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Milovanović, Roman Dmytryshyn

and Jie Xiao

Received: 28 March 2024

Revised: 21 April 2024

Accepted: 9 May 2024

Published: 10 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A New Closed-Form Formula of the Gauss Hypergeometric
Function at Specific Arguments
Yue-Wu Li 1 and Feng Qi 2,3,*

1 School of Mathematics and Physics, Hulunbuir University, Hulunbuir 021008, China; yuewul@126.com
2 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo 454010, China
3 Independent Researcher, University Village, Dallas, TX 75252, USA
* Correspondence: honest.john.china@gmail.com

Abstract: In this paper, the authors briefly review some closed-form formulas of the Gauss hyperge-
ometric function at specific arguments, alternatively prove four of these formulas, newly extend a
closed-form formula of the Gauss hypergeometric function at some specific arguments, successfully
apply a special case of the newly extended closed-form formula to derive an alternative form for the
Maclaurin power series expansion of the Wilf function, and discover two novel increasing rational
approximations to a quarter of the circular constant.
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1. Simple Preliminaries

For αi ∈ C, βi ∈ C \ {0,−1,−2, . . . }, p, q ∈ N = {1, 2, . . . }, and z ∈ C, in terms of the
rising factorial, also known as the Pochhammer symbol,

(z)n =
n−1

∏
ℓ=0

(z + ℓ) =

{
z(z + 1) · · · (z + n − 1), n ∈ N;
1, n = 0,

the generalized hypergeometric series is defined in [1] (p. 1020) by

pFq(α1, α2, . . . , αp; β1, β2, . . . , βq; z) =
∞

∑
n=0

(α1)n(α2)n · · · (αp)n

(β1)n(β2)n · · · (βq)n

zn

n!
. (1)

In particular, when taking (p, q) = (2, 1) in (1), the function 2F1(α1, α2; β1; z) is called the
Gauss hypergeometric function. See also [2] (Chapter II) and [3] (Chapter 14).

The classical Euler gamma function Γ(z) can be defined [4] (Chapter 3) by

Γ(z) = lim
n→∞

n!nz

∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

The logarithmic derivative [ln Γ(z)]′ = Γ′(z)
Γ(z) is denoted by ψ(z) and is called the psi function

or the digamma function. The reciprocal 1
Γ(z) is an entire function possessing simple zeros

at the points 1 − k for k ∈ N (see [5] (p. 255, Entry 6.1.3)). The beta function B(z, w) can be
defined by

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, z, w ∈ C \ {0,−1,−2, . . . }. (2)
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We note that the definition (2) of B(z, w) extends the following classical definition:

B(z, w) =
∫ 1

0
tz−1(1 − t)w−1 dt =

∫ ∞

0

tz−1

(1 + t)z+w dt, ℜ(z),ℜ(w) > 0.

2. A Brief Review

In general, it is not easy to write out elementary, closed-form, explicit expressions of
the Gauss hypergeometric function 2F1(a, b; c; z) at specific arguments (a, b; c; z). See the
short and simple review in [6] (Section 4).

In the paper [7], the authors reviewed many results obtained in the papers [8–10] and
other historical literature about the generalized hypergeometric series pFq. In the recently
published papers [11–14], the authors derived more significant conclusions for pFq at some
specific arguments.

Entry 15.1.21 in [5] (p. 557), Corollary 3.1.2 in [15] (p. 126), Entry 15.4.6 in [16] (p. 387),
Theorem 26 in [17] (p. 68), and the first equality in [18] (p. 184, Section 4.13) read that, for
a − b + 1 ̸= 0,−1,−2, . . . ,

2F1(a, b; a − b + 1;−1) =
Γ(a − b + 1)Γ

( a
2 + 1

)
Γ(a + 1)Γ

( a
2 − b + 1

) =

√
π

2a
Γ(a − b + 1)

Γ
( a

2 − b + 1
)
Γ
( a

2 + 1
2
) . (3)

Entry 15.1.22 in [5] (p. 557) states that, for a − b + 2 ̸= 0,−1,−2, . . . ,

2F1(a, b; a − b + 2;−1) =
√

π

2a
Γ(a − b + 2)

b − 1

[
1

Γ
( a

2
)
Γ
( a

2 − b + 3
2
) − 1

Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 1
)]. (4)

In [19] (pp. 453–496, Section 7.3), the authors included many closed-form expressions
of 2F1(a, b; c, z) for specific values of (a, b; c, z), including the following data: Formulas (3)
and (4); many values of 2F1(a, b; c,±1) for specific (a, b; c); many values of 2F1

(
a, b; c, 1

2
)

for specific (a, b; c); many values of 2F1(−n, b; c, 2) for n ∈ N and specific (b; c); and many
values of 2F1(−n, b; c, z0) for z0 ̸= ±1, 2±1. In [19] (p. 489, Eq. 7.3.6.4), it was given that, for
a − b + 3 ∈ C \ {0,−1,−2, . . . },

2F1(a, b; a − b + 3;−1)

=



√
π Γ(a + 2)

2aΓ
( a

2
)
Γ
( a

2 + 1
2
)
Γ
( a

2 + 1
)[Γ

(
a
2

)
− aΓ

(
a
2

)
ψ

(
a
2
+ 1
)
+ 2Γ

(
a
2
+ 1
)

ψ

(
a
2
+

1
2

)]
, b = 1;

a
2

{
1 + (a − 1)

[
ψ

(
a
2

)
− ψ

(
a
2
+

1
2

)]}
, b = 2;

√
π Γ(a − b + 3)

(b − 1)(b − 2)2a−1

[
a − b + 1

2Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 2
) − 1

Γ
( a

2
)
Γ
( a

2 − b + 3
2
)], b ̸= 1, 2.

(5)

Replacing a by a − 1 in [19] (p. 489, Eq. 7.3.6.1) gives, for a − b + 1 ∈ C \ {0,−1,−2, . . . },

2F1(a + 1, b; a − b + 1;−1) =
√

π Γ(a − b + 1)
2a+1

[
1

Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 1
) + 1

Γ
( a

2 + 1
)
Γ
( a

2 − b + 1
2
)]. (6)

On 8 December 2022, Henri Cohen (Université de Bordeaux, France) gave the explicit
Formula (6) on the website https://mathoverflow.net/a/436154 (accessed on 8 December
2022) without referring to any references.

In [5] (p. 557), we find the following formulas:

2F1

(
a, b;

a + b + 1
2

;
1
2

)
=

√
π

Γ
( a+b+1

2
)

Γ
( a+1

2
)
Γ
( b+1

2
) , (7)

https://mathoverflow.net/a/436154
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2F1

(
a, 1 − a; b;

1
2

)
=

21−b√π Γ(b)
Γ
( a+b

2
)
Γ
( b−a−1

2
) , (8)

2F1

(
a, a; a + 1;

1
2

)
= 2a−1a

[
ψ

(
a + 1

2

)
− ψ

(
a
2

)]
, (9)

2F1

(
a, a +

1
2

;
3
2
− 2a;−1

3

)
=

(
9
8

)2a Γ
( 4

3
)
Γ
( 3

2 − 2a
)

Γ
( 3

2
)
Γ
( 4

3 − 2a
) , (10)

2F1

(
a, a +

1
2

;
2
3

a +
5
6

;
1
9

)
=

(
3
4

)a√
π

Γ
( 2

3 a + 5
6
)

Γ
( a

3 + 1
2
)
Γ
( a

3 + 5
6
) , (11)

and

2F1

(
a, b;

a + b
2

+ 1;
1
2

)
=

2
√

π

a − b
Γ
(

a + b
2

+ 1
)[

1
Γ
( a

2
)
Γ
( b+1

2
) − 1

Γ
( a+1

2
)
Γ
( b

2
)]. (12)

Formula (11) corrects a typo appearing in [5] (p. 557, Entry 15.1.30).
In the paper [7], among other things, Rakha and Rathie established several closed-form

formulas of the Gauss hypergeometric function 2F1(a, b; c; z) for z = −1, 1
2 as follows.

1. For j = 0, 1, 2, . . . ,

2F1

(
a, b;

a + b + j + 1
2

;
1
2

)
=

Γ
( 1

2
)
Γ
( a+b+j+1

2
)

Γ
( b

2
)
Γ
( b+1

2
) Γ

( a−b−j+1
2

)
Γ
( a−b+j+1

2
) j

∑
r=0

(−1)r
(

j
r

)
Γ
( b+r

2
)

Γ
( a−j+r+1

2
) . (13)

2. For j = 0, 1, 2, . . . ,

2F1

(
a, b;

a + b − j + 1
2

;
1
2

)
=

Γ
( 1

2
)
Γ
( a+b−j+1

2
)

Γ
( b

2
)
Γ
( b+1

2
) j

∑
r=0

(
j
r

)
Γ
( b+r

2
)

Γ
( a−j+r+1

2
) .

3. For j = 0, 1, 2, . . . ,

2F1(a, b; a − b + j + 1;−1) =
2−aΓ

( 1
2
)
Γ(b − j)Γ(a − b + j + 1)

Γ(b)Γ
( a−2b+j+1

2
)
Γ
( a−2b+j+2

2
) j

∑
r=0

(−1)r
(

j
r

)
Γ
( a−2b+j+r+1

2
)

Γ
( a−j+r+1

2
) . (14)

This equality extends the Equalities (3)–(6) mentioned above.
4. For j = 0, 1, 2, . . . ,

2F1(a, b; a − b − j + 1;−1) =
2−aΓ

( 1
2
)
Γ(a − b − j + 1)

Γ
( a−2b−j+1

2
)
Γ
( a−2b−j+2

2
) j

∑
r=0

(
j
r

)
Γ
( a−2b−j+r+1

2
)

Γ
( a−j+r+1

2
) .

5. For j = 0, 1, 2, . . . ,

2F1

(
a, 1 − a + j; c;

1
2

)
=

21+j−cΓ
( 1

2
)
Γ(c)Γ(a − j)

Γ(a)Γ
( c−a

2
)
Γ
( c−a+1

2
) j

∑
r=0

(−1)r
(

j
r

)
Γ
( c−a+r

2
)

Γ
( c+a+r−2j

2
) .

6. For j = 0, 1, 2, . . . ,

2F1

(
a, 1 − a − j; c;

1
2

)
=

21−j−cΓ
( 1

2
)
Γ
(
c + j

2
)

Γ
( c−a

2
)
Γ
( c−a+1

2
) j

∑
r=0

(
j
r

)
Γ
( c−a+r

2
)

Γ
( c+a+r

2
) .

These six closed-form formulas generalize Gauss’, Kummer’s, and Bailey’s summation
theorems and many of the identities mentioned above.
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In the paper [20], as well as [19] (p. 477, Eq. 162) and [21] (Section 6), the closed-
form formula

2F1

(
1, 2;

1
2

; z
)
=

z + 2
2(1 − z)2 +

3
2

√
z

(1 − z)5/2 arcsin
√

z

was established, discussed, and applied.
In [22] (Lemma 2.6), for 0 ̸= |t| < 1 and n ∈ N, Qi successfully discovered and applied

the closed-form formula

2F1

(
1 − n

2
,

2 − n
2

; 1 − n;
1
t2

)
=

t
2n i

√
1 − t2

[(
1 +

i
√

1 − t2

t

)n

−
(

1 − i
√

1 − t2

t

)n]
, (15)

where i =
√
−1 is the imaginary unit. In [22] (Remark 6.6), Qi conjectured that the range

of n ∈ N in (15) can be extended to n ∈ R. This conjecture still remains open at present. See
also [23] (Section 3.9).

In [24] (Corollary 4.1), Qi established the closed-form formula

2F1

(
n +

1
2

, n + 1; n +
3
2

;−1
)
=

(2n + 1)!!
(2n)!!

π

4
+

2n + 1
22n

n

∑
k=1

(−1)k
(

2n − k
n

)
2k/2

k
sin

3kπ

4
(16)

for n ∈ N0 = {0} ∪N.
In Section 3 of this paper, we will alternatively compute four Gauss hypergeometric

function:
2F1(2α + 1, α + 1; α + 3;−1), 2F1(a, b; a − b + 3;−1),

2F1(a + 1, b; a − b + 1;−1), 2F1

(
2α + 1, 2; α + 3;

1
2

)
.

(17)

In Section 4 of this paper, more importantly, we will extend the closed-form Formula (16)
by establishing a closed-form expression of the Gauss hypergeometric function

2F1

(
n +

1
2

, n + 1; n +
3
2

;−z2
)

(18)

for n ∈ N0 and z ∈ C. In Section 5, we will apply a special case of the newly extended
closed-form formula for the function (18) to derive an alternative form for the Maclaurin
power series expansion of the Wilf function

W(z) =
arctan

√
2 e−z −1√

2 e−z −1
, (19)

which was investigated in the conference paper [25] and the preprints on the site https:
//arxiv.org/abs/2110.08576 (accessed on 1 May 2022); moreover, we will discover two
novel increasing rational approximations to the irrational constant π

4 . In the final section,
Section 6, we will list some more remarks on our main results and related findings.

3. Alternative Proofs of Four Known Results

Now, we set out to alternatively compute the four Gauss hypergeometric function
listed in (17).

Theorem 1. For α ̸= −3,−4, . . . , we have

2F1(2α + 1, α + 1; α + 3;−1) =



2(2 ln 2 − 1), α = 0;

3
(

3
2
− 2 ln 2

)
, α = 1;

1
22α

(α + 1)(α + 2)
(α − 1)α

[
1 + α − αB

(
1
2

, α

)]
, α ̸= 0, 1,−3,−4, . . .

(20)

https://arxiv.org/abs/2110.08576
https://arxiv.org/abs/2110.08576
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and

2F1

(
2α + 1, 2; α + 3;

1
2

)
=



4(2 ln 2 − 1), α = 0;

24
(

3
2
− 2 ln 2

)
, α = 1;

2(α + 1)(α + 2)
(α − 1)α

[
1 + α − αB

(
1
2

, α

)]
, α ̸= 0, 1,−3,−4, . . . .

(21)

Proof. The closed-form Formula (20) is a special case of (14) for a = 2α + 1, b = α + 1, and
j = 2, as well as a special case of the closed-form Formula (5) for a = 2α + 1 and b = α + 1.
Its alternative proof is as follows.

Setting a = 2α + 1 and b = α + 1 in the first equality of (3) results in

2F1(2α + 1, α + 1; α + 1;−1) =
1√
π

Γ(α + 1)Γ
(
α + 3

2
)

Γ(2α + 2)
, α ̸= −1,−2, . . . . (22)

Letting a = 2α + 1 and b = α + 1 in (4) gives

2F1(2α + 1, α + 1; α + 2;−1) =


ln 2, α = 0;
√

π Γ(α + 2)
22α+1α

[
1

Γ
(
α + 1

2
) − 1√

π Γ(α + 1)

]
, α ̸= 0,−2,−3, . . . .

(23)

Entry 15.5.18 in [16] (p. 388), a relation of contiguous functions, says that

c(c − 1)(z − 1)2F1(a, b; c − 1; z) + c[c − 1 − (2c − a − b − 1)z]2F1(a, b; c; z)

+ (c − a)(c − b)z2F1(a, b; c + 1; z) = 0. (24)

Taking a = 2α + 1, b = α + 1, c = α + 2, and z = −1 in (24) reveals that

2(α + 2)2F1(2α + 1, α + 1; α + 2;−1)− 2(α + 2)(α + 1)2F1(2α + 1, α + 1; α + 1;−1)

− (1 − α)2F1(2α + 1, α + 1; α + 3;−1) = 0 (25)

for α + 1 ̸= −1,−2, . . . .
Substituting (22) and (23) into (25), and simplifying the result, yields

2F1(2α + 1, α + 1; α + 3;−1) =



2(2 ln 2 − 1), α = 0;

3
(

3
2
− 2 ln 2

)
, α = 1;

2Γ(α + 3)
1 − α

[
1

22α+1α

√
π Γ(α + 1)− Γ

(
α + 1

2
)

Γ(α + 1)Γ
(
α + 1

2
) −

Γ
(
α + 3

2
)

√
π Γ(2α + 2)

]
, α ̸= 0, 1,−3,−4, . . .

=



2(2 ln 2 − 1), α = 0;

3
(

3
2
− 2 ln 2

)
, α = 1;

1
22α

(α + 1)(α + 2)
(α − 1)α

[
1 + α − αB

(
1
2

, α

)]
, α ̸= 0, 1,−3,−4, . . . .

Formula (20) is thus alternatively proved.
The closed-form Formula (21) is a special case of (13) for a = 2α + 1, b = 2, and j = 2.

Its alternative proof is as follows.
By virtue of∫ ∞

0
xλ−1(1 + x)ν(1 + ax)µ dx = B(λ,−µ − ν − λ)2F1(−µ, λ;−µ − ν; 1 − a) (26)
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for | arg(a)| < π and −ℜ(µ + ν) > ℜ(λ) > 0, which is taken from [1] (p. 320, Entry 5),
we obtain ∫ ∞

0

u(u + 1)α−2

(u + 2)2α+1 du =
B(2, α + 1)

22α+1 2F1

(
2α + 1, 2; α + 3;

1
2

)
. (27)

By virtue of∫ ∞

0
xλ−1(1 + x)−µ+ν(x + β)−ν dx = B(µ − λ, λ)2F1(ν, µ − λ; µ; 1 − β) (28)

for ℜ(µ) > ℜ(λ) > 0, which is taken from [1] (p. 320, Entry 9), we acquire

∫ ∞

0

u(u + 1)α−2

(u + 2)2α+1 du = B(2, α + 1)2F1(2α + 1, α + 1; α + 3;−1). (29)

Therefore, comparing (27) with (29) and making use of Formula (20), we derive

2F1

(
2α + 1, 2; α + 3;

1
2

)
= 22α+1

2F1(2α + 1, α + 1; α + 3;−1)

=



4(2 ln 2 − 1), α = 0;

24
(

3
2
− 2 ln 2

)
, α = 1;

2(α + 1)(α + 2)
(α − 1)α

[
1 + α − αB

(
1
2

, α

)]
, α ̸= 0, 1,−3,−4, . . . .

Formula (21) is thus alternatively proved.

Remark 1. The identities (20) and (21) were announced as a problem on the site https://mathoverflow.
net/q/436124 (accessed on 8 December 2022). On the website https://mathoverflow.net/a/436154
(accessed on 8 December 2022), Henri Cohen immediately sketched out an alternative proof of the
identities in (20) and (21).

Theorem 2. The closed-form Formulas (5) and (6) are valid.
For µ + ν ∈ C \ {0,−1,−2, . . . }, we have

2F1(µ, λ; µ + ν; 1 − a) = 2F1
(
µ, µ + ν − λ; µ + ν; 1 − 1

a
)

aµ . (30)

Proof. The alternative proof of (5) is as follows. Taking z = −1 and c = a − b + 2 in (24)
and employing (3) and (4) lead to

− 2(a − b + 2)(a − b + 1)2F1(a, b; a − b + 1;−1)

+ 2(a − b + 2)(a − 2b + 2)2F1(a, b; a − b + 2;−1)

− (2 − b)(a − 2b + 2)2F1(a, b; a − b + 3;−1) = 0,

which is equivalent to

2F1(a, b; a − b + 3;−1) =
2(a − b + 2)

2 − b 2F1(a, b; a − b + 2;−1)− 2(a − b + 2)(a − b + 1)
(2 − b)(a − 2b + 2) 2F1(a, b; a − b + 1;−1)

=

√
π Γ(a − b + 3)

(b − 1)(b − 2)2a−1

[
a − b + 1

2Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 2
) − 1

Γ
( a

2
)
Γ
( a

2 − b + 3
2
)].

The explicit Formula (5) is thus alternatively proved.

https://mathoverflow.net/q/436124
https://mathoverflow.net/q/436124
https://mathoverflow.net/a/436154
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The alternative proof of (6) is as follows. Entry 15.5.14 in [16] (p. 388), a relation of
contiguous functions, reads that

c[a + (b − c)z]2F1(a; b; c; z)− ac(1 − z)2F1(a + 1; b; c; z) + (c − a)(c − b)z2F1(a; b; c + 1; z) = 0. (31)

Letting z = −1 and c = a − b + 1 in (31) and further substituting (3) and (4) into (31) give

2F1(a + 1; b; a − b + 1;−1) =
2a − 2b + 1

2a 2F1(a; b; a − b + 1;−1) +
(b − 1)(a − 2b + 1)

2a(a − b + 1) 2F1(a; b; a − b + 2;−1)

=

√
π

2a+1a

[
a

Γ(a − b + 1)
Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 1
) + a − 2b + 1

a − b + 1
Γ(a − b + 2)

Γ
( a

2
)
Γ
( a

2 − b + 3
2
)]

=

√
π Γ(a − b + 1)

2a+1

[
1

Γ
( a

2 + 1
2
)
Γ
( a

2 − b + 1
) + 1

Γ
( a

2 + 1
)
Γ
( a

2 − b + 1
2
)].

The explicit Formula (6) is thus alternatively proved.
The equality (30) follows from comparing (26) with (28).

Applying Equation (30), we can derive more explicit formulas of the Gauss hypergeo-
metric function 2F1(a, b; c; z) at specific arguments, as follows.

Corollary 1. Under suitable conditions such that 2F1(a, b; c; z) is defined and convergent, the
Gauss hypergeometric function 2F1(a, b; c; z) has the following explicit formulas:

2F1

(
a,

a − b + 1
2

;
a + b + 1

2
;−1

)
=

√
π

2a
Γ
( a+b+1

2
)

Γ
( a+1

2
)
Γ
( b+1

2
) , (32)

2F1
(
a, a + b − 1; b;−1

)
=

√
π

2a+b−1
Γ(b)

Γ
( a+b

2
)
Γ
( b−a−1

2
) , (33)

2F1
(
a, 1; a + 1;−1

)
=

a
2

[
ψ

(
a + 1

2

)
− ψ

(
a
2

)]
, (34)

2F1

(
a, 1 − 3a;

3
2
− 2a;

1
4

)
=

(
324
192

)a Γ
( 4

3
)
Γ
( 3

2 − 2a
)

Γ
( 3

2
)
Γ
( 4

3 − 2a
) , (35)

2F1

(
a,

1 − a
3

;
2
3

a +
5
6

;
1
8

)
=

(
2
3

)a√
π

Γ
( 2

3 a + 5
6
)

Γ
( a

3 + 1
2
)
Γ
( a

3 + 5
6
) , (36)

and

2F1

(
a,

a − b
2

+ 1;
a + b

2
+ 1;−1

)
=

√
π

(a − b)2a−1 Γ
(

a + b
2

+ 1
)[

1
Γ
( a

2
)
Γ
( b+1

2
) − 1

Γ
( a+1

2
)
Γ
( b

2
)]. (37)

Proof. Taking a = 1
2 , µ = a, λ = b, and ν = b−a−1

2 in (30) leads to

2F1

(
a, b;

a + b + 1
2

;
1
2

)
= 2a

2F1

(
a,

a − b + 1
2

;
a + b + 1

2
;−1

)
.

Combining this with (7) produces (32).
Taking a = 1

2 , µ = a, λ = 1 − a, and ν = b − a in (30), we obtain

2F1

(
a, 1 − a; b;

1
2

)
= 2a

2F1
(
a, a + b − 1; b;−1

)
.

Comparing this with (8) yields (33).
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Taking a = 1
2 , µ = a, λ = a, and ν = 1 in (30) reveals

2F1

(
a, a; a + 1;

1
2

)
= 2a

2F1
(
a, 1; a + 1;−1

)
.

Comparing this with (9) yields (34).
Taking a = 4

3 , µ = a, λ = a + 1
2 , and ν = 3

2 − 3a in (30) reveals

2F1

(
a, a +

1
2

;
3
2
− 2a;−1

3

)
=

(
3
4

)a

2F1

(
a, 1 − 3a;

3
2
− 2a;

1
4

)
.

Comparing this with (10) yields (35).
Taking a = 8

9 , µ = a, λ = a + 1
2 , and ν = 5

6 − a
3 in (30) reveals

2F1

(
a, a +

1
2

;
2
3

a +
5
6

;
1
9

)
=

(
9
8

)a

2F1

(
a,

1 − a
3

;
2
3

a +
5
6

;
1
8

)
.

Comparing this with (11) yields (36).
Taking a = 1

2 , µ = a, λ = b, and ν = b
2 − a

2 + 1 in (30) shows

2F1

(
a, b;

a + b
2

+ 1;
1
2

)
= 2a

2F1

(
a,

a − b
2

+ 1;
a + b

2
+ 1;−1

)
.

Comparing this with (12) yields (37). The proof of Corollary 1 is complete.

4. A New Closed-Form Formula

In this section, we start off to derive a closed-form formula for the specific Gauss
hypergeometric function in (18). This result generalizes the closed-form Formula (16),
which was established by Qi in [24] (Corollary 4.1).

Theorem 3. For n ∈ N0, we have

2F1

(
n +

1
2

, n + 1; n +
3
2

;−z2
)
= Pn

(
z2)arctan z

z
+ Qn

(
z2) 1

1 + z2 , (38)

where

Pn(z) =
(2n + 1)!!
(2n)!!

1
zn , n ∈ N0 (39)

and

Qn(z) = − Pn(z)
(1 + z)n−1

n−1

∑
k=0

[
k

∑
j=0

(−1)j

2j + 1

(
n

k − j

)]
zk, n ∈ N0. (40)

Proof. In [4] (p. 109, Example 5.1), it is given that

2F1

(
1
2

, 1;
3
2

;−z2
)
=

arctan z
z

. (41)

By virtue of Abel’s limit theorem in [26] (p. 245, Theorem 9.31), we can take z = 1 in (41)
and obtain

2F1

(
1
2

, 1;
3
2

;−1
)
=

π

4
.

This can also be derived from (14) by taking a = 1
2 , b = 1, and j = 1.

In [5] (p. 556, Entry 15.1.8), the formula

2F1(a, b; b; z) =
1

(1 − z)a (42)
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is formulated. Taking a = 1 and b = 3
2 in (42) leads to

2F1

(
1,

3
2

;
3
2

; z
)
= 2F1

(
3
2

, 1;
3
2

; z
)
=

1
1 − z

(43)

and, by virtue of Abel’s limit theorem in [26] (p. 245, Theorem 9.31),

2F1

(
3
2

, 1;
3
2

;−1
)
=

1
2

.

This can also be derived from (14) by taking a = 3
2 , b = 1, and j = 0.

Theorem 1.1 in the paper [27] reads that, for any integers k, ℓ, and m, there are unique
functions Pk,ℓ,m(a, b; c; z) and Qk,ℓ,m(a, b; c; z), rational in the parameters a, b, c, and z, with

P0,0,0(a, b; c; z) = Q1,0,0(a, b; c; z) = 1 and P1,0,0(a, b; c; z) = Q0,0,0(a, b; c; z) = 0,

such that

2F1(a + k, b + ℓ; c + m; z) = Pk,ℓ,m(a, b; c; z)2F1(a, b; c; z) + Qk,ℓ,m(a, b; c; z)2F1(a + 1, b; c; z). (44)

In particular, letting k = ℓ = m = n ∈ N0, setting (a, b, c) =
( 1

2 , 1, 3
2
)
, replacing z by −z2

in (44), making use of Formula (41), and replacing z by −z2 in (43) all yield the following:

2F1

(
n +

1
2

, n + 1; n +
3
2

;−z2
)
= Pn

(
z2)

2F1

(
1
2

, 1;
3
2

;−z2
)
+ Qn

(
z2)

2F1

(
3
2

, 1;
3
2

;−z2
)

= Pn
(
z2)arctan z

z
+ Qn

(
z2) 1

1 + z2 ,
(45)

where

Pn
(
z2) = Pn,n,n

(
1
2

, 1;
3
2

;−z2
)

and Qn
(
z2) = Qn,n,n

(
1
2

, 1;
3
2

;−z2
)

are rational in the parameter z2, with

P0
(
z2) = 1 and Q0

(
z2) = 0. (46)

From [16] (p. 388, Entry 15.5.19), we obtained

z(1 − z)(a + 1)(b + 1)2F1(a + 2, b + 2; c + 2; z)

+ [c − (a + b + 1)z](c + 1)2F1(a + 1, b + 1; c + 1; z)− c(c + 1)2F1(a, b; c; z) = 0. (47)

Replacing z by −z2 and letting (a, b, c) =
(
n + 1

2 , n + 1, n + 3
2
)

for n ∈ N0 in (47) produce

z2(1 + z2)(n +
3
2

)
(n + 2)2F1

(
n +

5
2

, n + 3; n +
7
2

;−z2
)

−
[

n +
3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)
2F1

(
n +

3
2

, n + 2; n +
5
2

;−z2
)

+

(
n +

3
2

)(
n +

5
2

)
2F1

(
n +

1
2

, n + 1; n +
3
2

;−z2
)
= 0. (48)

In [5] (p. 556, Entry 15.1.10), the formula

2F1

(
a,

1
2
+ a;

3
2

; z2
)
=

(1 + z)1−2a − (1 − z)1−2a

2(1 − 2a)z
(49)
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is obtained. Setting a = 3
2 and replacing z by z i in (49) result in

2F1

(
3
2

, 2;
3
2

;−z2
)
=

1
4z i

[
1

(1 − z i)2 − 1
(1 + z i)2

]
=

1
(1 + z2)2 . (50)

In [5] (p. 558, Entry 15.2.20), the formula

c(1 − z)2F1(a, b; c; z)− c2F1(a − 1, b; c; z) + (c − b)z2F1(a, b; c + 1; z) = 0 (51)

is taken. Letting (a, b, c) =
( 3

2 , 2, 3
2
)
, replacing z by −z2 in (51), and employing (50) reveal

2F1

(
3
2

, 2;
5
2

;−z2
)
=

3
z2

[
2F1

(
1
2

, 2;
3
2

;−z2
)
−
(
1 + z2)

2F1

(
3
2

, 2;
3
2

;−z2
)]

=
3
z2

[
2F1

(
1
2

, 2;
3
2

;−z2
)
− 1

1 + z2

]
.

(52)

In [5] (p. 558, Entry 15.2.11), the formula

(c − b)2F1(a, b − 1; c; z) + (2b − c − bz + az)2F1(a, b; c; z) + b(z − 1)2F1(a, b + 1; c; z) = 0 (53)

is formulated. Letting (a, b, c) =
( 1

2 , 1, 3
2
)
, we replace z by −z2 in (53) and utilize For-

mula (41), which lead to

2F1

(
1
2

, 2;
3
2

;−z2
)
=

1
2
(
z2 + 1

) 2F1

(
1
2

, 0;
3
2

;−z2
)
+

1
2 2F1

(
1
2

, 1;
3
2

;−z2
)

=
1
2

(
1

1 + z2 +
arctan z

z

)
.

(54)

Substituting (54) into (52) and then simplifying the result yield the following:

2F1

(
3
2

, 2;
5
2

;−z2
)
=

3
2z2

(
arctan z

z
− 1

1 + z2

)
. (55)

This means that
P1
(
z2) = 3

2z2 and Q1
(
z2) = − 3

2z2 . (56)

Taking n = 0 in (48), utilizing (41) and (55), and then reformulating these formulas
allow us to determine

2F1

(
5
2

, 3;
7
2

;−z2
)
=

5
4z2
(
1 + z2

)[3 + 5z2

3 2F1

(
3
2

, 2;
5
2

;−z2
)
− 2F1

(
1
2

, 1;
3
2

;−z2
)]

=
15
8z4

[
arctan z

z
− 3 + 5z2

3(1 + z2)2

]
.

This means that

P2
(
z2) = 15

8z4 and Q2
(
z2) = − 15

8z4
3 + 5z2

3(1 + z2)
. (57)

Through similar arguments as those above, taking n = 1, 2 in (48) and considering the
explicit Formulas (56) and (57), we repeatedly derive

P3
(
z2) = 35

16z6 , Q3
(
z2) = − 35

16z6
15 + 40z2 + 33z4

15(1 + z2)2 ,

P4
(
z2) = 315

128z8 , Q4
(
z2) = − 315

128z8
105 + 385z2 + 511z4 + 279z6

105(1 + z2)3 .
(58)
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Based on the data acquired from (46), (56)–(58), we consider the factor in front of the
constant π

4 in the first term of Formula (16) in addition to being motivated by two sequences
displayed on the sites listed below:

• https://oeis.org/A001803 (accessed on 18 August 2023);
• https://oeis.org/A025547 (accessed on 18 August 2023); and
• https://oeis.org/A350670 (accessed on 18 August 2023).

Then, we guess that rational functions Pn
(
z2) and Qn

(
z2) defined in (45) should be (39) and

Qn
(
z2) = −Pn

(
z2) ∑n−1

k=0 cn,kz2k

cn,0(1 + z2)n−1 , n ∈ N0, (59)

where we assume c0,0 = c1,0 = 1 and an empty sum is understood to be zero. We also guess
that the numbers cn,k for 0 ≤ k ≤ n − 1 and n ∈ N are positive integers.

We list the first few values of the coefficients cn,k for 0 ≤ k ≤ n − 1 and 1 ≤ n ≤ 8 in
Table 1, which were announced by Qi on the website https://mathoverflow.net/q/436464/
(accessed on 27 March 2024) as a problem.

Table 1. The coefficients cn,k for 0 ≤ k ≤ n − 1 and 1 ≤ n ≤ 8.

cn,k n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

k = 0 1 3 15 105 315 3465 45,045 45,045
k = 1 5 40 385 1470 19,635 300,300 345,345
k = 2 33 511 2688 45,738 849,849 1,150,149
k = 3 279 2370 55,638 1,317,888 2,167,737
k = 4 965 36,685 1,200,199 2,518,087
k = 5 11,895 631,540 1,831,739
k = 6 169,995 801,535
k = 7 184,331

Substituting (45) into (48) and then simplifying the outcome yield

z2(1 + z2)(n +
3
2

)
(n + 2)

[
Pn+2

(
z2)arctan z

z
+ Qn+2

(
z2) 1

1 + z2

]
−
[

n +
3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)[
Pn+1

(
z2)arctan z

z
+ Qn+1

(
z2) 1

1 + z2

]
+

(
n +

3
2

)(
n +

5
2

)[
Pn
(
z2)arctan z

z
+ Qn

(
z2) 1

1 + z2

]
= 0,

for n ∈ N. This can be written as two recurrent relations

z2(1 + z2)(n +
3
2

)
(n + 2)Pn+2

(
z2)− [n +

3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)
Pn+1

(
z2)

+

(
n +

3
2

)(
n +

5
2

)
Pn
(
z2) = 0 (60)

and

z2(1 + z2)(n +
3
2

)
(n + 2)Qn+2

(
z2)− [n +

3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)
Qn+1

(
z2)

+

(
n +

3
2

)(
n +

5
2

)
Qn
(
z2) = 0 (61)

for n ∈ N, with initial values in (46), (56)–(58).
Substituting (39) into (60) and then simplifying result in

https://oeis.org/A001803
https://oeis.org/A025547
https://oeis.org/A350670
https://mathoverflow.net/q/436464/
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(2n + 5)(2n + 3)2

8(n + 1)
1 + z2

z2 +

(
n +

3
2

)(
n +

5
2

)
−
[

n +
3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)
2n + 3

2(n + 1)
1
z2 = 0

for n ∈ N. This equality can be straightforwardly verified to be true. As a result, For-
mula (39) is valid for n ∈ N0.

Substituting (59) into (61) and then simplifying result in

−z2(1 + z2)(n +
3
2

)
(n + 2)

(2n + 5)!!
(2n + 4)!!

1
z2n+4

∑n+1
k=0 cn+2,kz2k

cn+2,0(1 + z2)n+1

+

[
n +

3
2
+

(
2n +

5
2

)
z2
](

n +
5
2

)
(2n + 3)!!
(2n + 2)!!

1
z2n+2

∑n
k=0 cn+1,kz2k

cn+1,0(1 + z2)n

−
(

n +
3
2

)(
n +

5
2

)
(2n + 1)!!
(2n)!!

1
z2n

∑n−1
k=0 cn,kz2k

cn,0(1 + z2)n−1 = 0,

that is,

(2n + 3)
n+1

∑
k=0

cn+2,k

cn+2,0
z2k −

[
(2n + 3) + (4n + 5)z2] n

∑
k=0

cn+1,k

cn+1,0
z2k + 2(n + 1)z2(1 + z2) n−1

∑
k=0

cn,k

cn,0
z2k = 0

for n ∈ N. By introducing the notation

Cn,k =
cn,k

cn,0
, 0 ≤ k ≤ n − 1, n ∈ N (62)

and combining coefficients of the terms z2k for 0 ≤ k ≤ n + 1, we deduce

(2n + 3)[Cn+2,0 − Cn+1,0]

+[(2n + 3)(Cn+2,1 − Cn+1,1)− (4n + 5)Cn+1,0 + 2(n + 1)Cn,0]z2

+
n

∑
k=2

[(2n + 3)(Cn+2,k − Cn+1,k)− (4n + 5)Cn+1,k−1 + 2(n + 1)(Cn,k−1 + Cn,k−2)]z2k

+[(2n + 3)Cn+2,n+1 − (4n + 5)Cn+1,n + 2(n + 1)Cn,n−1]z2(n+1) = 0.

Using the fact that
Cn,0 = 1, n ∈ N, (63)

which is a direct consequence of the definition (62), and equating the coefficients of z2k for
0 ≤ k ≤ n + 1 derives

Cn+2,1 − Cn+1,1 = 1, (64)

(2n + 3)(Cn+2,n+1 − Cn+1,n) = 2(n + 1)(Cn+1,n − Cn,n−1), (65)

and

(2n + 3)(Cn+2,k − Cn+1,k − Cn+1,k−1) = 2(n + 1)(Cn+1,k−1 − Cn,k−1 − Cn,k−2) (66)

for 2 ≤ k ≤ n and n ∈ N.
The second formula in (57) implies that C2,1 = 5

3 . Applying this to the recurrent
relation (64), we obtain

Cn,1 =
3n − 1

3
, n ≥ 2. (67)

From the initial values C1,0 = 1 and C2,1 = 5
3 , and recurring the relation (65), we

arrive at

Cn+2,n+1 − Cn+1,n =
(2n + 2)!!
(2n + 3)!!

, n ∈ N.
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Further recurring this relation, we find

Cn+1,n =
2n + 3

2
B
(

1
2

, n + 2
)
− 1 =

(2n + 2)!!
(2n + 1)!!

− 1, n ∈ N0. (68)

Letting k = 2 in (66) and utilizing (63) and (67) lead to

Cn+2,2 − Cn+1,2 = n +
2
3

.

Taking n = 2 in (68) gives C3,2 = 11
5 . Using this as a boundary value and recurring the

above relation result in

Cn,2 =
15n2 − 25n + 6

30
, n ≥ 3. (69)

Letting k = 3 in (66) and considering (67) and (69) result in

Cn+2,3 − Cn+1,3 =
30n3 + 55n2 + 7n − 12

30(2n + 3)
.

Using C4,3 = 93
35 , which is deduced by letting n = 4 in (68), as a boundary value to recur

the above relation, demonstrates that

Cn,3 =
35n3 − 140n2 + 147n − 30

210
, n ≥ 4. (70)

From (66), consecutively and inductively recurring, considering (67) and (69), we
conclude that

Cn+2,k − Cn+1,k − Cn+1,k−1 = (Cn−k+4,2 − Cn−k+3,2 − Cn−k+3,1)
k−4

∏
j=−1

2(n − j)
2(n − j) + 1

= 0,

that is,
Cn+2,k = Cn+1,k + Cn+1,k−1, 1 ≤ k ≤ n. (71)

Based on the explicit Formulas (67), (69) and (70), Alexander Burstein (Department of
Mathematics, Howard University, USA) estimated

Cn,k =
k

∑
j=0

(−1)j

2j + 1

(
n

k − j

)
, 0 ≤ k ≤ n − 1, n ∈ N; (72)

see Burstein’s comments on 14 December 2022 on the following site:

https://mathoverflow.net/q/436464/ask-for-a-generating-function-or-an-explicit-
expression-of-a-triangle-of-positiv#comment1125097_436464

(accessed on 15 December 2022). By Pascal’s rule(
n + 2

k

)
=

(
n + 1

k

)
+

(
n + 1
k − 1

)
, k, n ∈ Z, (73)

it is easy to inductively verify that Burstein’s guess (72) is true. Consequently, we discover
the explicit Formula (40). The proof of Theorem 3 is thus complete.

Remark 2. We can regard the recursive relation (71) as a generalization of Pascal’s rule (73). Both
the binomial coefficients (n

k) and the sequence (72) are solutions to the recursive relation (71). Are
there any more solutions to the relation (71)? On 24 March 2024, on the site https://mathoverflow.
net/a/467616 (accessed on 26 March 2024), Max Alekseyev (George Washington University, USA,
https://home.gwu.edu/~maxal/ (accessed on 26 March 2024)) suggested to check paper [28].

https://mathoverflow.net/q/436464/ask-for-a-generating-function-or-an-explicit-expression-of-a-triangle-of-positiv#comment1125097_436464
https://mathoverflow.net/q/436464/ask-for-a-generating-function-or-an-explicit-expression-of-a-triangle-of-positiv#comment1125097_436464
https://mathoverflow.net/a/467616
https://mathoverflow.net/a/467616
https://home.gwu.edu/~maxal/
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Corollary 1. For n ∈ N0, we have

2F1

(
n +

1
2

, n + 1; n +
3
2

;−1
)
=

(2n + 1)!!
(2n)!!

[
π

4
− 1

2n

n−1

∑
j=0

(−1)j

2j + 1

n−j−1

∑
ℓ=0

(
n
ℓ

)]
(74)

and
n−1

∑
j=0

(−1)j

2j + 1

n−j−1

∑
ℓ=0

(
n
ℓ

)
= − 1

(2n − 1)!!

n

∑
ℓ=1

(−1)ℓ
(2n − ℓ)!
(n − ℓ)!

2ℓ/2

ℓ
sin

3ℓπ

4
. (75)

Proof. The closed-form Formula (74) follows from using Abel’s limit theorem stated in [26]
(p. 245, Theorem 9.31) and taking z → 1 in Equation (38) of Theorem 3.

The identity (75) follows from comparing the closed-form Formulas (16) and (74) and
from simplification.

Remark 3. Since the expression (72) is an alternating sum, we cannot directly confirm the positivity
of the rational sequence Cn,k from its appearance.

From the explicit Formula (72), we cannot clearly see what the closed-form formula of the
sequence cn,k for 0 ≤ k ≤ n − 1 and n ∈ N is, nor can we clearly see whether the numbers cn,k for
0 ≤ k ≤ n − 1 and n ∈ N are positive integers.

5. The Third Problem by Wilf and Rational Approximations

The third problem posed by Herbert S. Wilf (1931–2012) on the site https://www2
.math.upenn.edu/~wilf/website/UnsolvedProblems.pdf (accessed on 26 July 2021) states
that, if the function W(z) defined in (19) has the Maclaurin power series expansion

W(z) =
∞

∑
n=0

anzn,

find the first term of the asymptotic behaviour of the an’s.
In the conference paper [25], Ward considered this problem. We now recite the texts of

the review https://mathscinet.ams.org/mathscinet-getitem?mr=2735366 (accessed on 1
August 2021) by Tian-Xiao He for the paper [25] as follows.

The coefficient an can be written as

an = bnπ − cn, (76)

where bn and cn are non-negative rational numbers. In fact,

lim
n→∞

an

bn
= 0,

and the rational numbers of the form cn
bn

provide approximations to π. A complete
expansion of the coefficients an is found by the author. It is probably the best that
can be performed, given the oscillatory nature of the terms.

Wilf’s comments on the paper [25] on 13 December 2010 is quoted as follows:

“Mark Ward has found a complete expansion of these coefficients. It’s not quite
an asymptotic series in the usual sense, but it is probably the best that can be
done, given the oscillatory nature of the terms.”

In the preprints on the site https://arxiv.org/abs/2110.08576 (accessed on 1 May
2022), among other findings, Qi discovered Formula (16) and expanded the Wilf function
W(z) into

W(z) =
π

4
+

∞

∑
n=1

(−1)n

[
n

∑
k=1

(−1)kS(n, k)(2k − 1)!!

(
π

4
+

1

(2k
k )

k

∑
ℓ=1

(−1)ℓ
(

2k − ℓ

k

)
2ℓ/2

ℓ
sin

3ℓπ

4

)]
zn

n!
(77)

https://www2.math.upenn.edu/~wilf/website/UnsolvedProblems.pdf
https://www2.math.upenn.edu/~wilf/website/UnsolvedProblems.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=2735366
https://arxiv.org/abs/2110.08576
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for |z| < ln 2, where the Stirling numbers of the second kind S(n, k) for n ≥ k ≥ 0 can be
analytically generated (see [29] (p. 51) and [30]) by(

ez −1
z

)k

=
∞

∑
n=0

S(n + k, k)

(n+k
k )

zn

n!
, k ≥ 0.

According to the notations used in (76), the Maclaurin power series expansion (77) can be
alternatively expressed as

bn =
1
4
(−1)n

n!

n

∑
k=0

(−1)kS(n, k)(2k − 1)!!

and

cn =
(−1)n+1

n!

n

∑
k=1

(−1)kS(n, k)
k!
2k

k

∑
ℓ=1

(−1)ℓ
(

2k − ℓ

k

)
2ℓ/2

ℓ
sin

3ℓπ

4
(78)

for n ∈ N.
In [24] (Theorems 6.2 and 6.3), among other findings, Qi proved the following points:

1. The sequence 4n!bn for n ≥ 0 is positive, increasing, and logarithmically convex;
2. The limits

lim
n→∞

bn = ∞, lim
n→∞

cn = ∞, lim
n→∞

cn

bn
= π (79)

are valid.

Making use of the equality (75), we can reformulate the sequence cn in (78) as

cn =
(−1)n

n!

n

∑
k=1

(−1)kS(n, k)
(2k − 1)!!

2k

k−1

∑
j=0

(−1)j

2j + 1

k−j−1

∑
ℓ=0

(
k
ℓ

)
, n ∈ N. (80)

Employing (80), we can rewrite the Maclaurin power series expansion (77) as

W(z) =
π

4
+

∞

∑
n=1

(−1)n

[
n

∑
k=1

(−1)kS(n, k)(2k − 1)!!

(
π

4
− 1

2k

k−1

∑
j=0

(−1)j

2j + 1

k−j−1

∑
ℓ=0

(
k
ℓ

))]
zn

n!
(81)

for |z| < ln 2. As a result, we derive an alternative form (81) for the Maclaurin power series
expansion of the Wilf function W(z) defined by (19).

The third limit in (79) can be explicitly formulated as

lim
n→∞

cn

bn
= 4 lim

n→∞

∑n
k=1(−1)kS(n, k)(2k − 1)!!

[ 1
2k ∑k−1

j=0
(−1)j

2j+1 ∑
k−j−1
ℓ=0 (k

ℓ)
]

∑n
k=1(−1)kS(n, k)(2k − 1)!!

= π. (82)

Motivated by the identity (74) and the difference in the parentheses in (81), stimulated
by numerical computation, and hinted by the limit (82) and the Stolz–Cesàro theorem for
calculating limits, we guess that the sequences

1
2k

k−1

∑
j=0

(−1)j

2j + 1

k−j−1

∑
ℓ=0

(
k
ℓ

)
= − 1

(2k
k )

k

∑
ℓ=1

(−1)ℓ
(

2k − ℓ

k

)
2ℓ/2

ℓ
sin

3ℓπ

4
(83)

are increasing in k ∈ N and tend to π
4 as k → ∞. This guess was also posted on the site

https://math.stackexchange.com/q/4883527 (accessed on 19 March 2024).
Perhaps it is difficult to directly verify the above guess. However, we find out a simple

proof of the above guess as follows.

Theorem 4. The rational sequences in (83) are increasing in k ∈ N and tend to the irrational
constant π

4 as k → ∞.

https://math.stackexchange.com/q/4883527
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Proof. The Euler integral representation of the Gauss hypergeometric function 2F1 (see [15]
(p. 66, Theorem 2.2.1) and [31] (Theorem 1.1)) reads that, if ℜ(c) > ℜ(b) > 0, then

2F1(a, b; c; x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − xt)−a dt (84)

in the x plane cut along the real axis from 1 to ∞, where it is understood that arg t =
arg(1 − t) = 0 and (1 − xt)−a has its principle value. Setting

(a, b; c; x) =
(

n +
1
2

, n + 1; n +
3
2

;−1
)

, n ∈ N0

in (84) and simplifying give

2F1

(
n +

1
2

, n + 1; n +
3
2

;−1
)
=

(2n + 1)!!
2n+1n!

∫ 1

0

(
t

1 + t

)n 1√
1 − t2

dt

for n ∈ N0. Hence, we obtain

(2n)!!
(2n + 1)!! 2F1

(
n +

1
2

, n + 1; n +
3
2

;−1
)
=

1
2

∫ 1

0

(
t

1 + t

)n 1√
1 − t2

dt (85)

for n ∈ N0, which is decreasing in n ∈ N0 and tends to 0 as n → ∞. Combining the integral
representation (85) with Formula (74) reveals

1
2n

n−1

∑
j=0

(−1)j

2j + 1

n−j−1

∑
ℓ=0

(
n
ℓ

)
=

π

4
− 1

2

∫ 1

0

(
t

1 + t

)n 1√
1 − t2

dt, n ∈ N0, (86)

which is increasing in n ∈ N0 and tends to π
4 . The proof of Theorem 4 is thus complete.

6. More Remarks

In this section, we list more remarks on our main results and related ones.

Remark 4. It is known [16] (p. 612, Entry 25.14.5) that the function

Φ(z, s, a) =
∞

∑
k=0

zk

(a + k)s =
1

Γ(s)

∫ ∞

0

xs−1 e(1−a)x

ex −z
dx (87)

for ℜ(s) > 0, ℜ(a) > 0, and z ∈ C \ [1, ∞) is called the Lerch transcendent. See also [1] (p. 1050,
9.556), the proof of [24] (Theorem 6.3), [32] (Lemma 6), [33] (Theorem 2), and [34] (p. 348).

Combining the formula

Φ(z, 1, v) = 2F1(1, v; 1 + v; z)
v

in [1] (p. 1050, Entry 9.559) with the integral representation in (87) results in

2F1(1, v; 1 + v; z) =
1

1 − z
− z

∫ ∞

0

e(1−v)x

(ex −z)2 dx (88)

for ℜ(v) > 0 and z ∈ C \ [1, ∞). From (88), we can derive, for example,

2F1

(
1,

1
2

;
3
2

; z
)
=

arctanh
√

z√
z

, 2F1

(
1,

3
2

;
5
2

; z
)
=

3
z

(
arctanh

√
z√

z
− 1
)

,

2F1(1, 1; 2; z) = − ln(1 − z)
z

, 2F1(1, 2; 3; z) = −2
z

[
ln(1 − z)

z
+ 1
]

.
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The left two results can be found in [1] (p. 61), [4] (p. 109), and [6] (Section 4.2), respectively. All
these four formulas can be found in [19] (p. 473, Eq. 83; p. 476, Eq. 148; p. 477, Eq. 157; p. 477,
Eq. 165), respectively. Generally, we conclude the following formulas:

2F1

(
1,

2k − 1
2

;
2k + 1

2
; z
)
=

2k − 1
zk−1

(
arctanh

√
z√

z
−

k−2

∑
j=0

zj

2j + 1

)

and

2F1(1, k; 1 + k; z) = − k
zk−1

[
ln(1 − z)

z
+

k−2

∑
j=0

zj

j + 1

]
for k ∈ N, where an empty sum is understood to be zero.

From (88), it follows that

(−1)n dn

dvn

[
1

z(1 − z)
− 2F1(1, v; 1 + v; z)

z

]
=
∫ ∞

0

xn e(1−v)x

(ex −z)2 dx > 0

for n ∈ N0, v > 0, and z ∈ (−∞, 1). This means that, for any fixed real number z ∈ (−∞, 1), the
real function

1
z(1 − z)

− 2F1(1, v; 1 + v; z)
z

is completely monotonic with respect to the variable v ∈ (0, ∞). For details about completely
monotonic functions, please refer to the review article [35] and closely related references therein.

Remark 5. On the site https://mathoverflow.net/q/423800 (accessed on 30 March 2023), Qi asked
the question: can one find an elementary function f (t) such that

2F1

(
1
2

,
1
2

; 2; t
)
= f (t), |t| ≤ 1? (89)

On the site https://mathoverflow.net/a/423802 (accessed on 6 June 2022), Gerald A. Edgar (Ohio
State University, USA) answered this question as follows.

Entry 15.5.16 in [16] (p. 388), a relation of contiguous functions, states that

c 2F1(a − 1, b; c; t) + c(t − 1) 2F1(a, b; c; t) + (b − c)t 2F1(a, b; c + 1; t) = 0. (90)

Taking a = 1
2 , b = 1

2 , and c = 1 in (90) yields

2F1

(
−1

2
,

1
2

; 1; t
)
+ (t − 1) 2F1

(
1
2

,
1
2

; 1; t
)
− t

2 2F1

(
1
2

,
1
2

; 2; t
)
= 0. (91)

In [4] (p. 128), we can find two relations

K(t) =
π

2 2F1

(
1
2

,
1
2

; 1; t2
)

and E(t) =
π

2 2F1

(
−1

2
,

1
2

; 1; t2
)

(92)

for |t| < 1 between the Gauss hypergeometric function 2F1 and the complete elliptic
integrals of the first and second kinds K(t) and E(t). Substituting two formulas in (92)
into (91) gives

2
π

E
(√

t
)
+ (t − 1)

2
π

K
(√

t
)
− t

2 2F1

(
1
2

,
1
2

; 2; t
)
= 0,

that is,

2F1

(
1
2

,
1
2

; 2; t
)
=

4
π

[(
1 − 1

t

)
K
(√

t
)
+

1
t

E
(√

t
)]

. (93)

https://mathoverflow.net/q/423800
https://mathoverflow.net/a/423802
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Formula (93) reveals that the Gauss hypergeometric function 2F1
( 1

2 , 1
2 ; 2; t

)
for |t| < 1

should not be an elementary function.

The above question with its motivation and the above answer were mentioned in [6] (Section 4.2).

Remark 6. As a continuation of the question (89) and the answer by Gerald A. Edgar on the site
https://mathoverflow.net/a/423802 (accessed on 2 June 2022), Qi asked an alternative question on
https://math.stackexchange.com/q/4669567 (accessed on 30 March 2023) which can be revised and
quoted as follows.

Can one write out a closed-form formula for the general term of the coefficients in the
Maclaurin power series expansion of the power function[

2F1

(
1
2

,
1
2

; 2; t
)]m

, m ∈ N?

In other words, is there a closed-form expression for the coefficients Cm,n in the power
series expansion [

2F1

(
1
2

,
1
2

; 2; t
)]m

=
∞

∑
n=0

Cm,n
tn

n!
, m ∈ N?

The intention of this question is the same one as that stated in [6] (Section 4.3).
As performed in the proof of [6] (Theorem 1), we can derive a recursive relation for the coeffi-

cients Cm,n. However, we are more interested in a possible closed-form formula for the coefficients
Cm,n.

Remark 7. On the site https://mathoverflow.net/q/448555 (accessed on 15 June 2023), Qi asked
the following two questions:

1. Is the generalized hypergeometric function 1F2
(
1; a, a + 1

2 ;−x2) for a > −1 elementary?
2. For a ≥ −1, how about the positivity, monotonicity, and convexity of the generalized hyperge-

ometric function 1F2
(
1; a, a + 1

2 ;−x2) in x?

These problems originated and proposed from [36] (Remark 15).
On the site https://mathoverflow.net/a/458242 (accessed on 13 November 2023), the expression

1F2

(
1; a, a +

1
2

;−x2
)
=

f (2x i) + f (−2x i)
2

was given, where

f (t) = 1 +
t

2a
+

t2

2a(2a + 1)
+

t3

2a(2a + 1)(2a + 2)
+ · · ·

=
2a − 1
t2a−1 et[Γ(2a − 1)− Γ(2a − 1, t)]

and the incomplete gamma function Γ(z, x) is defined by Γ(z, x) =
∫ ∞

x e−t tz−1 dt for ℜ(z) > 0
and x ∈ N0 (see [37] (p. 429)).

On the site https://mathoverflow.net/a/458325 (accessed on 13 November 2023), Gerald
A. Edgar (Ohio State University, USA) wrote that, when taking a = 1

4 , the famous software
Maple presents

1F2

(
1;

1
4

,
3
4

;−x2
)
= 1 + 2

√
πx
[

cos(2x)S
(

2
√

x
π

)
− sin(2x)C

(
2
√

x
π

)]
, (94)

where

S(x) =
∫ x

0
sin

πt2

2
dt and C(x) =

∫ x

0
cos

πt2

2
dt

https://mathoverflow.net/a/423802
https://math.stackexchange.com/q/4669567
https://mathoverflow.net/q/448555
https://mathoverflow.net/a/458242
https://mathoverflow.net/a/458325
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are called the Fresnel integrals [5] (Section 7.3, p. 321). Because S(x) and C(x) are not elementary,
he guessed that the combination (94) is also not elementary. Gerald A. Edgar also simplified
and acquired

1F2

(
1;

1
4

,
3
4

;−x2
)
= 1 + 2

√
x
∫ 0

−x

sin(2r)√
r + x

dr, x > 0.

He pointed out that the proof of S(x) being not elementary may also work for this.
In [36] (p. 16), Qi and his coauthors obtained

1F2

(
1; n + 1, n +

3
2

;− x2

4

)
=


(−1)n (2n + 1)!

x2n+1

[
sin x −

n−1

∑
k=0

(−1)k x2k+1

(2k + 1)!

]
, x ̸= 0

1, x = 0

= SinRn(x)

(95)

and

1F2

(
1; n +

1
2

, n + 1;− x2

4

)
=


(−1)n (2n)!

x2n

[
cos x −

n−1

∑
k=0

(−1)k x2k

(2k)!

]
, x ̸= 0

1, x = 0

= CosRn(x)

(96)

for n ∈ N, where the quantities SinRn(x) and CosRn(x) are called the normalized tails of the
Maclaurin power series expansions of sine and cosine, respectively. On the other hand, it is not
difficult to show

1F2

(
1; 1,

3
2

;− x2

4

)
=


4 arcsinh

( x
2
)

x
√

x2 + 4
, x ̸= 0

1, x = 0
(97)

and

1F2

(
1;

1
2

, 1;− x2

4

)
=

2√
x2 + 4

. (98)

Combining (95) and (96) with (97) and (98) reveals that the generalized hypergeometric functions

1F2

(
1; n, n +

1
2

;−x2
)

and 1F2

(
1; n − 1

2
, n;−x2

)
for n ∈ N are elementary. Equivalently, the generalized hypergeometric function

1F2

(
1;

n
2

,
n + 1

2
;−x2

)
, n ∈ N

has a closed-form expression, so it is elementary.
In [36] (Theorems 1 and 2) and [36] (Remarks 3 and 10), among other things, Qi and his

coauthors discovered the following:

1. Both of the normalized tail SinRn(x) for n ∈ N and the normalized tail CosRn(x) for n ≥ 2
are positive and decreasing in x ∈ (0, ∞);

2. When n ∈ N, the normalized remainder SinRn(x) is concave on (0, π);
3. When n ≥ 2, the normalized remainder SinRn(x) is concave on

(
0, 4π

3
)
;

4. When n ≥ 3, the normalized remainder SinRn(x) is concave on
(
0, 3π

2
)
;

5. When n ≥ 4, the normalized remainder SinRn(x) is concave on (0, 2π);
6. When n ≥ 2, the normalized remainder CosRn(x) is concave on (0, π);
7. When n ≥ 3, the normalized remainder CosRn(x) is concave on

(
0, 3π

2
)
;

8. When n ≥ 4, the normalized remainder CosRn(x) is concave on
(
0, 7π

4
)
;
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9. When n ≥ 5, the normalized remainder CosRn(x) is concave on (0, 2π).

Consequently, by virtue of the relations

SinRn(x) = 1F2

(
1; n + 1, n +

3
2

;− x2

4

)
, n ∈ N

and

CosRn(x) = 1F2

(
1; n +

1
2

, n + 1;− x2

4

)
, n ∈ N, (99)

see (95) and (96), we conclude that the generalized hypergeometric function 1F2
(
1; n+3

2 , n+4
2 ;− x2

4
)

for n ∈ N is positive and decreasing in x ∈ (0, ∞), while the following occur:

1. The generalized hypergeometric function 1F2
(
1; n + 1, n + 3

2 ;− x2

4
)

is concave on the interval

(0, π) for n = 1;(
0,

4π

3

)
for n = 2;(

0,
3π

2

)
for n = 3;

(0, 2π) for n ≥ 4,

2. The generalized hypergeometric function 1F2
(
1; n + 1

2 , n + 1;− x2

4
)

is concave on the interval

(0, π) for n = 2;(
0,

3π

2

)
for n = 3;(

0,
7π

4

)
for n = 4;

(0, 2π) for n ≥ 5.

Summing up, the generalized hypergeometric function

1F2

(
1;

n + 3
2

,
n + 4

2
;− x2

4

)
, n ∈ N

is positive and decreasing in x ∈ (0, ∞), while it is concave in

x ∈



(0, π) for n = 1, 2;(
0,

4π

3

)
for n = 3;(

0,
3π

2

)
for n = 4, 5;(

0,
7π

4

)
for n = 6;

(0, 2π), n ≥ 7.

Some of these observations were also posted on the site https://mathoverflow.net/a/470042 (accessed
on 26 April 2024).

We can also connect the main results in [38] with the hyperbolic function in (99) as follows:

https://mathoverflow.net/a/470042
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• In [38] (Theorem 1), among other findings, the function

ln CosRn(x) = ln
[

1F2

(
1; n +

1
2

, n + 1;− x2

4

)]
, n ∈ N (100)

was expanded into a Maclaurin power series at x = 0.
• In [38] (Theorem 2), among other findings, the function ln CosRn(x) for n ≥ 2 in (100) was

proven to be decreasing and concave on
(
0, π

2
)
. These results are weaker than the corresponding

ones in [36] (Theorem 2), not only because a positive concave function must be a logarithmically
concave function (but the converse is not true), but also because we consider the including
relations

(
0, π

2
)
⊂ (0, ∞) and

(
0, π

2
)
⊂ (0, π).

• In [38] (Theorem 3), the function

ln CosR2(x)
ln cos x

=
ln
[

1F2
(
1; 5

2 , 3;− x2

4
)]

ln cos x

was proven to be decreasing on
(
0, π

2
)
.

These observations were also announced as a part of an answer on the site https://mathoverflow.net/
a/470042 (accessed on 27 April 2024).

Remark 8. From the identity (83), Henry Ricardo (Westchester Area Math Circle, Purchase, New
York, USA) noticed that the identity

∞

∑
j=0

(−1)j

2j + 1
=

π

4
(101)

is called the Leibniz formula for the circular constant π; see the site https://en.wikipedia.org/wiki/
leibniz_formula_for_%cf%80 (accessed on 23 March 2024). It is the special case arctan(±1) = ±π

4
of the power series expansion

arctan x =
∞

∑
j=0

(−1)j

2j + 1
x2j+1, |x| ≤ 1.

Formula (101) can also be deduced from the general formula

∞

∑
k=1

(−1)k−1 cos[(2k − 1)x]
2k − 1

=


π

4
, −π

2
< x <

π

2
;

−π

4
,

π

2
< x <

3π

2
,

which is taken from [1] (p. 46), by taking x = 0.
On the other hand, since

(arctan t)n

n!
=

∞

∑
k=0

(−1)k

(
n−1

∏
m=1

ℓm+1

∑
ℓm=0

1
2ℓm + m

)
t2k+n

2k + n
, |t| ≤ 1

for n ∈ N (see [37] (Section 6.1)), the Leibniz formula (101) can be generalized as

∞

∑
k=0

(−1)k

2k + n

(
n−1

∏
m=1

ℓm+1

∑
ℓm=0

1
2ℓm + m

)
=

1
n!

(
π

4

)n

, n ∈ N. (102)

https://mathoverflow.net/a/470042
https://mathoverflow.net/a/470042
https://en.wikipedia.org/wiki/leibniz_formula_for_%cf%80
https://en.wikipedia.org/wiki/leibniz_formula_for_%cf%80
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For example, taking n = 2, 3, 4 in (102) leads to

∞

∑
k=0

(−1)k

(
k

∑
ℓ=0

1
2ℓ+ 1

)
1

2k + 2
=

1
2
−
(

1 +
1
3

)
1
4
+

(
1 +

1
3
+

1
5

)
1
6
− · · ·

=
1
2!

(
π

4

)2

,

∞

∑
k=0

(−1)k

(
k

∑
ℓ2=0

1
2ℓ2 + 2

ℓ2

∑
ℓ1=0

1
2ℓ1 + 1

)
1

2k + 3

=
1
2
· 1

3
−
[

1
2
+

1
4

(
1 +

1
3

)]
1
5
+

[
1
2
+

1
4

(
1 +

1
3

)
+

1
6

(
1 +

1
3
+

1
5

)]
1
7
− · · ·

=
1
3!

(
π

4

)3

,

and
∞

∑
k=0

(−1)k

(
k

∑
ℓ3=0

1
2ℓ3 + 3

ℓ3

∑
ℓ2=0

1
2ℓ2 + 2

ℓ2

∑
ℓ1=0

1
2ℓ1 + 1

)
1

2k + 4
=

1
4!

(
π

4

)4

.

Remark 9. Due to Theorem 4, we can regard the sequences in (83) as two increasing rational
approximations of the irrational constant π

4 .

Remark 10. The Equation (86) can be reformulated as

∫ 1

0

(
t

1 + t

)n 1√
1 − t2

dt =
π

2
− 1

2n−1

n−1

∑
j=0

(−1)j

2j + 1

n−j−1

∑
ℓ=0

(
n
ℓ

)

for n ∈ N0. Further utilizing the identity (83) results in

∫ 1

0

(
t

1 + t

)n 1√
1 − t2

dt =
π

2
+

2

(2n
n )

n

∑
ℓ=1

(−1)ℓ
(

2n − ℓ

n

)
2ℓ/2

ℓ
sin

3ℓπ

4

for n ∈ N0. Generally, combining Theorem 3 with the Euler integral representation (84) reveals that

∫ 1

0

tn

(1 − t)1/2(1 + z2t)n+1/2 dt =
2n+1n!

(2n + 1)!!

[
Pn
(
z2)arctan z

z
+ Qn

(
z2) 1

1 + z2

]
for n ∈ N0 and z2 ∈ C \ (−∞,−1), where the functions Pn(z) and Qn(z) are defined by (39)
and (40).

We believe that it is also difficult to directly calculate these improper integrals.
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