [17]. In this paper, all the units are explicitly listed.

The recursive construction of the units of a multicomplex number (8) allows one to
explicitly write a multicomplex unit as the product of the basic units. In particular,

ki = jpn−1(i)
0

n−2

∏
h=0

jb(i,h)
2h , (11)

where b(i, h) is the value of the (h + 1)th digit of the binary representation of i

b(i, h) =
⌊

i
2h

⌋
mod 2. (12)

pn−1(i) is the parity bit associated to i. More specifically,

pm(i) =

(
m−1

∑
h=0

b(i, h)

)
mod 2. (13)

pn−1(i) is one if the number of 1s in the binary representation of i is odd and zero if it is
even. For the binary representation, n − 1 bits are considered. As an example, consider C5
and i = 13. In C5, there are 24 real/hyperbolic units, and i ranges from 0 to 15, with k0 = 1.
The binary representation of i = 13 is 1101; thus, p4(13) = 1 and

k13 = j18 j14 j02 j11 j10 = j8 j4 j1 j0.

Note that when elevated to 0, every number, including imaginary units, is equal to 1. A
hyperbolic unit always requires the product of an even number of imaginary units: this is
achieved through the parity function (13) and the introduction of j0, when required.
Similarly to (11), an imaginary unit can be expressed as

ji = j1−pn−1(i)
0

n−2

∏
h=0

jb(i,h)
2h . (14)

Equations (11) and (14) can be proven through induction. In particular, for n = 2

k0 = 1 j0 = j0
k1 = j0 j1 j1 = j1

, (15)

which trivially verifies (11) and (14). These conditions can be easily proven also for n = 3,
when three basic units, j0, j1 and j2, are available:

k0 = 1 j0 = j0
k1 = j0 j1 j1 = j1
k2 = j2 j0 j2 = j2
k3 = j2 j1 j3 = j0 j1 j2

. (16)

Note that the first part of (16) coincides with (15). This is due to the recursive construction
of multicomplex number spaces and to (8). The induction step can be verified assuming
that (11) and (14) are true for n − 1 and using (8). As already noted for n = 3, the first part
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of kn coincides with the elements of kn−1. These elements already verify (11) because of
the inductive hypothesis. The second part of the vector is obtained by multiplying jn−1 by
j2n−2 . The elements of this second part of the vector can be written as

k2n−2+i = j2n−2 ji = j2n−2 j1−pn−2(i)
0

n−3

∏
h=0

jb(i,h)
2h . (17)

The index 2n−2 + i has an extra bit set to 1 with respect to i, and its parity is equal to
1 − pn−2(i). Moreover, the multiplication by j2n−2 can be included in the main product
in (17). Thus,

k2n−2+i = jpn−1(2n−2+i)
0

n−2

∏
h=0

jb(2
n−2+i,h)

2h . (18)

This proves the induction step also for the elements in the second part of kn. The induction
step for the elements of jn is proven in a similar way.

From (11) and (14), it follows that the ratio between ji and ki is equal to

ji
ki

=
j1−pn−1(i)
0

jpn−1(i)
0

= j0 j−2pn−1(i)
0 = (−1)pn−1(i) j0. (19)

Equations (11) and (14) also provide a simple rule for multiplying the different units.
More specifically,

kikl = jpn−1(i)+pn−1(l)
0

n−2

∏
h=0

jb(i,h)+b(l,h)
2h

= (−1)s(i,l)ki⊕l ,

(20)

where i ⊕ l is the integer resulting from the bitwise XORing of the bits of i and l. s(i, l) is the
number of common ones in the binary representations of i and l including the parity bits:

s(i, j) =
n−2

∑
h=0

b(i, h)b(l, h) + pn−1(i)pn−1(l). (21)

A similar multiplication rule is obtained for the imaginary units

ji jl = j2−pn−1(i)−pn−1(l)
0

n−2

∏
h=0

jb(i,h)+b(l,h)
2h

= −(−1)pn−1(i)+pn−1(l)+s(i,l)ki⊕l

(22)

and for the cross-product:

jikl = (−1)pn−1(i) j0kikl = (−1)pn−1(i) j0(−1)s(i,l)ki⊕l

= −(−1)pn−1(i)+s(i,l) ji⊕l .
(23)

2.2. Multiplication by j0
An important property is the multiplication of vectors (1) and (2) with j0, the first basic

imaginary unit defining complex numbers. In particular,

jn = j0Dnkn, j0jn = −Dnkn

kn = −j0Dnjn, j0kn = Dnjn,
(24)
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where Dn is a diagonal matrix built recursively as

Dn =

[
Dn−1 02n−2×2n−2

02n−2×2n−2 −Dn−1

]
(25)

and 0a×b denotes a zero matrix of size a × b. For n = 1, D1 = 1. The proof of (24) is done
by induction. For n = 1,

j1 = [j0] k1 = [1]

and trivially
j0j1 = j0 · j0 = −1 = −D1k1,

which is the base case of the first equation in (24). Note that the two conditions in the
two equations in (24) are equivalent and one follows directly from the other through
multiplication by j0 and recalling that j20 = −1. Similarly,

j0k1 = j0 · 1 = j0 = D1j1,

which is the proof of the base case for the second condition in (24).
To prove the induction step, one assumes that (24) is true for n − 1 and uses recursive

formulas (8). In particular,

j0jn = j0[jT
n−1 j2n−2 kT

n−1]
T = [j0jT

n−1 j0 j2n−2 kT
n−1]

T

= [−(Dn−1kn−1)
T j2n−2(Dn−1jn−1)

T ]T

= −
[

Dn−1kn−1
−Dn−1 j2n−2 jn−1

]
= −

[
Dn−1 02n−2×2n−2

02n−2×2n−2 −Dn−1

][
kn−1

j2n−2 jn−1

]
= −Dnkn.

(26)

Equation (26) completes the proof for the first part of (24). The induction step for the second
condition is found in a similar way. The definition of Dn in (25) follows directly from the
recursive construction of the imaginary and hyperbolic vectors.

Multiplication formula (24) allows one to express kn as a function of kn−1 only. Starting
from the second equation in (8), one has:

kn =

[
kn−1

j2n−2 jn−1

]
=

[
kn−1

j2n−2 j0Dn−1kn−1

]
=

[
I2n−2

k2n−2 Dn−1

]
kn−1, (27)

where the first equation in (24) has been used to express jn−1 in terms of kn−1. Also note
that from the multiplication rules introduced in the previous section, k2n−2 = j2n−2 j0. In (27),
Ia denotes the identity matrix of size a × a.

The hyperbolic units in kn define hyperbolic spaces of dimension 2n−1 [22]. Hyperbolic
spaces are closed with respect to addition and multiplication and can be constructed
recursively using (27). In the following, the notation Dn will be used to denote a hyperbolic
space characterized by 1 real unit and 2n−1 − 1 hyperbolic units. For instance, D2 denotes
the set of hyperbolic numbers [22]. D1 coincides with the set of real numbers.

2.3. Conjugation, Hyperbolic Real and Imaginary Parts

Since there are several imaginary and hyperbolic units, it is possible to define several
conjugation operations for multicomplex numbers [8,16]. In the following, the
*-conjugation [16], which extends the standard conjugation for complex numbers, is consid-
ered. It is defined as follows:

z∗n = kT
n aM − jT

n bM (28)
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and it is obtained by negating the sign of all imaginary units. Using (28), one can obtain the
multicomplex equivalent of the real and imaginary parts of a complex number. In particular,

ℜk{zn} =
1
2
[zn + z∗n] = kT

n aM (29)

and
ℑk{zn} =

1
2j0

[zn − z∗n] =
1
j0

jT
n bM = kT

n DnbM. (30)

In (29) (and for analogy in (30)), an index ‘k’ has been added to distinguish the real part
operator, ℜ{·}, which isolates in a multicomplex number the real coefficient multiplying
the real unit, 1, from kT

n aM. In order to avoid confusion, (29) and (30) are denoted as
hyperbolic real and hyperbolic imaginary parts of a multicomplex number. Note that
both ℜk{zn} and ℑk{zn} belong to Dn, the 2n−1-dimensional hyperbolic space defined by
kn [22]. As already introduced above, Dn is a subspace of Cn and is closed with respect
to addition and multiplication. With respect to multicomplex numbers, Dn plays a role
similar to that of real numbers for complex numbers.

2.4. Multiplication of Multicomplex Numbers

Relationship (24) allows one to express a multicomplex number in terms of kn and j0
only. In particular,

zn = kT
n aM + j0kT

n DnbM = kT
n [aM + j0DnbM] = kT

n zM, (31)

which is the scalar product between the complex vector, zM, and kn. Equation (31) can be
used to perform multiplication between multicomplex numbers. Given two multicomplex
numbers, zn and yn, then

zn · yn = kT
n zMkT

n yM = zT
MknkT

n yM = zT
MKnyM, (32)

where Kn = knkT
n is a square symmetric matrix whose diagonal elements are equal to 1

and whose rows and columns are permutations of kn with possible sign changes. Kn is
essentially the multiplication table of the hyperbolic units. For instance,

K2 =

[
1 k1
k1 1

]
(33)

and

K3 =


1 k1 k2 k3
k1 1 −k3 −k2
k2 −k3 1 −k1
k3 −k2 −k1 1

. (34)

Kn can be constructed either using (20) or recursively as

Kn =

[
Kn−1 k2n−2 Kn−1Dn−1

k2n−2 Dn−1Kn−1 Dn−1Kn−1Dn−1

]
. (35)

Kn is directly related to the matrix representation of a multicomplex number and can be
used to implement multicomplex multiplication in software [25]. Let us denote wn as the
result of the product between two multicomplex numbers, zn and yn; then, wn = kT

n wM
with wM the vector containing the complex components of wn. It is possible to show that

wM = ZnyM (36)
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where Zn is a 2n−1 × 2n−1 symmetric matrix obtained by replacing the elements of Kn with
the corresponding coefficients in zM: 1s are replaced by the first element in zM, k1 with the
second, k2 with the third and so on. Zn is a matrix representation of zn.

3. Orthogonal Decomposition

Multicomplex numbers are characterized by sets of orthogonal idempotent units,
which allow the decomposition of a multicomplex number into orthogonal components [17].
The set of bicomplex numbers C2 is characterized by 2 orthogonal idempotent units [16]

e2,0 =
1 − k1

2
, e2,1 =

1 + k1

2
. (37)

Any power of e2,0 and e2,1 is equal to the original base value, either e2,0 or e2,1. Moreover,
e2,0e2,1 = 0. Any bicomplex number can be expressed as

z2 = z2,0e2,0 + z2,1e2,1, (38)

where z2,0 and z2,1 ∈ C1. Orthogonal decomposition (38) allows one to perform operations
on bicomplex numbers in terms of the orthogonal components z2,0 and z2,1.

For higher-dimensional spaces, the set of orthogonal idempotent units can be con-
structed recursively [17]. Moreover, since there exists several hyperbolic units, it is possible
to construct several sets of orthogonal idempotent units. In the following, we use the set
containing the following units:

en,i =
n−2

∏
h=0

1 − (−1)b(i,h)k2h

2
i = 0, ..., 2n−2, (39)

where b(i, h) has been defined in (12). For instance, for n = 3, four orthogonal idempotent
units are found:

e3,0 =
1 − k2

2
1 − k1

2
, e3,1 =

1 − k2

2
1 + k1

2

e3,2 =
1 + k2

2
1 − k1

2
, e3,3 =

1 + k2

2
1 + k1

2
.

(40)

Note that (39) can be implemented in a recursive way:

en,i = en−1,i
1 − k2n−2

2

en,i+2n−2 = en−1,i
1 + k2n−2

2
.

(41)

The 2n−1 orthogonal idempotent units can be arranged in a vector

en =
[
en,0, en,1, · · · en,2n−1−1

]T , (42)

which has the same size of kn. en can be reconstructed recursively as

en =

[
en−1

1−k2n−2
2

en−1
1+k2n−2

2

]
= en−1 ⊗

[ 1−k2n−2
2

1+k2n−2
2

]
(43)

where ⊗ denotes the Kronecker product. The same equation can be written using the
standard matrix product as follows:

en =

[
I2n−2

1−k2n−2
2

I2n−2
1+k2n−2

2

]
en−1. (44)
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For n = 2, it is simple to verify that

k2 =

[
1
k1

]
=

[
1 1
−1 1

]
e2 =

[
1 1
−1 1

][ 1−k1
2

1+k1
2

]
. (45)

The last matrix appearing in (45) can be expressed as[
1 1
−1 1

]
=

[
1 0
0 −1

][
1 1
1 −1

]
= D2H2, (46)

where D2 is the diagonal matrix introduced in (25) and H2 is a Hadamard matrix of
order 2 [23]. A Hadamard matrix is a square matrix whose entries are equal to either
1 or −1. Moreover, its rows are mutually orthogonal. There exists several construction
procedures for obtaining Hadamard matrices that are considered equivalent if they lead
to matrices differing only for sign changes in the rows or columns or for row or column
permutations. The construction rule adopted here is specified in the following. Thus, (45)
can be expressed as

k2 = D2H2e2 (47)

or equivalently

e2 =
1
2
(D2H2)

Tk2, (48)

where the following properties have been exploited

D−1
n = Dn = DT

n (49)

and
H−1

M =
1
M

HT
M. (50)

A relationship similar to (47) exists for n = 3. In particular,

k3 =


1
k1
k2
k3

 and e3 =


1−k1

2
1−k2

2
1+k1

2
1−k2

2
1−k1

2
1+k2

2
1+k1

2
1+k2

2

. (51)

These two vectors are related by

k3 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1

e3 (52)

where
1 1 1 1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1




1 1 1 1
1 −1 1 −1
1 1 −1 −1
−1 1 1 −1

 = D3H4. (53)

H4 is a Hadamard matrix of order 4 = 23−1. Thus,

k3 = D3H4e3 or e3 =
1
4
(D3H4)

Tk3 (54)
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Equations (48) and (54) suggest that there is a simple relationship between the vector of the
hyperbolic units, kn, and the one of the orthogonal basis en. The general relationship

en =
1

2n−1 (DnH2n−1)
Tkn (55)

can be proven by induction if the following construction rule is adopted for H2n−1 :

H2n−1 =

[
H2n−2 H2n−2

Dn−1H2n−2 −Dn−1H2n−2

]
. (56)

The only difference with respect to the Sylvester’s construction for Hadamard matrices [23]
is the presence of the diagonal matrix Dn−1, which contains only 1s and −1s and introduces
some sign changes for the rows of the resulting matrices.

The base step has already been proven for n = 2. The induction step is proven starting
from (44):

en =

[
I2n−2

1−k2n−2
2

I2n−2
1+k2n−2

2

]
en−1 =

1
2

[
I2n−2 −I2n−2

I2n−2 I2n−2

][
I2n−2

I2n−2 k2n−2

]
en−1

=
1
2

[
I2n−2 −I2n−2

I2n−2 I2n−2

][
I2n−2

I2n−2 k2n−2

](
1

2n−2 Dn−1H2n−2

)T
kn−1,

(57)

where (55) has been assumed to be true for n − 1. By performing the different matrix
products, (57) becomes

en =
1

2n−1

[
I2n−2 −I2n−2

I2n−2 I2n−2

][
(Dn−1H2n−2)

Tkn−1

(Dn−1H2n−2)
Tk2n−2 kn−1

]

=
1

2n−1

[
(Dn−1H2n−2)

Tkn−1 − (Dn−1H2n−2)
Tk2n−2 kn−1

(Dn−1H2n−2)
Tkn−1 + (Dn−1H2n−2)

Tk2n−2 kn−1

]

=
1

2n−1

[
(Dn−1H2n−2)

T [I2n−2 − Dn−1k2n−2 Dn−1]kn−1

(Dn−1H2n−2)
T [I2n−2 + Dn−1k2n−2 Dn−1]kn−1

]

=
1

2n−1

[
(Dn−1H2n−2)

T −(Dn−1H2n−2)
TDn−1

(Dn−1H2n−2)
T (Dn−1H2n−2)

TDn−1

][
I2n−1

k2n−2 Dn−1

]
kn−1

=
1

2n−1

[
(Dn−1H2n−2)

T −HT
2n−2

(Dn−1H2n−2)
T HT

2n−2

]
kn,

(58)

where (27) and the properties of Dn have been exploited.
It is easy to verify that the matrix in the last line of (58) is the transpose of DnH2n−1 :

DnH2n−1 =

[
Dn−1 02n−2×2n−2

02n−2×2n−2 −Dn−1

][
H2n−2 H2n−2

Dn−1H2n−2 −Dn−1H2n−2

]
=

[
Dn−1H2n−2 Dn−1H2n−2

−H2n−2 H2n−2

]
.

(59)

This completes the proof of (55) and of the inverse relationship

kn = DnH2n−1 en. (60)

Using (60), it is possible to express zn in terms of its orthogonal components. More specifically,

zn = eT
n (DnH2n−1)TzM = eT

n zO
M, (61)
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where
zO

M = (DnH2n−1)TzM (62)

is the vector with the orthogonal components of zn. zO
M is obtained through a Hadamard

transform of the original vector zM, and its elements belong to C1.
Equation (61) provides an alternative way to perform multiplication between multi-

complex numbers:

wn = zn · yn =
(

zO
M

)T
eneT

n yO
M = eT

n wO
M, (63)

where the components of the vector wO
M are obtained as the product of the corresponding

elements in zO and yO. Note that En = eneT
n is a square diagonal matrix whose elements

are the idempotent units of en. This is why it is possible to operate component-wise in
the product (63). Orthogonal component decomposition can also be exploited to compute
several functions of multicomplex numbers defined, for instance, in terms of convergent
power series [26].

4. Polar Representation

In the previous section, a Cartesian representation, in terms of hyperbolic real and
imaginary parts, was given for multicomplex numbers. Similarly to complex numbers, it is
also possible to provide a polar representation for zn. In particular, it is possible to express
a multicomplex number as

zn = kT
n rM exp

{
jT
n ΦM

}
= kT

n rM exp
{

j0kT
n DnΦM

}
, (64)

where rM and ΦM are real vectors of size M = 2n−1 containing modulus and phase informa-
tion, respectively. Product kT

n rM defines the hyperbolic modulus ∈ Dn, whereas kT
n DnΦM

is the hyperbolic phase also belonging to Dn. Note that exponential and trigonometric
functions maintain their usual properties when evaluated on multicomplex numbers [26].
A proof of these properties, which include Euler’s formulas, can be found in [26].

Euler’s formula can be used to compute the hyperbolic real and imaginary parts from
the hyperbolic modulus and phase. More specifically, it follows that

kT
n aM = kT

n rM cos
(

kT
n DnΦM

)
kT

n DnbM = kT
n rM sin

(
kT

n DnΦM

) (65)

The terms on the right-hand sides of (65) are products of multi-dimensional hyperbolic
numbers. The cosine and sine functions can be computed either recursively, using trigono-
metric addition and subtraction formulas [25] or using the orthogonal decomposition of a
multicomplex number.

The hyperbolic modulus kT
n rM can be obtained through conjugation (28). Note that

z∗n = kT
n rM exp

{
−j0kT

n DnΦM

}
. (66)

Thus,
|zn|2k = zn · z∗n = (kT

n rM)2 = zT
MKnz∗M = kT

n Znz∗M, (67)

where conjugation is applied to the components of zM and Zn is the matrix obtained
from zM according to the procedure detailed in Section 2.4. A more efficient approach
for determining the components of kT

n rM is to use the orthogonal decomposition of a
multicomplex number. From (63), it follows that the orthogonal components of |zn|2k are
the square moduli of the elements of zO

M. Similarly, the orthogonal components of kT
n rM

are the moduli of the orthogonal components of zM.
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In a similar way, it is possible to show that the hyperbolic phase vector ΦM can be obtained
from the phases of the orthogonal components of zM. Let

ΦO
M =


∠zO

M,0
∠zO

M,1
...

∠zO
M,M−1

 (68)

be the vector with the phases of the orthogonal components of zM that are the phases of
the elements of zO

M. The hyperbolic phase vector is finally computed as

ΦM =
1

2n−1 H2n−1 ΦO
M. (69)

Equation (69) is obtained from (62) by taking into account that ΦM is referred to jn instead
of kn.

5. Baseband Representation of 2n−1 RF Signals

A single RF signal modulated at f0

xRF(t) = xI(t) cos(2π f0t) + xQ(t) sin(2π f0t) (70)

can always be expressed as [24]

xRF(t) = ℜ{x(t) exp{j02π f0t}} (71)

with x(t) = xI(y)− j0xQ(t) ∈ C1. x(t) is the complex baseband representation of xRF(t),
and ℜ{·} is the real part operator. As already discussed, ℜ{·} isolates the coefficient
multiplying the real unit of a (multi)complex number and should not be confused with
the hyperbolic real part ℜk{·}. Similarly, when two RF signals, x0,RF(t) and x1,RF(t), are
considered, it is possible to obtain the following bicomplex baseband representation [21]:

z2,RF(t) = x0,RF(t) + x1,RF(t)

= ℜ{x0(t) exp{j02π fX,0t}}+ℜ{x1(t) exp{j02π fX,1t}}
= ℜ{[x0(t) exp{j02π f1t}+ x1(t) exp{−j02π f1t}] exp{j02π f0t}},

(72)

where fX,0 and fX,1 are two RFs and x0(t) and x1(t) the complex baseband versions of
x0,RF(t) and x1,RF(t), respectively. The following transformation has been introduced on
the two RFs fX,0 and fX,1:[

f0
f1

]
=

1
2

[
1 1
1 −1

][
fX,0
fX,1

]
=

1
2

H2

[
fX,0
fX,1

]
. (73)

By expanding the terms in square brackets in (72), one finds

z2,RF(t) = ℜ{[[x0(t) + x1(t)] cos(2π f1t) + j0[x0(t)− x1(t)] sin(2π f1t)]
exp{j02π f0t}}.

(74)

The term in the outer square brackets in (74) can be written as the real part of the product
of two bicomplex numbers. In particular, let us define

z2,I(t) = x0(t) + x1(t)

z2,Q(t) = j0[x0(t)− x1(t)]
z2(t) = z2,I(t)− j1z2,Q(t) ∈ C2,

(75)
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then

z2,RF(t) = ℜ{z(t) exp{j12π f1t} exp{j02π f0t}} = ℜ
{

z(t) exp
{

2πjT
2 f2t

}}
(76)

where f2 = [ f0 f1]
T .

We want to prove that, for an arbitrary n, the sum of 2n−1 RF signals can be ex-
pressed as

zn,RF = ℜ
{

zn(t) exp
{

2πjT
n fnt

}}
, (77)

where zn,RF(t) = ∑2n−1−1
i=0 xi,RF(t) and zn(t) ∈ Cn. fn is a vector of 2n−1 frequencies. Each

real signal, xi,RF(t), is modulated into a different RF, fX,i, and fn is obtained through a
linear transformation of the vector of the original RFs:

fn =
1

2n−1 H2n−1 fX,n =
1

2n−1 H2n−1


fX,0
fX,1

...
fX,2n−1−1

, (78)

where H2n−1 is the Hadamard matrix defined in (56). For n = 1, H1 = 1, whereas H2 is
found in the right side of (73). A proof of (77) is given by induction: the base step has
already been proved for n = 1 and n = 2. The induction step assumes as true (77) is true
for n = k. Under this assumption, it is necessary to prove (77) for n = k + 1. To do so, it is
possible to split zk+1,RF(t) as the sum of two groups of RF signals:

zk+1,RF(t) =
2k−1−1

∑
i=0

xi,RF(t) +
2k−1−1

∑
i=0

xi+2k−1,RF(t). (79)

The first summation, ∑2k−1−1
i=0 xi,RF(t), is denoted z0

k,RF(t), whereas the second term is
denoted as z1

k,RF(t). Thus,

zk+1,RF(t) = z0
k,RF(t) + z1

k,RF(t). (80)

The inductive hypothesis can be applied to both components in (80):

zk+1,RF(t) = ℜ
{

z0
k(t)e

2πjT
k fk,0t

}
+ℜ

{
z1

k(t)e
2πjT

k fk,1t
}

, (81)

where both z0
k(t) and z1

k(t) ∈ Ck. The frequency vectors in (81) are obtained as

fk,0 =
1

2k−1 H2k−1


fX,0
fX,1

...
fX,2k−1−1

 =
1

2k−1

[
H2k−1 02k−1×2k−1

]
fX,k+1,

fk,1 =
1

2k−1 H2k−1


fX,2k−1

fX,2k−1+1
...

fX,2k−1

 =
1

2k−1

[
02k−1×2k−1 H2k−1

]
fX,k+1.

(82)

The following transformation is applied to fk,0 and fk,1:

fk,+ =
1
2
[fk,0 + fk,1], fk,− =

1
2
[fk,0 − fk,1]. (83)
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The inverse of (83) is

fk,0 = fk,+ + fk,−, fk,1 = fk,+ − fk,−. (84)

By applying (84) to (81), one obtains

zk+1,RF(t)

= ℜ
{

z0
k(t)e

2πjT
k [fk,++fk,−]t + z1

k(t)e
2πjT

k [fk,+−fk,−]t
}

= ℜ
{[

z0
k(t)e

2πjT
k fk,−t + z1

k(t)e
−2πjT

k fk,−t
]
e2πjT

k fk,+t
}

.

(85)

The vector with the imaginary units jk can be expressed as j0Dkkk using (24). Thus, the
signal within square brackets in (85) can be written as

z0
k(t)e

2πjT
k fk,−t + z1

k(t)e
−2πjT

k fk,−t

= z0
k(t)e

2π j0kT
k DT

k fk,−t + z1
k(t)e

−2π j0kT
k DT

k fk,−t

= z0
k(t) cos

(
2πkT

k DT
k fk,−t

)
+ j0z0

k(t) sin
(

2πkT
k DT

k fk,−t
)

+ z1
k(t) cos

(
2πkT

k DT
k fk,−t

)
− j0z1

k(t) sin
(

2πkT
k DT

k fk,−t
)

=
[
z0

k(t) + z1
k(t)

]
cos
(

2πkT
k DT

k fk,−t
)
+ j0

[
z0

k(t)− z1
k(t)

]
sin
(

2πkT
k DT

k fk,−t
)

(86)

In the last equation, trigonometric properties including the Euler’s formulas have been
used [26]. In analogy to the proof provided for the bicomplex case, we can define a new
signal in Ck+1:

zk+1,I(t) = z0
k(t) + z1

k(t)

zk+1,Q(t) = j0
[
z0

k(t)− z1
k(t)

]
zk+1(t) = zk+1,I(t)− j2k−1 zk+1,Q(t) ∈ Ck+1,

(87)

where j2k−1 is the new base imaginary unit generating Ck+1 from Ck. At the same time, it is
possible to introduce the multicomplex exponential:

e2π j2k−1 kT
k DT

k fk,−t = cos
(

2πkT
k DT

k fk,−t
)
+ j2k−1 sin

(
2πkT

k DT
k fk,−t

)
. (88)

Using (87) and (88), it is finally possible to express (86) as

z0
k(t)e

2πjT
k fk,−t + z1

k(t)e
−2πjT

k fk,−t = ℜj2k−1
{

zk+1(t)e
2π j2k−1 kT

k DT
k fk,−t

}
. (89)

In this case, ℜj2k−1 {·} denotes the real part operation only with respect to the j2k−1 unit, i.e.,

ℜj2k−1 {zk+1} =
1
2

[
zk+1 + z

∗j2k−1
k+1

]
(90)

where zk+1 ∈ Ck+1 and z
∗j2k−1
k+1 is its j2k−1-conjugate obtained by negating the sign of the

terms multiplying the j2k−1 unit. If (87) is considered, the real part of zk+1(t) with respect to
j2k−1 is zk+1,I(t). Using these properties, (85) becomes
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zk+1,RF(t) = ℜ
{

zk+1(t)e
2π j2k−1 kT

k DT
k fk,−te2πjT

k fk,+t
}

= ℜ

zk+1(t)e
2π
[

jT
k j2k−1 kT

k

][ fk,+
DT

k fk,−

]
t


= ℜ

{
zk+1(t)e

2πjT
k+1fk+1t

}
,

(91)

which completes the proof of (77). Equation (91) provides a way to compute fk+1, which is
given by the following:

fk+1 =

[
fk,+

DT
k fk,−

]
=

[
I2k−1 02k−1×2k−1

02k−1×2k−1 Dk

][
fk,+
fk,−

]
=

1
2

[
I2k−1 I2k−1

Dk −Dk

][
fk,0
fk,1

]
=

1
2k

[
I2k−1 I2k−1

Dk −Dk

][
H2k−1 02k−1×2k−1

02k−1×2k−1 H2k−1

]
fX,k+1

=
1
2k

[
H2k−1 H2k−1

DkH2k−1 −DkH2k−1

]
fX,k+1 =

1
2k H2k fX,k+1.

(92)

Equation (92) completes the proof of (78) and provides a way to recursively compute H2k .
This construction coincides with (56). Moreover, (78) is analogous to (69), where phase
vectors have been replaced by frequency vectors.

Formula (77) provides an alternative way to describe a modulation process involving
signals from several frequencies. Consider, for instance, the signals broadcast by GNSS.
Galileo, the European GNSS, currently broadcasts Open Service (OS) signals on four
different frequencies [27]. These signals are transmitted synchronously and coherently and
can be jointly used to estimate the user position. A summary of the Galileo frequency plan
is provided in the top part of Figure 1, which also describes the associated RF up-conversion
process according to multicomplex modulation formula (77).

Galileo satellites currently broadcast signals into the E5a (1176.45 MHz), E5b
(1207.14 MHz), E6 (1278.75 MHz) and E1 (1575.42 MHz) frequency bands. Different modula-
tions are adopted including Binary Phase Shifting Keying (BPSK) and Binary Offset Car-
rier (BOC) signals. The four components depicted in the top part of Figure 1 are schematic
representations of the spectra of the four Galileo OS signals. These four components can
be thought of as a single baseband multicomplex signal ∈ C3 modulated through (77) to
different RFs. This modulation process is obtained considering the frequencies computed
using (92). The four components are first brought to a common RF, which corresponds to
the average of the four final signal RFs. This common frequency is obtained by consider-
ing the first row of the Hadamard matrix, H4. The other frequencies obtained from (92)
progressively split the four signal components on different RFs. This modulation model
can be used for the design of advanced demodulation processes as demonstrated in [21]
for bicomplex signals: having a single multicomplex model allows one to jointly use all
available components to estimate common frequency terms.
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Figure 1. Schematic representation of the Galileo OS frequency plan (top part) and representation of
the associated RF up-conversion process as a multicomplex modulation.

Orthogonal Decomposition

Using the set defined by (39), it is possible to derive the orthogonal decomposition of
the multicomplex baseband signal zn(t). In particular,

zn(t) = 2n−1
2n−1−1

∑
i=0

xi(t)en,i (93)

where xi(t) is the baseband version of the ith RF signal xi,RF(t) introduced in (79). Also,
in this case, the proof is done by induction. A proof for the induction base can be found
in [21] for bicomplex numbers. In order to prove the induction step, one assumes (93) is
true for n − 1 and proves its validity for n. From (87), it follows

zn(t) = zn,I(t)− j2n−2 zn,Q(t)

=
[
z0

n−1(t) + z1
n−1(t)

]
− j0 j2n−2

[
z0

n−1(t)− z1
n−1(t)

]
= 2z0

n−1(t)
1 − k2n−2

2
+ 2z1

n−1(t)
1 + k2n−2

2
.

(94)

By applying the induction hypothesis to both z0
n−1(t) and z1

n−1(t), one has

z0
n−1(t) = 2n−2

2n−2−1

∑
i=0

xi(t)en−1,i

z1
n−1(t) = 2n−2

2n−2−1

∑
i=0

xi+2n−2(t)en−1,i

(95)

where xi(t) and xi+2n−2(t) are the baseband versions of the RF signals introduced in (79).
The proof of the induction step is finally obtained by combining (94) and (95) and exploiting
recursive relationships (41).
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Equation (93) provides a simple way to determine zn(t) from the baseband complex
version of the original RF signals, xi,RF(t). This process is illustrated in Figure 2, which
shows the scatter plots of four baseband Quadrature Phase Shift Keying (QPSK) signals
affected by noise. The signals are sampled, and each point in the figure represents a
single data symbol. This type of modulation is widely used in many communication and
navigation systems.
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Baseband signals, orthogonal components

Figure 2. Scatter plots of four baseband QPSK signals affected by noise. The signals are used as
orthogonal components to form a single multicomplex signal ∈ C3 according to (93).

The signals are used as orthogonal components to form zn(t) according to (93): the
resulting signal is shown in Figure 3. zn(t) is expressed as kT

3 zM(t) with zM(t) a four-
dimensional complex vector: each box in Figure 3 represents a different component of
zM(t). These components are obtained through a Hadamard transform, and the QPSK
modulations depicted in Figure 2 are mapped to higher-order Quadrature Amplitude
Modulation (QAM) modulations.
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Components of the zM vector

Figure 3. Scatter plots of the four complex components of zn(t). zn(t) is expressed as kT
3 zM(t) with

zM(t) a four-dimensional complex vector. Each subplot represents a different component of zM(t).
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Note that the symbols shown in the four boxes of Figure 3 have different probabilities
to occur. This happens even if the symbols in the original QPSK modulations were selected
with uniform probabilities.

The four real components of the hyperbolic modulus of the multicomplex signal
depicted in Figure 3 are provided in Figure 4 as a function of time. From the figure, it
emerges that the signal energy is concentrated on the real component of the hyperbolic
modulus, whereas the other components are zero mean and contain only noise.
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Figure 4. Hyperbolic modulus of the multicomplex signal obtained in Figure 3. The four real
components of the hyperbolic modulus are depicted separately as a function of time.

The real part of the hyperbolic modulus is equal to the average of the absolute values
of the orthogonal components. In this example, the orthogonal components are the four
QPSK signals multiplied by four (that is 23−1). If noise is neglected, the symbols in Figure 2
are all of the form ±1 ± j0 and have all absolute values equal to

√
2. Thus, the real part

of the hyperbolic modulus in Figure 4 assumes values close to 4
√

2 ≈ 5.66. The other
components, which multiply the hyperbolic units, k1, k2 and k3, are close to zero as a result
of the mixing effect of the Hadamard transform. In [21], it was shown that communication
parameters required for the reception of bicomplex signals can be estimated through the
maximization of the real part of their hyperbolic modulus. Indeed, when properly aligned
in phase, the components multiplying the hyperbolic units should be minimized.

6. Discussion

In this paper, multicomplex numbers were first reviewed, and a representation based
on vectors with pure imaginary and hyperbolic units was proposed. Orthogonal decompo-
sition and polar representation were also considered. Properties of multicomplex numbers
have been used to derive a generalized baseband signal representation formula. In par-
ticular, it was shown that a set of 2n−1 RF signals admits a single multicomplex baseband
representation. The sum of the RF signals is indeed given by the real part of the product of
a multicomplex baseband signal and a multicomplex exponential that is used to up-convert
the different components to different RFs. An orthogonal decomposition formula for the
multicomplex baseband signal was also provided. The frequencies appearing in the multi-
complex exponential used for the up-conversion process are obtained as the Hadamard
transform of the original signal RFs. This is the same relationship existing between the
phases of the polar representation of a multicomplex number and the phases of its or-
thogonal components. Thus, the obtained polar representation can be used for the design
of multi-dimensional Phase Lock Loops (PLLs) for the recovery and down-conversion of
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multiple RF signals. The multicomplex representation obtained will be used for the design
of multi-frequency acquisition and tracking algorithms jointly processing several signals
from different RFs.
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