
Citation: Garić-Demirović, M.;
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Abstract: This paper investigates an autonomous discrete-time glycolytic oscillator model with a
unique positive equilibrium point which exhibits chaos in the sense of Li–Yorke in a certain region of
the parameters. We use Marotto’s theorem to prove the existence of chaos by finding a snap-back
repeller. The illustration of the results is presented by using numerical simulations.
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1. Introduction and Preliminaries

A first rigorous criterion for chaos in one-dimensional discrete dynamical systems,
named period three implies chaos, was established by Li and Yorke in their seminal paper [1].
The definition of chaos given in that paper was the first rigorous description of chaos. A
number of authors made attempts to extend this definition to multi-dimensional difference
equations. One of the most used extensions of the definition of chaos to multi-dimensional
cases was given by F. R. Marotto in [2–4], who observed that the crucial properties of chaos
are the following: the existence of an infinite number of periodic solutions of various mini-
mal periods; the existence of an uncountably infinite set of points which exhibit random
behavior; and the presence of a high sensitivity to initial conditions. Marotto extended
Li–Yorke’s notion of chaos from one-dimensional to multi-dimensional by introducing the
notion of a snap-back repeller in their famous theorem in 1978 [2]. Also, see [5]. However,
the original result in [2] has an error, which was noticed by several mathematicians, includ-
ing P. Kloeden and Li [6,7]. The error was corrected by F. Marotto in [8], where he redefined
a snap-back repeller in 2005 [8]. In this paper’s preliminary, we will give the corrected
version of the definition for a snap-back repeller and then present Marotto’s corrected
theorem [3,8].

Here is Marotto’s definition for “snap-back repeller” and then their theorem from [2,8].

Definition 1 ([4]). Let Φ ∈ C1 in a neighborhood of a fixed point w of Φ. We say that w is a
snap-back repeller if the following conditions are met:
(i) All the eigenvalues of det JΦ(w) have a modulus greater than one (w is a repeller);
(ii) There exists a finite sequence w0, w1, . . . , wM such that wk+1 = Φ(wk), wM = w, and w0 ̸=

w, which belongs to a repelling neighborhood of w, and |det JΦ(wk)| ̸= 0 for 0 ≤ k ≤ M − 1.

Remark 1. It is clear that Definition 1 still implies that the sequence {wk}M
k=−∞, where wk+1 =

Φ(wk) for all k < M, satisfies wM = w and wk → w as k → −∞, making this set of points a
homoclinic orbit. Furthermore, since all wk for k ≤ 0 lie within the local unstable manifold of the
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map Φ at the fixed point w, where Φ is 1 − 1, and since det JΦ(wk) ̸= 0 for 1 ≤ k ≤ M, then
this homoclinic orbit is transversal in the sense that Φ is 1 − 1 in a neighborhood of each wk for all
k ≤ M. See [4].

Theorem 1 ([2]). If a map Φ possesses a snap-back repeller, then Φ is chaotic in the sense of
Li–Yorke. That is, the following exist:
1. A positive integer N, such that Φ has a point of period p, for each integer p ≥ N;
2. A “scrambled set” of Φ, i.e., an uncountable set W containing no periodic points of Φ, such that

(a) Φ(W) ⊂ W;
(b) lim sup

n→∞
∥Φn(u)− Φn(v)∥ > 0 for all u, v ∈ W, with u ̸= v;

(c) lim sup
n→∞

∥Φn(u)− Φn(v)∥ > 0 for all u ∈ W, with u ̸= v and periodic point v of Φ;

3. An uncountable subset W0 of W such that lim inf
n→∞

∥Φn(u)− Φn(v)∥ = 0, for every u, v ∈ W0.

In this paper, we investigate the existence of Li–Yorke chaos for the following system
of difference equations:

xn+1 = xn + h
(
α − βxn − xny2

n
)

yn+1 = yn + h
(

βxn + xny2
n − yn

) }, (1)

where the parameters α and β are positive; 0 < h < 1 is the step size of the numerical
method in the process of transferring a continuous model into a discrete counterpart.
System (1) was obtained by the explicit Euler finite discretization of the following system
of differential equations [9]:

x′ = α − βx − xy2

y′ = βx + xy2 − y

}
, (2)

which was used as the model for glycolysis decomposition in [9]. In this model, glucose
decomposes in the presence of various enzymes, including ten steps in which five are
termed the preparatory phase, while the remaining five steps are called the pay-off phase.

In [9], the authors, using a non-standard finite discretization, obtained a different
discrete analogon of the glycolytic oscillator model (2). They investigated the Neimark–
Sacker bifurcation and hybrid control in their discrete model, but the local dynamics were
not studied in detail. The reason is probably that the local dynamics were quite complicated
and involved. See [10–12] for related results.

System (1) is a cubic polynomial system, which is well known to exhibit chaotic
behavior. The global dynamics of such a system can be quite complicated, as we have
shown in a series of papers [13,14]. An interesting problem is whether the local stability
of System (1) implies the global stability of such a system and, in general, if System (1)
is structurally stable. As we showed in [13,14] proving global stability requires different
techniques and it might be more difficult to prove than a complicated, chaotic behavior.
The case when the equilibrium of System (1) is a saddle point probably requires finding the
stable and unstable manifolds or sets and using them to obtain the dynamics of that system
(see [13]).

In this paper, we present the complete local dynamics of model (1) in Section 2. The
local stability dynamics indicate the regions where Li–Yorke chaos is possible. Then, we
prove the existence of Li–Yorke chaos in such a region by finding the snap-back repeller
using a similar technique to that in [15]. One should mention that Li–Yorke chaos is
common for many polynomial and rational systems of difference equations (see [16–18]),
with the simplest and oldest being Hénon’s map and system (see [4]). The techniques of
rigorous proofs of chaos in dimensions higher than one are often based on Theorem 1. The
other less rigorous techniques are based on calculations of Lyapunov exponents and the
fractal dimension. See [19–22] for many examples of chaotic two-dimensional systems.
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2. Local Stability Analysis

System (1) has a unique (positive) equilibrium point z =
(

α
β+α2 , α

)
. The investigation

of the nature of the local stability of equilibrium point z is based on the well-known result
of Theorem 2.12 in [19] or in [20–22].

The map T corresponding to System (1) is of the form

T
(

x
y

)
=

(
x + h

(
α − βx − xy2)

y + h(βx + xy2 − y)

)
,

and the Jacobian matrix of the map T is of the form

JT(x, y) =
(

−hy2 − hβ + 1 −2hxy
h
(
y2 + β

)
2hxy − h + 1

)
, (3)

from which we obtain

trJT(x, y) = −hy2 + 2hxy − hβ − h + 2,

and
det JT(x, y) = −h(1 − h)y2 + 2hxy + (1 − h)(1 − hβ).

The corresponding characteristic equation has the form

φ(λ) = λ2 +
(

hy2 − 2hxy + hβ + h − 2
)

λ− h(1 − h)y2 + 2hxy+ (1 − h)(1 − hβ) = 0, (4)

which in the equilibrium z =
(

α
β+α2 , α

)
becomes

φ(λ) = λ2 +
hβ2+β(2hα2+h−2)−α2(h−hα2+2)

α2+β
λ +

−hβ2(1−h)−(1−h)(2hα2−1)β+α2(hα2(h−1)+h+1)
α2+β

= 0.

Since φ(1) = h2(α2 + β
)
> 0, by applying Theorem 2.12 in [19], we obtain the following

result about the local dynamics of equilibrium point z:
Let 0 < h < 1 be fixed. Then,

φ(0) = 1 ⇐⇒ β = β0(α) =
−2α2(1 − h)− 1 +

√
1 + 8α2(1 − h)

2(1 − h)

and

φ(−1) = 0 ⇐⇒ β = β−1(α) =
1
h

1 − α2h +

√
4α2h2 + 2 − h

2 − h

,

where β0(α) and β−1(α) are continuous functions such that β0(α) > 0 for 0 < α <

α1 =
√

1
1−h and β−1(α) > 0 for 0 < α < α2 =

√
2(h+2)
(2−h)h . Note that α1 and α2 are the

abscissas of the intersection points of curves β = β0(α) and β = β−1(α) with the Oα-axis,
respectively, and β1 = 0 and β2 = 2

h are the abscissas of the intersection points of curves
β = β0(α) and β = β−1(α) with the Oβ-axis, in the (α, β)-plane. Let C0 and C−1 be the
graphs of the functions β = β0(α) and β = β−1(α) in the positive quadrant, respectively
(excluding the points on the axes). It is easy to see that C0 ∩ C−1 = ∅ if α1 ≤ α2 (i.e.,
0 < h ≤ 2

(√
2 − 1

)
) and C0 ∩ C−1 = {Γ} if α1 > α2 (i.e., 2

(√
2 − 1

)
< h < 1), where

Γ = (αΓ, βΓ) =

(√
2(2−h)

h2 ,
2(h2+4h−4)

h4

)
.
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Now, assume that φ(0) = 1, α < α1, and β = β0(α). Then, we have that detJT(z) = 1
and

(trJT(z))2 − 4detJT(z) =

(
hβ2 + β

(
2hα2 + h − 2

)
− α2(h − hα2 + 2

)
α2 + β

)2

− 4

=
h2(4α2(1 − h) + 1 − K

)(
4h2α2(1 − h) + (2 − h)2(1 − K)

)
(1 − h)2(1 − K)2 < 0,

where K =
√

1 + 8α2(1 − h). Namely,

4α2(1 − h) + 1 − K > 0 ⇐⇒
(

4α2(1 − h) + 1
)2

> 1 + 8α2(1 − h) ⇐⇒ 16α4(h − 1)2 > 0,

which is true for every h ∈ (0, 1). On the other hand,

4h2α2(1 − h) + (2 − h)2(1 − K) < 0 ⇐⇒ 16α2(1 − h)2
(

h4α2 − 2(2 − h)2
)
< 0. (5)

For α < α1 and h ≤ 2
(√

2 − 1
)

, inequality (5) is true because

h4α2 − 2(2 − h)2 < h4
(

1
1 − h

)
− 2(2 − h)2 =

(
h2 − 2h + 2

)(
h2 + 4h − 4

)
1 − h

≤ 0.

Also, for 2
(√

2 − 1
)
< h < 1 and α < αΓ, (5) is true because

h4α2 − 2(h − 2)2 < h4

(
2(2 − h)2

h4

)
− 2(h − 2)2 = 0.

By using Theorem 2.12 in [19], we see that φ(0) = 1 and (trJT(z)))2 − 4detJT(z)) < 0 if
β = β0(α) and

0 < h ≤ 2
(√

2 − 1
)

, α < α1

or
2
(√

2 − 1
)
< h < 1, α < αΓ,


which means that λ1 and λ2 are conjugate complex, and |λ1| = |λ2| = 1.

We will now prove that

trJT(z) ̸= 0 and trJT(z) ̸= 2,

when φ(−1) = 0.
First, note that trJT = 2 if 2

(√
2 − 1

)
< h < 1, α = αΓ, and β = βΓ, where

φ(λ)|Γ = (λ + 1)2.

Also, if φ(−1) = 0, then β = β−1(α). It implies that

trJT(z) = 0 ⇐⇒
hβ2 + β

(
2hα2 + h − 2

)
− α2(h − hα2 + 2

)
α2 + β

= 0

⇐⇒

√
4α2h2 + 2 − h

2 − h
=

−2h2α2 + h − 2
2 − h

< 0,

which is impossible.
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By Theorem 2.12 in [19], it means that λ1 = −1 and |λ2| ̸= 1 if β = β−1(α) and

0 < h < 2
(√

2 − 1
)

, 0 < α < α2

or
2
(√

2 − 1
)
< h < 1, α ∈ (0, α2), α ̸= αΓ.

Also, note that it can be easily verified that φ(0) > 1 is valid at all points below the curve
C0, and φ(0) < 1 is valid at all points above that curve. Likewise, in all points below the
curve C−1, φ(−1) > 0 is valid, and in all points above that curve, φ(−1) < 0 is valid.
See Figures 1–3.

R

LAS

SP

0

-1

α1 α2

2

h

0 1 2 3 4

0

1

2

3

4

Figure 1. Parametric spaces of local dynamics in the (α, β)-plane for h = 0.5 < 2(
√

2 − 1),
C0 = {(α, β) : φ(0) = 1}, C−1 = {(α, β) : φ(−1) = 0}.

R

LAS

SP

0

-1

α1= α2

2

h
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Figure 2. Parametric spaces of local dynamics in the (α, β)-plane for h = 2(
√

2 − 1),
C0 = {(α, β) : φ(0) = 1}, C−1 = {(α, β) : φ(−1) = 0}.
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R
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Γ(αΓ ,βΓ )
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Figure 3. Parametric spaces of local dynamics in the (α, β)-plane for h = 0.9 > 2(
√

2 − 1),
C0 = {(α, β) : φ(0) = 1}, C−1 = {(α, β) : φ(−1) = 0}.

Denoting

L1 = {(α, β) : 0 < α < α1, β0(α) < β < β−1(α)},

L2 = {(α, β) : α1 ≤ α ≤ α2, 0 < β < β−1(α)},

L3 = {(α, β) : 0 < α < αΓ, β0(α) < β < β−1(α)},

R1 = {(α, β) : 0 < α < α1, 0 < β < β0(α)},

R2 = {(α, β) : 0 < α ≤ αΓ, 0 < β < β0(α)},

R3 = {(α, β) : αΓ < α < α2, 0 < β < β−1(α)},

S1 = {(α, β) : 0 < α ≤ α2, β > β−1(α)},

S2 = {(α, β) : α > α2, β > 0},

we have thus completed the proofs of the following two lemmas.

Lemma 1. If h ∈
(

0, 2
(√

2 − 1
))

, α1 =
√

1
1−h , and α2 =

√
2(h+2)
(2−h)h , then the unique equilibrium

point z =
(

α
β+α2 , α

)
of System (1) is as follows:

1. Locally asymptotically stable if

0 < h < 2
(√

2 − 1
)

and (α, β) ∈ L1 ∪ L2

or
h = 2

(√
2 − 1

)
and (α, β) ∈ L1;

2. A repeller if (α, β) ∈ R1;
3. A saddle point if (α, β) ∈ S1 ∪ S2;
4. A non-hyperbolic with

(a) λ1 and λ2 being conjugated complex, and |λ1| = |λ2| = 1 if α ∈ (0, α1) and β = β0(α);
(b) λ1 = −1 and |λ2| ̸= 1 if α ∈ (0, α2) and β = β−1(α).

Lemma 2. If h ∈
(

2
(√

2 − 1
)

, 1
)

, α1 =
√

1
1−h , α2 =

√
2(h+2)
(2−h)h , αΓ =

√
2(2−h)

h2 , and βΓ =

2(h2+4h−4)
h4 , then the equilibrium point z =

(
α

β+α2 , α
)

of System (1) is as follows:

1. Locally asymptotically stable if (α, β) ∈ L3;
2. A repeller if (α, β) ∈ R2 ∪R3;
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3. A saddle point if (α, β) ∈ S1 ∪ S2;
4. A non-hyperbolic with

(a) λ1 and λ2 being conjugated complex, and |λ1| = |λ2| = 1 if α ∈ (0, αΓ) and β = β0(α);
(b) λ1 = −1 and |λ2| ̸= 1 if α ∈ (0, α2), α ̸= αΓ, and β = β−1(α);
(c) The characteristic polynomial of the form φ(λ) = (λ + 1)2 at the point Γ(αΓ, βΓ) =(√

2(2−h)
h2 ,

2(h2+4h−4)
h4

)
, so the eigenvalues are λ1,2 = −1.

See Figure 3.

3. Li–Yorke Chaos for h = 7
10 < 2

(√
2 − 1

)
In order to prove the existence of Li–Yorke chaos, we will consider the corresponding

eigenvalues with a modulus greater than one for h < 2
(√

2 − 1
)

and the set

R1 = {(α, β) : 0 < α < α1, 0 < β < β0(α)} =

{
(α, β) : α ∈

(
0,

1√
1 − h

)
, β ∈ (0, βh)

}
,

and

βh =
−2α2(1 − h)− 1 +

√
8α2(1 − h) + 1

2(1 − h)
. (6)

We prove that the positive equilibrium point z =
(

α
β+α2 , α

)
of System (1) is a snap-back

repeller. The next step is to determine a neighborhood Uz of z = (x, y) in which the norms
of eigenvalues exceed one for all (x, y) ∈ Uz. It means that we need to solve the following
system of inequalities, φ(1, x, y, β, h) > 0, φ(−1, x, y, β, h) > 0, and φ(0, x, y, β, h) > 1,
where

φ(λ, x, y, β, h) = λ2 +
(

hy2 − 2hxy + hβ + h − 2
)

λ − h(1 − h)y2 + 2hxy + (1 − h)(1 − hβ)

is the characteristic polynomial of (3), i.e., we will solve the following system of inequalities:

φ(1, x, y, β, h) = h2(y2 + β
)
> 0,

φ(−1, x, y, β, h) = −y2h(2 − h) + 4hxy + (2 − h)(2 − hβ) > 0,
φ(0, x, y, β, h)− 1 = h

[
−(1 − h)y2 + 2xy + (hβ − β − 1)

]
> 0.

 (7)

The first inequality in (7) is always satisfied. Curves C1 and C2, where

C1 = {(x, y) : φ(−1, x, y, β, h) = 0} and C2 = {(x, y) : φ(0, x, y, β, h)− 1 = 0}

are hyperbolas that intersect in the first quadrant at the point

P =

(
(h − 2)2

2h
√

4 − h2β
,

√
4 − h2β

h

)

for β < 4
h2 . The assumptions 0 < h < 2

(√
2 − 1

)
and 0 < α < 1√

1−h
imply that βh < 4

h2 .
Namely,

−2α2(1 − h)− 1 +
√

8α2(1 − h) + 1
2(1 − h)

<
4
h2

is equivalent to

4(h − 1)
[

h4(h − 1)α4 + h2(h2 + 8h − 8
)
α2 − 4(h − 2)2

]
h4 > 0
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which is satisfied if

h4(h − 1)α4 + h2
(

h2 + 8h − 8
)

α2 − 4(h − 2)2 < 0. (8)

Since 0 < h < 2
(√

2 − 1
)

, it follows that h2 + 8h − 8 < 0, so inequality (8) is true.
Notice that

φ(0, x, y, β, h)− 1 = 0 =⇒ x =
y2(1 − h) + (1 − h)β + 1

2y
,

and

φ(−1, x, y, β, h) = 0 =⇒ x =
(2 − h)

(
hy2 + hβ − 2

)
4hy

,

so a neighborhood Uz of z = (x, y), in which the norms of eigenvalues exceed one for all
(x, y) ∈ Uz, is determined with Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
y2(1 − h) + (1 − h)β + 1

2y
,+∞

)
, y ∈

(
0,

√
4 − h2β

h

)}
, (9)

and

(Uz)2 =

{
(x, y) : x ∈

(
(2 − h)

(
hy2 + hβ − 2

)
4hy

,+∞

)
, y ∈

[√
4 − h2β

h
,+∞

)}
(10)

for h < 2
(√

2 − 1
)

.
In this way, we obtained the following result.

Lemma 3. Let 0 < h < 2
(√

2 − 1
)

, 0 < α < 1√
1−h

, and 0 < β < βh, where βh is given by
(6). Then, Uz = (Uz)1 ∪ (Uz)2, where (Uz)1,2 is defined by (9) and (10) is a repelling area of the
equilibrium point z .

To continue investigating the conditions under which the equilibrium point z will be a
snap-back repeller, we will take a fixed value of the parameter h, for example, h = 7

10 .

Now, if h = 7
10 , then α < 1√

1− 7
10

=
√

10
3 ≈ 1.8257 and β < β 7

10
= 1

3

√
5(12α2 + 5)−

α2 − 5
3 . A repelling area of the equilibrium point z is Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
3y2 + 3β + 10

20y
,+∞

)
, y ∈

(
0,

√
400 − 49β

7

)}
,

(Uz)2 =

{
(x, y) : x ∈

(
91y2 + 91β − 260

280y
,+∞

)
, y ∈

[√
400 − 49β

7
,+∞

)}
.

To prove that the equilibrium point z = (x, y) is a snap-back repeller for M = 2, we need
to find points z0 = (x0, y0) ∈ Uz and z1 = (x1, y1) /∈ Uz such that

z1 = T(z0), z2 = T(z1) = T2(z0) = z and det JT(z1) ̸= 0.

By calculating the inverse iterations of the fixed point z twice, we are looking for the point
z0 = (x0, y0), x0 > 0, y0 > 0, as the solution of the following system:

x + 7
10
(
α − βx − xy2) = x1

y + 7
10
(

βx + xy2 − y
)
= y1

}
(11)



Axioms 2024, 13, 280 9 of 17

for z1 = (x1, y1) which is the solution of the system

x + 7
10
(
α − βx − xy2) = α

α2+β

y + 7
10
(

βx + xy2 − y
)
= α

. (12)

The solutions of System (12) are

(z1)± =
(
(x1)±, (y1)±

)
,

where

(x1)± =
−5α ± 1

7 Q
10(α2 + β)

+
10α + 3α

(
α2 + β

)
10(α2 + β)

, (y1)± =
5α ∓ 1

7 Q
3(α2 + β)

,

and

Q =
√

7Q1 > 0, Q1 = −3α4(21β − 100) + α2
(

390β − 126β2 + 175
)
− 9β2(7β − 10).

By using β < β 7
10

, it is easy to see that Q1 > 0.

Now, we prove that det J
(
(z1)±

)
̸= 0 considering that

det J
(
(z1)+

)
=

Q
(
−Q − 7α

(
3
(
α2 + β

)
− 5
))

1050(α2 + β)
2 ,

det J
(
(z1)−

)
=

Q
(
−Q + 7α

(
3
(
α2 + β

)
− 5
))

1050(α2 + β)
2 .

Suppose that det J
(
(z1)±

)
= 0. Then,

det J
(
(z1)±

)
= 0 ⇐⇒ Q = ∓7α

(
3
(

α2 + β
)
− 5
)

.

If α
(
3
(
α2 + β

)
− 5
)
= 0, we have a contradiction with Q > 0, such that det J

(
(z1)±

)
̸= 0.

However, if α
(
3
(
α2 + β

)
− 5
)
> 0, since Q > 0, we have that

Q = 7α
(

3
(

α2 + β
)
− 5
)
⇐⇒ 21β2 + β

(
42α2 − 30

)
+ α2

(
21α2 − 170

)
= 0,

which for α2 < 10
3 has only one positive solution

β+ =
−
(
21α2 − 15

)
+
√

15(196α2 + 15)
21

.

This implies that β+ /∈
(

0, β 7
10

)
, which is a contradiction. Therefore, it is true that

det J
(
(z1)±

)
̸= 0 if α

(
3
(
α2 + β

)
− 5
)
> 0.

Similarly, we conclude that det J
(
(z1)±

)
̸= 0 if α

(
3
(
α2 + β

)
− 5
)
< 0.

Now, note the following fact: for β < β 7
10

, we have

Q ̸= ∓7α
(

3
(

α2 + β
)
− 5
)

. (13)

In the next step, we will solve System (11) for z1 = (x1, y1) =
(
(x1)−, (y1)−

)
. From the

second equation in System (11), we obtain

x =
−3y + 10(y1)−

7(β + y2)
=

10Q + 350α − 63y
(

β + α2)
147(y2 + β)(α2 + β)

.
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This implies −3y + 10(y1)− > 0 ⇐⇒ y < 10
3 (y1)−, i.e., y <

50α+ 10
7 Q

9(α2+β)
. After substituting x

in the first equation of System (11), we obtain

−3y + 10(y1)−
7(β + y2)

+
7
10

(
α − β

(−3y + 10(y1)−
7(β + y2)

)
−
(−3y + 10(y1)−

7(β + y2)

)
y2
)
− (x1)− = 0.

Let

H(β, y) =
−3y + 10(y1)−

7(β + y2)
+

7
10

(
α −

(−3y + 10(y1)−
7(β + y2)

)
(β + y2

)
− (x1)−,

i.e.,

H(β, y) =
21y3 − 7

(
10(x1)− + 10(y1)− − 7α

)
y2 + 3(7β − 10)y + 100(y1)− − 7β

(
10(x1)− + 10(y1)− − 7α

)
70(y2 + β)

. (14)

By using the facts

(x1)− =
−5α − 1

7 Q
10(α2 + β)

+
10α + 3α

(
α2 + β

)
10(α2 + β)

, (y1)− =
5α + 1

7 Q
3(α2 + β)

,

and y = α, we obtain

H(β, y) = 0 ⇐⇒
(
100 − 49

(
α2 + β

))(
Q − 7α

(
3α2 + 3β − 5

))
1470(α2 + β)

2 = 0. (15)

Considering (13), Equation (15) is satisfied if 49
(
α2 + β

)
= 100, or, equivalently,

β =
100 − 49α2

49
.

It implies that 100 − 49α2 > 0, i.e., α < 10
7 ≈ 1.428 6. On the other hand,

β < β 7
10

⇐⇒ 100 − 49α2

49
<

1
3

√
5(12α2 + 5)− α2 − 5

3

which implies α >
√

3950
2401 ≈ 1.282 6. If α ∈

(√
3950
2401 , 10

7

)
, we denote

β∗ =
100 − 49α2

49
.

Now, from (14) we obtain

∂H(β, y)
∂y

=
21
(

β + y2)2
+ 30

(
y2 − β

)
− 200y(y1)−

70(y2 + β)
2 .

By using the fact that (y1)− =
5α+ 1

7 Q
3(α2+β)

and y = α, we have that

∂H(β, α)

∂y
=

7
(
63β3 + 9

(
21α2 − 10

)
β2 + α2(63α4 + 90α2 + 189α2β − 1000

))
− 200αQ

1470(α2 + β)
3 .

Let us show that ∂H(β∗ ,y)
∂y ̸= 0. Otherwise, if ∂H(β∗ ,y)

∂y = 0, then

2700 − 10 633α2 = 96 040α2Q2.
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Since α ∈
(√

3950
2401 , 10

7

)
, the left side of the past equality is negative, which is impossible. It

means that ∂H(β∗ ,y)
∂y ̸= 0 holds.

Therefore, under certain conditions on the parameters, we have that

1◦ β∗ =
100−49α2

49 ∈
(
0, 950

2401
)

for α ∈
(√

3950
2401 , 10

7

)
;

2◦ H(β∗, y) = 0;

3◦ H(β, y) is continuous for β < β∗ and y <
50α+ 10

7 Q
9(α2+β)

;

4◦ ∂H(β∗ ,y)
∂y ̸= 0.

By the Implicit Function Theorem, there exists a unique function y = y0(β) and δ > 0
such that

(i) y0(β∗) = y.
(ii) H(β, y0(β)) = 0 for β ∈ (β∗ − δ, β∗ + δ).
(iii) y = y0(β) is continuous in β ∈ (β∗ − δ, β∗ + δ).

Figure 4 shows the area of the parameters for which the equilibrium point is a repeller

and the set B =

{
(α, β) : α ∈

(√
3950
2401 , 10

7

)
, β = β∗

}
⊂ R1 in the (α, β)-plane.

β

α

ℛ1
ℬ

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

Figure 4. The area of the parameters for which the equilibrium point is a repeller and the set B (red)
is shown (in the (α, β)-plane for h = 0.7).

Let M = 2 and z0 = (x0, y0) =

(
10Q+350α−63y0(α2+β)

147(β+y2
0)(α2+β)

, y0

)
for y0 <

50α+ 10
7 Q

9(α2+β)
. Then, z0

belongs to Uz̄ for a small enough β − β∗. Assume that ϵ > 0 is arbitrary and let

x∗ = max{x + ϵ, x0 + ϵ}.

Finally, let

U∗
z = (U1)

∗ ∪ (U2)
∗,

where

(U1)
∗ =

{
(x, y) : x ∈

(
3y2 + 3β + 10

20y
, x∗
)

, y ∈
(

y∗1 ,

√
400 − 49β

7

)}
,
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and

(U2)
∗ =

{
(x, y) : x ∈

(
91y2 + 91β − 260

280y
, x∗
)

, y ∈
[√

400 − 49β

7
, y∗2

)}
.

Also, y∗1 and y∗2 are the second coordinates of the intersection points of the line given by the
equation x = x∗ with the curves C2 and C1, respectively.

Theorem 2. Assume that h = 7
10 , α ∈

(√
3950
2401 , 10

7

)
and β∗ = 100−49α2

49 . Then, there exists β

near β∗ such that z = (x, y) =
(

α
α2+β

, α
)

is a snap-back repeller of System (1) and, consequently,
System (1) is chaotic in the sense of Li–Yorke.

4. Numerical Simulations

In many articles, the appearance of chaos is established by the existence of positive
Lyapunov coefficients (e.g., [15]). Although we proved the existence of chaos in the
previous section using the Marotto method, we will make several corresponding numerical
simulations by calculating the Lyapunov coefficients. Most of the experimentalists in
dynamical systems theory take the existence of positive Lyapunov coefficients as enough
evidence for the existence of chaos (see [23–26]). In that case, different software packages,
such as Dynamica in [19] or Chaos in [25,26], are used to justify the use of the word chaos.
Also, see the references in [23].

If α = 7
5 = 1.4, then

β∗ =
100 − 49

( 7
5
)2

49
=

99
1225

≈ 0.080816.

Let us choose β = 8
100 close to β∗ =

99
1225 . Now, Uz = (Uz)1 ∪ (Uz)2, where

(Uz)1 =

{
(x, y) : x ∈

(
75y2 + 256

500y
,+∞

)
, y ∈

(
0,

√
9902
35

)}
,

and

(Uz)2 =

{
(x, y) : x ∈

(
2275y2 − 6318

7000y
,+∞

)
, y ∈

[√
9902
35

,+∞

)}
.

See Figure 5a.
The solutions of System (12) are the equilibrium point and

(z1)± =
(
(x1)±, (y1)±

)
,

where

(
(x1)±, (y1)±

)
=

(
973

1275
±

√
7
√

24 003 649
17 850

,
175
153

∓
√

7
√

24 003 649
5355

)
.

The solution of System (11) for (x1, y1) =
(
(x1)−, (y1)−

)
which belongs to Uz is

(x0, y0) =
(
2.2013061560494975′, 1.400206800960196′

)
.

Therefore,

z0 = (x0, y0) = (2.2013061560494975‘, 1.400206800960196‘)
z1 = (x1, y1) = T(x0, y0) =

(
973
1275 −

√
7
√

24 003 649
17 850 , 175

153 +
√

7
√

24 003 649
5355

)
z = (x, y) = T(x1, y1) = T2(x0, y0) =

( 35
51 , 7

5
)
.

 (16)
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The Jacobian matrix of T at the point z = (x, y) has an eigenvalue λ± = 0.60855 ∓ 0.91998i
with |λ±| = 1.103, at point (x0, y0) has eigenvalues λ1 = 2.5357 and λ2 = 1.6511, and at
point (x1, y1) has eigenvalues λ1 = −7.7491 and λ2 = 0.28397.

For ϵ = 0.5, we have that

x∗ = max{x + ϵ, x0 + ϵ} ≈ 2.7013.

Next, y∗1 ≈ 0.19158 and y∗2 ≈ 8.6334 are the second coordinates of the intersection points of
the line given by the equation x = 2.7013 with the curves C2 and C1, respectively. Then,

U∗
z = U1 ∪ U2,

where

U∗
1 =

{
(x, y) : x ∈

(
75y2 + 256

500y
, 2.7013

)
, y ∈

(
0.19158,

√
9902
35

)}
,

and

U∗
2 =

{
(x, y) : x ∈

(
2275y2 − 6318

7000y
, 2.7013

)
, y ∈

[√
9902
35

, 8.6334

)}
.

See Figure 5b.

(U
_ )2

(U
_ )1

1

2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

2

4

6

8

(a)

(U1)
*

(U2)
*

1

2

x=x*

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0

2

4

6

8

(b)

Figure 5. Repelling area Uz (a) and neighborhood U∗
z (b) of the snap-back repeller z (for α = 1.4,

β = 0.08, and h = 0.7).

Figure 6 represents the phase portrait with 30 iterations with repelling area Uz and
neighborhood U∗

z of the snap-back repeller z. Furthermore, Figure 6 shows the points
in (16).

Now, assume that α = 0.6 /∈
(√

3950
2401 , 10

7

)
and β = 0.001 < β 7

10
= 0.24881. Then,

there exists M > 2 such that TM(z0) = z. In that case, if M = 17, the region U∗
z is a circle.

Figure 7 represents a phase portrait with 30 iterations and the snap-back repeller z.
Here,

z1 = T(z0), z2 = T2(z0), . . . , z18 = T17(z0) = z,
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where

z0 = (1.7658, 0.52217), z1 = (1.84754, 0.494912), z2 = (1.94947, 0.46654),
z3 = (2.07108, 0.438351), z4 = (2.21106, 0.411529), z5 = (2.36739, 0.387125),
z6 = (2.53738, 0.366149), z7 = (2.71748, 0.349742), z8 = (2.9029, 0.339506),
z9 = (3.08665, 0.338104), z10 = (3.25749, 0.350585), z11 = (3.39495, 0.387721),
z12 = (3.45532, 0.475941), z13 = (3.32502, 0.693091), z14 = (2.62461, 1.32833),
z15 = (−0.198952, 3.64206), z16 = (2.0685,−0.754833), z = (1.66205, 0.6).

0

1



x=x*
1

2

0 1 2 3 4

0

2

4

6

8

10

Figure 6. The snap-back repeller for α = 1.4, β = 0.08, and h = 0.7.

T

-1 0 1 2 3 4

-1

0

1

2

3

4

Figure 7. The snap-back repeller for α = 0.6, β = 0.001, and h = 0.7.

If we suppose that α = 0.6 and β = 0.12 < β 7
10

= 0.24881, then Figure 8a shows a
snap-back repeller with

z0 = (1.4605157298915394′, 1.424776880514991′),

z1 = (−0.31754936043512777′, 2.6254981544811646′),

z2 =
(
1.6613856774674765′,−0.7712855915582548′

)
z = (1.25, 0.6).
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T

-1 1 2 3 4

-1

1

2

3

4

(a)

T

-1 1 2 3 4

-1

1

2

3

4

(b)

Figure 8. The snap-back repeller for α = 0.6, β = 0.12, and h = 0.7.

The graph represents a phase portrait with 70 iterations. Figure 8b represents a phase
portrait with 11170 iterations (we obtained a chaotic attractor due to the accumulation
of rounding errors). In Figures 9a and 10a, the bifurcation diagrams are generated by
code Bif2D from [23], and in Figures 9b and 10b corresponding Lyapunov coefficients are
generated by the code in [24].

0.15 0.20 0.25 0.30

Β

-3

-2

-1

0

1

2

3

8xn , yn<

(a)

0.15 0.20 0.25 0.30

-0.10

-0.05

0.05

0.10

0.15

0.20

(b)

Figure 9. (a) Bifurcation diagram for α = 0.60, β ∈ (0.10, 0.30), h = 0.7, z = (1.25, 0.6), and initial
point z0 = (1.4605157298915394, 1.424776880514991); (b) corresponding Lyapunov coefficients.

0.15 0.20 0.25 0.30

Β

-3

-2

-1

0

1

2

3

8xn , yn<

(a)

0.15 0.20 0.25 0.30

-0.04

-0.02

0.02

(b)

Figure 10. (a) Bifurcation diagram for α = 0.60, β ∈ (0.10, 0.30), h = 0.7, z = (1.25, 0.6), and initial
point z0 = (1.40, 0.65); (b) corresponding Lyapunov coefficients.

5. Conclusions

We consider a chaotic dynamic of System (1), which is the Euler discretization of
System (2), which was used as the model for glycolysis decomposition in [9]. System
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(1) has a unique positive equilibrium, which locally can have any character depending
on the parameter region. That is, this unique equiibrium solution can be either locally
symptotically stable or repeller, saddle point, or non-hyperbolic. The global dynamics
of such a system can be quite complicated and could include the existence of an infinite
number of period-two solutions or equilibrium solutions, as we have shown in a series
of papers [13]. In this paper, we focus on the case when this equilibrium is a repeller and
prove that in this case there exists a region of parameters where System (1) exhibits chaos.
The quite challenging problem is whether the local stability of System (1) implies the global
stability of such a system and, in general, if System (1) is structurally stable. At this time,
we are leaving these problems for future research.
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