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1. Introduction

The concept “closed sets” in general topology is important, and many topologists are
currently focusing their research in this area. Topologists have developed generalizations
for this concept, leading to the discovery of interesting results. One of the most well-

known concepts and sources of inspiration is the notion of the g-closed set, which was first
check for

updates proposed by Levine [1]. In 1969, Long [2] discussed properties induced by functions with
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topological spaces using the vertices of a graph. A novel approach for creating a nano
topological structure using the ideas of the graph’s boundary, closure and interior was
also introduced. Using nano continuity, Atik et al. [12,13] examined the isomorphisms
between simple graphs. Khalifa et al. (2021) [14] introduced a nano topological space
based on graph theory that depends on neighbourhood relationships between the vertices
within an undirected graph, illustrated with examples. The idea of continuity has been
generalized through graph theory to provide additional characterizations and is applicable
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notion than N« g-closed graphs. We investigated some separation properties induced by
closed graph functions on their domain, range, or both spaces. We discuss an example of
Nwg-closed graphs using graph theory, which depends on neighbourhood relationships
between vertices in a simple graph.

In this article, (U, Tr1 (X)) and (V, og2(Y)) represent two nano topological spaces
(NTSs) with respect to X and )Y, where X C U and Y C V. Additionally, R1 is an
equivalence relation defined on the set I/, and U/ /R 1 denotes the collection of equivalence
classes of U by R1. Similarly, R2 is an equivalence relation on V, and V/R2 denotes the
collection of equivalence classes of V induced by R2.

2. Preliminaries

Descriptions of some of the terminologies used in this sequel are provided in this section.

Definition 1. ([6]). Let U be a non-empty finite set of objects called the universe and R be an

equivalence relation on U, referred to as the indiscernibility relation. The pair (U, R) is said to

be the approximation space. Let X C U. The lower approximation, upper approximation and

boundary of the region of X with respect to R is defined as Lr (X) = Uyey{R(x) : R(x) C X'},

Ur(X) = UreudR(x) : R(x)N X # &} and Bg(X) = Ug(X) — Lg(X), where R(x)

denotes the equivalence class determined by X € U. Then, the nano topology (NT) (X)) =

{U,0,Lr(X),Ur(X),Br(X)} is defined on U. The tr (X') satisfies the following axioms:

(i) Uand @ € r(X).

(i) The union of the elements of any subcollection of T (X)) is in Tr (X).

(iii) The intersection of the elements of any finite subcollection of T (X) is in T (X'). We call (U
, Tr(&X')) a nano topological space (briefly NTS).

Definition 2. ([7]). Let (U, (X)) be a nano topological space. Subset A of (U, Tr(X)) is
referred to as a nano weakly generalized closed set (briefly N'wg CS) if NCI(NInt(A)) C V, where
A CVand V is nano open. The complement of the N wg-closed set is an N w-g-open set (briefly
Nwg -OS). The family of all nano weakly generalized open sets is denoted by NWGO(U). We
set NWGOU, z) = {M € NWGO(U) such that z € M}. Similarly, the family of all nano
weakly — generalized  closed  sets is  denoted by NWGCU). We  set
NWGCU, z) = {M € NWGC(U) such that € M}. The N'wg closure of a subset A of U
is denoted by Nwg-Cl(A). Similarly, the N'wyg interior of subset A of U is denoted by
Nwg-Int(A).

Definition 3. ([7]). The function f : (U, tr1(X) ) = (V,0r2(Y)) is termed as follows:

(i) Nwg is continuous on U if the inverse image of every nano closed set in V' is nano weakly
generalized closed in U.

(i) Nwg is irresolute on U if the inverse image of every N wg-closed set in V' is nano weakly
generalized closed in U.

(iii) Nwg is closed (open) on U if the image of every nano closed (open) set in U is an Nwg closed
(open) set in V.

Definition 4. ([5]). Let f: (X, T) — (Y, ) be a function between two topological spaces, (X, T)
and (Y, o). Then, the subset {(x, f(x))/x € X} of the product space (X x Y, T x o) is known
as the graph of f and is written by G(f).

Definition 5. ([2]). A function f : (X, T) — (Y, o) is said to have a closed graph (resp. strongly
closed graphs) if for each (x, y) € X xY — G(f) there exist open sets U and V containing
x and y, respectively, such that (U x V) NG(f) = @ (resp. U x CI(V)) N G(f) = @.

Lemma 1. ([2]). Let f:(X,t) — (Y, 0) be a function, and then the graph G(f) is closed
(resp. strongly closed) for graphs in X x Y if and only if for each (x,y) € XxY —
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G(f) there exist open sets U and V containing x and y, respectively, such that f(U) NV =
@ (resp. f(U)NCIV) = @).

Definition 6. ([11]). Let a graph G = (V, E) and v € V(G); then N(v) = {v} U
{ueVv(G): u € E(G)} the neighbourhood of v.

Definition 7. ([11]). Let G be a graph with vertices (V, E), S be a subgraph of G and the
neighbourhood of v is represented by N(V(G)) and € V. Then

Ln(V(S)) = {{vi} U{vj} : e;j € E(S);v;,0; € E(S)},
HN(V(S)) = {{Ui,?)]'} D gj € E(S),’"Ui,l)]' S E(S)} U {’Uk Uk € V(G — S) and ek € E(G)}
Bn(V(S)) = Hn(V(S)\Ln(V(5))

Definition 8. ([11]). Let a graph G = (V, E) and v € V(G), N(v) be a neighbourhood
ofv in V and a subgraph S of G, and then ty(V(S)) = {V(G), @,Ln(V(S)), HN(V(S)),
BN(V(S))} forms a topology called NTS on 'V (G) with respect to V(S). We call {V(G), tv(V(S))}
as the NTS induced by a graph.

Definition 9. ([15]). According to graph theory, the graph that has two vertices (u, u') and
(v, V') adjacent in G O H is a graph such that u = v and v’ is adjacent to v" in H, or v’ = v/ and u is
adjacent to v in G. Furthermore, the vertex set of G U H is the Cartesian product V(G) x V(H).

3. Separation Axioms via Nano Weakly Generalized Closed Set

In this section, we explore the characterization of separation axioms with the aid of an
Nwg-open set in an NTS.

Definition 10. The space(U, Tr (X)) is defined as follows:

1. Nwg-T, space (N wg-Kolmogorov space) if for z, ye U and z # y 3 N'wg-OSs M such
that z € M and y ¢ M.

2. Nuwg-T; space (N w-g-Fréchet space) if for z, ye U and = # y. 3 Nwg-OSs M and N such
that z € Mand y ¢ Mandy € N and z ¢ N.

3.  Nwg-T, space (N'wg-Harsdorf space) if for z,ye U and = # y. 3 disjoint N'wg-OSs,
M and N such that z € M and y € N.

4.  Nwg-Ty space (N'wg-Urysohn space) if for z, ye U and x # y. 3 disjoint N'wg-OSs
Mand N, z € M and y € N, such that N wg-Cl(M) N Nwg- CI(N) = &.

Theorem 1. Every N wg-Ty/ space is an N'w-g-T, space.

Proof. Let z, ye U and = # y. Since U is the N wg-T,/ space, there exists disjoint N wg-
OSsM CUand N CU, z € Mand y € N, such that Nwg-CI(M) N Nwg-CI(N) = @.
Hence, MN N = &. Therefore, (U, Tr (X)) is an Nwg-T, space. ]

Theorem 2. Every N wg-T/ space is an N'w-g-T space.

Proof. Let z, ye U and = # y. The U is N'wg-T,/ space, and there exists disjoint N «rg-OSs
McCUand N CU, z € Mand y € N, such that N'wg-CI(M) N Nwg-CI(N) = &. This
indicates that x ¢ Nwg-CI(N) and y ¢ Nwg-Cl(M). Now Nwg-Cl(M), Nwg-CI(N) €
NWGC(M). Therefore, Y — Nwg-ClI(M) and U — Nwg-CI(N) € NWGO(M) such that
z € Nwg-Cl(M) and y € Nwg-CI(N). Thus, (U, tr (X)) is an N'wg- Ty space. O

Example 1. If U = {Ca1, b1, Ce1, Gar, Cer ), X = {Gp1, G}, U/R = {{Ca1,Cc1}, {Cb1 }, {Car },
{gel}}/ TR(X) = {U, @, {gbl}r {gall gcl}r{gall Cb1,Cc1l), then ng -OSs are {U, @, {gal}r
{0v1} {81} {Car}, {Ce1}, {Ca1, Co1}, {Ca1, Ce1 ), { a1, Qa1 }s {Cat, Cen b, {Cb1, G}, {Gb1,Car}s
{01, Ce1}, {8e1, Car} {8e1, Ge1}, {Ca1, Cb1, Ce1} {Car Cb, Cats {Car Cbs Ce }s {8a1, G, Can }s {Cats
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gcl/ gdl}/ {C{ll/ gcll gdl}/ {éall gclr gdl}/ {g{ll/ Cclr gel}/ {gbll Cclr gel}/ {gbll Cclr gel}/ {gall gﬁl/
gclr édl}/ {éalr gblr gcl/ gel}/ {{gall gblr gdl/ gel}/ }/ {gblr gcll gdlr gel}}' ThMS, Z,Y in Z/{, z
# y, there exists disjoint Nwg-OSs M C U, N C U and =z € M,y € N, such that Nwg-
CI(M)NNwg- CI(N) = @. Therefore, (U, (X)) is an Nwg-Ty! space, and Nwg-T5,
Nwg-Ty and N wg-Ty space.

Theorem 3. Every open subspace of the N'wg-Tospace is N'w-g -Tospace.

Proof. Let (U, TR (X)) be an NTS. Suppose (S, Tz (X)) is the subspace of U. Let z,y
be two distinct points in S. Since # and y are also points of U/, which is given to be the
Nwg-T; space, 3 two disjoint N'erg-OSs G and H, such that G contains 2 and H contains
y. Then, thesets G S =51, H S =S, are disjoint N'wg- OSs in S contains # Sy and ¢ Sy,
such that S; N'S; = @. Hence, S is the N'wg-T, space. O

Theorem 4. If f: (U, tr1(X)) = (V,0r2(Y)) is the N'wg-irresolute mapping and V is the
Nwg-Ty space, then U is N'wg-T.

Proof. Let z,y € U with z # y and V be an Nwg-Ty space. Then, IN wg-OS P of
Y, such that either f(z) € P and f(y) € P with f(z) # f(y). By using the injective
Nwg-irresoluteness of f, f~1(P) is an N'wg-OS of U such that either x € f~1(P)ory €
f~1(P). Therefore, U is an N'w¢g-Tj Space. O

Lemma 2. If the bijection function f : (U, tr1(X) ) = (V,0r2(Y)) is the N'wg-open, then for
any M € NWGC(U), f(M) e NWGC(V).

Proof. The proof is obvious. []

Lemma 3. Let z € U and A C U. The point z € N'wg-Cl(A) ifand only if AN S # &, forall S
e NWGO(U, z).

Proof. The proof is obvious. [

Theorem 5. If f: (U, tr1(X)) — (V,052())) is the bijective N'wg-open mapping and
(U, tR1(X) ) is the Nwg-Ty space, then (V,0r2(Y)) is Nwg -Ty space.

Proof. Let v, #» € V and y1 # y». Since f is the bijection, f~1(y1), f ' (y2) € U and
f~Yy1) # f ' (y2). The Nwg — Ty’ space property of U provides the existence of sets
M e NWGO U, f 1)), N € NWGO (U, f1(y2)) with the fact that N'ewrg-CI(M) N
Nwg-CI(N) = @. By the Lemma 3, Nwg-Cl(M) is the N'wg-CS in U. By the Lemma
2, bijectivity and N wg-openness reveals that f(Nwg-Cly (M) € NWGC(V). Again,
from M C Nwg-Cly (M), it follows that f(M) C f(Nwg-Cly (M)). Since Nw-g-clousure
respects inclusion, N'wrg-Cly,(f(M)) C Nwg-Cly(f(Nwg-Cly(M)) = f(Nwg-Cly(M)). In
like manner, N'wrg-Cly,(f(N)) C f(Nwg-Clyy(N)). Therefore, by the injectivity of f, Nwg-
Cly(f(M)) N Nwg- Cly(f(N)) C f(Nwg-Cly(M)) N f(Nwg -Cly(N)) =f[(Nwg-Cly(M))
N Nwg-Cly(N))] = f(@) =D. Thus, the N'wrg-openness of f gives the existence of two sets,
F(M) € NWGOYV, 1), f(N) € NWGO, 12) with Nasg-Clyy (F(M)) () Nasg-Chy(F(N))
=@. Hence, V is Nwg-T, space. [

4. Discussion on Nano Weakly Generalized Closed Graphs

In this section, we introduce a weaker form of the closed graph, such as Nwg-
closed graphs, with the aid of N'wg-OS in an NTS and investigate the functions and
characterization of separation axioms along with N'«+g-closed graphs. The example of the
Nwg-closed graph via a simple graph with vertices is discussed.
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Definition 11. The function f: (U, tr1(X) ) = (V,0r2(Y)) is told to have a nano weakly
generalized closed graph (briefly N'wg-CG) if for each (z,y) € U x V — G(f), IN wg-open
sets Mand N, z € Mandy € N, (M x N) NG(f) = @.

Lemmad4. If f: (U, tr1(X) ) — (V,0r2(Y)) is the function, then the graph G(f) is Nwg-
CGinU x Vif and only if foreach (z,y) € U XV — G(f), 3 a Nwg-open set M and N,
2z € Mand y € N, such that f(M) NN = @.

Proof. Necessity: Since f has a nano weakly generalized closed graph, for each ¢
Uand y € Vsuchthaty # f(z) JaNwg-OSs Mand N, z € M and y € N, in such a
way that (M x N) NG(f) = @. This implies that f(M) "N = Q.

Sufficiency: Consider (z,y) ¢ G(f), and then there are two Nwg-OSs M and N,
z € Mand y € N, such that f(M) NN = @. This indicates that (M x N) N G(f) = @. As
aresult, f has an Nwg-CG. O

Example 2. If u = {galf gbl/ CCl/ gdl}/X = {Cal},U/Rl = {{Cal}/ {gbll gcl}/ {gdl}}/
(U, (X)) = {U,D,{la1}}, then the N'wg-open sets are {U, D, {Ca1}, {Co1}, {Cc1}, {Cm }
{2a1, T} 4801, Caa b A1, Cer b {Cat, Can} Qo1 Can} b {8e1, Can bo {Cats Co1 Cer b {Cat, Con Can )
{galf ety gdl}}' If V= {77u2/ Mp2,Mc2, 77d2}/y = {77a2/ 77u2}/ V/R2 = {{UHZ/ 77172}/ {7762}/ {77d2}}/
V,ora(Y) = AV, D, {na2}, {na2ma}, {12 M2 Maz}}, then the Nwg-open sets are {V, @,
(a2}, {2}, a2, a2, m}s oo a2}, {Ma2s Mazts a2, Moo, a2}y {tas e a}s {nas e mat -
Let f: (U, tr1(X) ) = (V,0r2(Y)) be a mapping defined by f(Ca1) = Ha2, f(Cr1) = Moo
f(Ca) =1 and f({41) = Nap- Therefore, f has N'wg-CG. O

Example 3. [n this example, we observed that an /N w-g-closed graph will be induced by a general
graph with vertices. The two distinct graphs are G and H, their vertices of G and H are V(G) =
{Ca1, Coos Cuss Caatand V(H) = {np1, po, 11by} and the vertices of the Cartesian product of two
graphs are V(G x H) = {(Za1, 1), (Zar, Me2), (Cars 163), (Zazs 1e1), (Zaz. 1e2), (Caz. 1e3),
(Caz M61), (Ga3s Me2), (Cazs M63)s (Caar M61), (Gass Me2), (Cass Mp3)}; this is shown in Figure 1.

(Cats 761) . (Cax> M3)
Cat1-b2)
Cal o9 Ca2 b1 (Ca2s 161) . (Ca2s M3)
X - Ca2, Mh2)
Cat e—4Caz b2 7Ib3 (Cazs 1) . ) (Cazs b3)
Caz. Mp2
¢ H (Caa, T?bl) - (_Q_a:b Tb3)
(Cas Tp2)
G x H

Figure 1. Graph representation of Cartesian product of two graphs forms a topology.

The neighbourhoods of the vertices of G are N({a1) = { a1, Ca2} N(Ca2) = {Ca1, Ca2, Cas
N(Ca3) = {Ca2, Ca3,Caa}, N(Caa) = {la3,Cas}- If the subgraph X of G such that V(X) =
{gall Ca2, €a3}/ then LN(V(X)) = {gall €a2}/ UN(V(X)) = {Call Ca2,Ca3, €a4}/ BN(V(X)) =
{Ca3,Caa} and an NTS (G, 5 (X)) = {G, D, {Ca1, Qa2 }, {C 43, Cas } } N ewrg-open sets are G, D,
{gal}/ {CaZ}r {gaB}/ {€a4}/ {éalf gaZ}r {gaZI €a3}/ {gall €a3}/ {gall €a4}/ {gaZr Ca4}}r {€a3r €a4}

{galz gaZI gaB}/ {galz ga2/ €a4}/ {galz €a3/ Ca4}/ {éazl Ca?)/ Ca4}-
Similarly, the neighbourhoods of the vertices of H are N(#y1) = {11, p2}, N(1732) =

{1, o2, M3 }» N(p3) = {1p2, 1y} Assume that ) is a subgraph of H such that V()) =
{161,162} So, LN(V(Y)) = {m}, Un(V(Y)) = {101, 102, M3}, BN(V(Y)) = {112, 173} and
the NTS (H,on(Y)) = {H, D, {mn}, {2 s} }. The Nwg-opensetsare {H, @, {1}, {112},
{ms}, {nby, w2}, {11, s}, {Me2, M3 } }- The neighbourhoods of the vertices of G x H are
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N((Cm1, 161)) = {(Za1» 1), (Cars M2), (Ca2s 1)}, N((Ca1, 11by)) = {(Car 11), (Za1s Mp2),
(Ca1, 1bs), (Zaz, 162) 1 N((Za1, m63)) = {(Za1 » 62), (Cars M63), (Cazs M63) 1 N((La2,11)) =
{(Car1m01), (Cazs 1), (Cazs2), (C3,m1) }, N((Cazo 102)) = {(Gat, M62), (Gazs v1),  (Ca2s Me2),
(Ca2o113), (Ca3s 1p2) 1 N((Za2s M13)) = {(Zar, 1163), (Zazs 1102)s (azs 1103), (Zaso Me3) o N((Caz, 1))
={(Ca2, 1101), (a3, 111), (83, 1102), (Cats 61)  N((Gas, 1102)) = { (82, 112), (83, 11), (3, 112), (83, 113),
(Catr 12) - N((Ca3, 1163)) = { (Caa2s 1163), (Gass M62), (Cazs M113), (Cats 1103) }» N((Cats 1101)) = { (a3 101),
(Catrv1)s (Catrm2) o N((Gatr 12)) = {(Cazs 12) (Gatr 1), (Gasds Me2), (Cats 63) 0 N((Cags 113))
={(Ca3,1m3), (Cass12), (Cassi3)}-

Consider the subgraph X x J of G x H such that V(X % V) = {(Zs1, 7p1), (Ca2, b1, (Ca3, b1),
(galr 77b2)(€a2r 77b2)/ (Ca3r an)}/LN(V(‘X X y)) = {(éall ﬂbl)r (gaZr ﬂbl)}f UN(V(X X y)) =
{(Zat,1101), (Zat, 02, (Ca1, 1163) (82, b1, (Ca2, 162)s (Tazs Ma3), (Ca3, 1b1)s (Cad 1b2) s (Ca3s 103),
(Caar1b1), (Cag,m2) } and BN (V(X x V) = {(Ca1,112), (Taq,113), (Zazs 112), (Ca2,113), (Cass 1),
(Ca3/Ma2), (Ca3:Ma3),(Cass1p1), (Car1p2)} and a NTS (G x H, én(X xY)) = {G x H, 2,
{(Cars1m01), (Cazs11o1) 3 A (Cats 1) (Cats Me2)s (Cats 3) (Sazs 1) (Ga2s 102), (Cazo Me3), (Cazs111),
(CazsMv2)s (L3 1103) (Cats 1), (Caa, M2) o A (Cats 1102), (Cats Me3), (Sazo M2)s (Ca2s 103), (a3s 1),
(Cas Mv2), (Ga3, 1163),(Cas 101), (Cats Mp2) }}-

If the function f: (G, tny(X)) — (H,on(Y)) is defined by f(la1) = b1, f(Ca2) = b1,
f(Za3) = 1ip1 and f(Tas) = 71, then f has Nwg-CG. O

Theorem 6. If the function f : (U, Tr1 (X)) — (V,0r2(Y)) is an injective with the N'wrg-CG,
G(f), then U is N'wg-Ty space.

Proof. Let «,ye U and = # y. Since f is an injection, f(z) # f(y) in V.(z,f(y)) €
(U x V) — G(f). But G(f) is the Nwg-CG, so that using the Lemma 4, 3 a N'wg-OSs M
and N, z € M and f(y) € N, such that f(M) NN = @. Thus, ¥ ¢ M. Likewise, IN wg-
OSs P and Q containing y and f(«), in such a way that f(P) NQ = @. As aresult, z ¢ P.
U is Nwg-T, space. O

Theorem 7. If the function f: (U, Tr1(X) ) — (V,0ra2(Y)) is surjective with respect to the
Nwg-CG G(f), then V is N'wg-T; space.

Proof. Consider y, xe V and y # x. Given the function f is onto, 3 a point = in ¢/ such
that f(z) = ». Hence, (z,y) ¢ G(f), using the Lemma 4, there is N'wg -OSs M and N,
2 € M and y € N, because of which f(M) NN = @. Further, it implies x ¢ N. Likewise,
there exist w+ € U such that f(«) = y. Thus, (w, %) ¢ G(f). Similarly, there exist N'wg-
OSs P& Q, w € Pand x € Q, such that f(P) NQ = @. Hence, ¥ ¢ Q, and thus the space
V is Nwg-T; space. U

Corollary 1. If the bijective function f : (U, Tr1 (X)) — (V,052(Y)) has the Nwg-CG G(f),
then both Uand V are N'w-g -T1 space.

Proof. That is obvious from Theorems 6 and 7. (I

Theorem 8. If f: (U, r1(X) ) = (V,012(Y)) is the N'wg-open and onto function with the
Nwg-CG G(f), then' V is N'wg-T, space.

Proof. Let y,we V and y # w. The points z,xe U, z # % and f(z) = y, f(x) = w.
Since (x, w) ¢ G(f) and G(f) is Nwg-CG, there exist Nwg-OSs M & N, # € M and
w € N, as a result of which f(M) NN = @. However, f(M) is Nwrg-open and contains y.
Therefore, V is N'wg-T; space. [J

Theorem 9. If f: (U, Tr1 (X)) — (V,0r2(Y))is injective and N w-g-continuous with N w-g-
CG G(f), and also V is N'wg-T, space, then U is N'wg-T, space.
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Proof. Let z, ye U be any two of points, Then, 3 M, N C Vand M # N such that f(2) €
M, f(y) € N. Since the function f is N'uwg-continuous, f~1(M), f ~1(N) are N'wg-open
inU, z € f71(M),y € f1(N). By the N'usg-T» space, we obtain f~1(M) N f~1(N) = @.
Thus, U is N'wg-T, space. O

Theorem 10. If the function f: (U, Tr1(X) ) — (V,0r2(Y)) is the N wg-homeomorphism
with N'wg-CG G(f), then U and V are N'w-g-T, space.

Proof. It is implied by Theorems 8 and 9. [

5. Stronger Form of Nano Weakly Generalized Closed Graphs

We present a stronger form of the closed graph, such as strongly N «g-closed graphs
with the aid of Nwg-closed sets in an NTS examined with strongly N «g-closed graphs
with Nwg-irresolute, nano quasi « g-irresolute, nano 6-«¢ -irresolute, etc.

Definition 12. The function f: (U, r1(X) ) — (V,0r2(Y)) is called strongly Nwg-CG if
foreach (z,y) e U xV — G(f), 3an Nwg-OSs Mand N, z € Mand y € N, (M x Nwg-
CI(N)) NG(f) = @.

Lemma 5. Let f: (U, tr1(X) ) — (V,0R2(Y)) be the function. The graph G(f) is strongly N'w-g-
closed inld x Viff for each (z,y) € U xV — G(f), 3a Nwg-OSs M and N, z € M and
y € N such that f(M) N Nwg-CI(N) = 2.

Proof. The proof is evident from Definition 12. [

Example 4. Let U = {Ca1,Ca2, L3}, X = {Ca1, Ca2}, U/RY = {{la1}, {Ca2, Ca3} } (U, TR (X)) =
{ur ®, {gal}/ {gaZr §a3}}- NWQ'OSS are {ur g, {gal}r {gaZ}r {gaS}r {gall gaZ}r {€a2/ €a3}r
{Ca1,Ca3}}- Let V = {mu1, b2, M3}, ¥V = {3}, V/R2 = {{Go1, Cwa}, {3} }, (V, or2(Y)) =
{V,@,{ms}} and Nwg-0Ss be {V, @, {nm} {2} {ms} {2 ma} {1, ma}}. Let
(U, mR1(X)) = (V,0R2(Y)) be a mapping defined by f(Ca1) = Np1, f(Ca2) = 1o and
f(C3) = np3- Then, f has strongly N'w-g-closed graph. O]

Remark 1. The previous example is N'w-g-CG. But Example 2 is not strongly N'wg-CG. Thus,
strongly N'wg-CG is N'wg-CG. The converse, however, is not necessarily true. [J

Theorem 11. If f: (U, tr1(X) ) = (V,0r2(Y)) is Nwg-irresolute and V is N'w-g-T,, then
G(f) is strongly N'wg-CG.

Proof. Let (z,y) € U x V — G(f). Since V is Nwg-T, space, there exist N € NWGO(V,
y) such that f(z) ¢ Nwg-CI(N). Then, V— Nwg-CI(N) € NWGO(V, f(«)). Since f is
Nwg-irresolute, there exist M € NWGO(U, z) such that f(M) C V— Nwg-CI(N). Then,
f(M)NNwg-CI(N) = @. Hence, G(f) is strongly N w¢-CG. O

Theorem 12. If f: (U, Tr1(X) ) = (V,0%2(Y)) is one to one and G(f) is strongly N'wg-CG,
then U is N'w-g-T; space.

Proof. Given that f isone to one, z,y¥ € U and @ # y, f (z) # f (y). Since G(f) is strongly
Nwg-closed, as per Definition 12, (z, f(y)) € U x V —G(f), 3a Nwg -OSs M and N,
2 € Mand y € N, and thus f(M) N Nwg-CI(N) = @. Therefore, ¥ ¢ M. Consequently, 3
a Nwg -OS W contains f (y), z ¢ W. As aresult, U is Nwg-T;. O

Theorem 13. If f: (U, tr1(X) ) — (V,0r2(Y)) is surjection along with strongly N'wg-CG,
then V is both N'w-g-T and Nwg-T space.
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Proof. Let y1, ¥» € V. Since f is surjective, there exist 1 € U such that f(z1) = y1.
Since G(f) is strongly Nwg-CG, by the Lemma 5 (21, 2) € U x V — G(f), there is an
Nwg-OS M,N and z1 € M, y, € N, and hence f(M) N Nwg-CI(N) =D. As a result, ¢
¢ Nwg-CI(N). This implies that 3 W € N\WGO(V, y1), W N N = @. Thus, V is N wg-T).
Thus, V is N'wg-T; space. O

Theorem 14. If f: (U, tr1(X) ) — (V,0r2(Y)) is one to one and onto with strongly N wg-
CG, then U and V are N'w-g-T spaces.

Proof. Theorems 12 and 13 directly lead to the proof. [
Theorem 15. The space U is N w-g-T, space if and only if the identity function has strongly N'w-g-CG.

Proof. Necessary: Consider U to be N'wg-T,. According to Theorem 11, the identity function is
Nwg-irresolute, and G(f) is strongly N'w-g-CG.

Sufficiency: Let G (f) be strongly N'wg-CG. Since the function f is onto using Theorem 13,
U is N'wg-T, space. [

Definition 13. A function f : (U, tr1(X) ) = (V,0r2(Y)) is called nano quasi w-g-irresolute
if Vo € U and for each N'w-g-OS f(z) is a subset of N, 3a Nwg-OS z € M, in such a way
that f(M) C Nwg-CI(N).O

Remark 2. Every N wg-irresolute is nano quasi w-g-irresolute. However, the contrary is not
always true, as demonstrated by the given example. [

Example 5. LetU = {gal/ CaZ/ €a3}/ X = {C:a?)}/u/Rl - {{galr éaZ}/ {€a3}}/ (L{, TRl(X)) =
{U, ®/ {éafﬂ}}and ng—open sets are {U, 9, {gal}/ {éaZ}/ {gaS}r {€a2r gaS}r {éalr €a3}}' Let
V= {2 st Y = {12}t V/R2 = {{nv1} {mv2, me3}}, (V,0r2(Y)) = {V,9,
{11}, {12, o3 } } and Nwwg-open sets are {V, @, {np1}, {nv2}, {3}, {11, o2}, {11, M3}
{2, mat}. Let f: (U, tr1(X)) = (V,0r2(Y)) be a mapping defined by f(Ca1) = np1,
F(Za2) = nyp and £(La3) = np3. Then f is nano quasi w-g-irresolute. However, inU, f~1({Ts3}) =
{3} is not Nw-g-CSinU. As a result, f is not N'wg-irresolute function. O

Theorem 16. If f: (U, tr1(X)) — (V,0r2(Y)) is nano quasi wg-irresolute, a one-to-one
function along with strongly N'w-g-CG G(f), then U is N'w-g-T, space.

Proof. Since f is one to one, for any two separate points x1, 2y € U, f(z1) # f(z2).
Therefore (21, f(22)) €U x V — G(f). The N'wg- closedness of G(f) gives M € NWGOU,
z1)and N € NWGO(V, f(x3)) such that f(M) N N wg-Cly,(N) = @. Therefore, we obtain
M0 f~YNwg-Cly(N)) = . Consequently, F Y Nwg-Cly(N)) C U~ M. Since f is nano
quasi wg- irresolute, this is applicable at 2. Then there exists W € NWGO(U, ;) in such
a way that f(W) C Nug-Cly,(N). It follows that W C f~1(Nwg-Cly(N)) C U— M. Thus,
it may be shown that W " M = @. As a result of this, ¢/ is a N'wg-T; space. [

Theorem 17. If V is a nano weakly generalized Urysohn space and f : (U, Tr1(X) ) — (V,or2(Y))
is nano quasi w-g-irresolute, then U is N'wrg-T, space.

Proof. As the function f is one to one, 21, 2y € U, z1 # 22, f(21) # f(22). The nano
weakly generalized Urysohn property implies that there exist H;€ NWGO(V, f(z))), i
= 1, 2 such that N'wg-Cly(H1) N Nwg-Cly(Hy) = @. Hence, f~'(Nwg-Clyy(H1)) N
f~ Y Nwg-Cly(H,)) = @. Since f is nano quasi wg-irresolute, there exists G; € NWGOU,
z;),i=1, 2such that f(G;) C Nwg-Cly(H;),i =1, 2. Then, it follows that G; C f 1 (Nwg-
Cly(H;)),i=1, 2. Hence, G; N G2 C f ' (Nwg-Cly(H1) N f~ (Nwg-Cly(Hy)) = 2. This
implies that U/ is N'wg-T; space. O
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Definition 14. A function f : (U, Tr1(X) ) = (V,0r2(Y)) is called nano 6-w-g-irresolute if for
each N wg-neighbourhood N of f(z) there is a N w g-neighbourhood M of  such that f(N wg-
Cly(M)) € Nuwg-Cly(N).

Remark 3. Every N wg-irresolute function is nano 0-w g-irresolute. However, as the following
example demonstrates, the contrary need not be true.

Example 6. Let U = {ga1/§a2/€a3r€a4} X = {gal} U/R1 = {{gal} {Ca2/§a3} {Ca4}}
(U, 71(X)) {U,2,{Ca}} Nwyg -open sets be
{U g, {gal} {gaZ} {gaB} {gaél} {galrgaZ} {Ca2/€a3} {§a1,Ca3} {§a1,€a4}} Let V =
{gaZ/ §a4} } {ga?w €a4} {gal/ gaZ/ €a3} {galf CaZ/ Ca4} {5a1/ ga?)/ §a4} ’
{1 o2 o3 ea}, Y = {2 mpa b, VIR2 = {{npn, i}, {mes} {1mpat}, (V. or2(Y)) =
{V, D, {npa}, Lo e2ts {1, 1 oo uat}. Nwg-open sets are {V, @, {nin}, {1}, {1oa},
{mor, o2} {1b2, 1oa }s {1101, ba s {1161, 1102, ba b {1161, 1103, 1ba } {1162, 13, 104 } 3 Let
[ (U R1(X)) = (V,0R2(Y)) be amapping defined by f(01) =1, f(C2) =12, f(T3) =113
and f(Caa) = 1pa- Then, f is nano 0-w-g-irresolute. Nonetheless, in U, f~1({na}) = {Cp} is
not N'wg-CS. Thus, f is not an N'w-g-irresolute function.

Corollary 2. If f: (U, TR1(X) ) = (V,0%2())) is nano 6-wg-irresolute, a one-to-one function
with strongly N'wg-CG G(f), then U is N'w-g-Tj space.

Proof. Given that nano 8-« g-irresoluteness is nano quasi wg-irresoluteness, Theorem 16
provides the basis for the proof. [J

Theorem 18. If the bijective function f: (U, Tr1(X)) — (V,0r2(Y)) is nano quasi wg-
irresolute (resp. nano 0-w-g-irresolute) with strongly N'w-g-CG G(f), then U and V are N'wg-T»
space.

Proof. The proof is a direct result of Theorem 16 and Theorem 13 (resp. Corollary 2 and
Theorem 13). [J

Corollary 3. If f: (U, Tr1 (X)) = (V,0r2()) is Nwg-irresolute, a one-to-one function with
Nwg-CG G(f), then U is N'wg-T, space.

Proof. Theorem 16 as well as the fact that every N w g-irresoluteness is nano quasi «g-
irresoluteness provide the proof. [

Definition 15. A function f : (U, tr1(X) ) = (V,0r2(Y)) is almost N w g-irresolute if for each
z € U and each N'w-g-neighbourhood Vof f(z ), Nwg-Cl(f ~1(V)) is the N'w g-neighbourhood of

Z.

Theorem 19. If f: (U, r1(X) ) = (V,0r2())) is nano almost w-g-irresolute, a one-to-one
function with N'w-g-CG G (f), then U is N'wg-T; space.

Proof. By using Theorem 16, we get f (M) N Nwg-Cl (N) = @. Therefore, f~}(Nwg-
CI(N)) C U — M. Since U— M is a nano wg-closed set containing f ! (N wg-CI(N)), any
Nwg-Cl(f~1(Nwg-CI(N))) is the smallest N'usg-closed that contains f~!(Nwg-CI(N))
as the result of N'wrg-Cl (f ~1(Nwg-CI(N))) C U~ M. The nano almost «g-irresoluteness
of f confirms that f~1(Nwg-CI(N)) and hence Nwg-Cl(f ~1(Nwg-CI(N))) is a Nwg-
neighbourhood of ;. This implies that there exist H € N\WGO (U, ;) such that H C
Nwg-Cl(f Y (Nwg -CI(N))) C U~ M. From this we can obtain M (| H = @. Therefore, U
is N'wg-T; space. O
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6. Conclusions

In this paper, we explored the characterization of separation axioms with the aid of
Nwg-OS in an NTS. We presented a weaker form of a closed graph, such as N «g-closed
graphs, and a stronger form of a closed graph, such as strongly N« g-closed graphs, with
the aid of N« g-closed sets in an NTS and examined the characterization of strongly N« g-
closed graphs with N« g-irresolute, nano quasi wg-irresolute, nano 8-« g-irresolute, etc.
The example of an N wg-closed graph via a simple graph with vertices was discussed.
We investigated some separation properties, especially N« g-Harsdorf space and N wg-
Urysohn space, induced by both closed graph functions such as N wg-closed graphs and
strongly Nwg-closed graphs either on its domain, range, or on both spaces.
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