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Abstract: This paper considers a multi-product, multi-criteria supply–demand network equilibrium
model with capacity constraints and uncertain demands. Strict network equilibrium principles are
proposed both in the case of a single criterion and multi-criteria, respectively. Based on a single crite-
rion, it proves that strict network equilibrium flows are equivalent to vector variational inequalities,
and the existence of strict network equilibrium flows is derived by virtue of the Fan–Browder fixed
point theorem. Based on multi-criteria, the scalarization of strict network equilibrium flows is given
by using Gerstewitz’s function without any convexity assumptions. Meanwhile, the necessary and
sufficient conditions of strict network equilibrium flows are derived in terms of vector variational
inequalities. Finally, an example is given to illustrate the application of the derived theoretical results.
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1. Introduction

The study of the supply–demand network equilibrium models has been the subject
of great interest due to their theoretical challenges and practical application. The funda-
mental principle is Wardrop’s equilibrium principle [1], which states that users in transport
networks choose one of the paths among all the paths joining the same origin–destination
(OD) pair at minimum cost. After Wardrop, many scholars have proposed various network
equilibrium models based on a single criterion. Dong et al. [2] considered a supply chain
network equilibrium model with random demands. Meng et al. [3] proposed a note on
supply chain network equilibrium models. Nagurney [4] presented a supply chain net-
work equilibrium model and investigated the relationship between transportation and
supply chain network equilibria. Nagurney et al. [5] developed an equilibrium model of a
competitive supply chain network. Additionally, motivated by practical concerns, network
equilibrium models based on multiple criteria cost functions have been studied; for exam-
ple, Chen and Yen [6] were the first to propose a traffic network equilibrium model based
on multiple criteria cost functions without capacity constraints, and present an equivalent
relation between vector network equilibrium models and vector variational inequalities.
Cheng and Wu [7] presented a multi-product supply–demand network equilibrium model
with multiple criteria.

For a supply–demand network, it is well known that when the flows pass through
two different paths which contain common arcs at the same time, the capacity constraints
of the two paths may interact. So, the capacity constraints are important factors that affect
the equilibrium states and the selection of the set of feasible network flows. Based on this
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cause, a substantial number of works have been devoted to studying the vector equilibrium
principle [5,8–14] with capacity constraints of paths. In addition, considering that the data
are uncertain in practice and are not known exactly, along with the change of network users’
demand preferences and the fluctuation of purchasing power, the demands of network flow
should not be fixed, and the network equilibrium with uncertain demands have attracted
much attention. Very recently, Cao et al. [15] focused on the traffic network equilibrium
problem with uncertain demands, in which the uncertain set consisted of finite discrete
scenarios. Subsequently, Wei et al. [16] assumed that the demands belonged to a closed
interval and proposed (weak) vector equilibrium principles involving a single product.
Proper efficiency is widely applied to solve vector optimization and vector equilibrium
problems. It can help one to eliminate some abnormal efficient decisions and provide
proper efficient decisions. Several classical proper efficiency measures, such as Benson
efficiency [17], super efficiency [18], and Henig efficiency [19], have been applied to solve
network equilibrium models. Cheng and Fu [20] introduced a kind of proper efficiency–
strict efficiency, and it has been used to solve vector optimization models (for example, see
Yu et al. [21]). On the other hand, variational inequality theory is an effective tool to solve
equilibrium problems (for example, see Chen and Yen [6]).

In this paper, inspired by the work in [7,10,16,17], we consider strict vector equilib-
rium principles of a multi-product, multi-criteria supply–demand network with capacity
constraints and uncertain demands, where the demands are assumed to belong to a closed
interval and are irrelevant to the costs for all OD pairs. The main contribution is to derive
the existence results of strict vector equilibrium flows of a multi-product supply–demand
network with capacity constraints and uncertain demands by virtue of the Fan–Browder
fixed point theorem and obtain the relations between the strict vector equilibrium flows and
vector variational inequalities, with both a single criterion and multi-criteria cost functions,
which, to the best of our knowledge have not been studied before.

The rest of this article is arranged as follows: in Section 2, some mathematical prelimi-
naries are described. In Section 3, we propose a strict network equilibrium principle for a
multi-product supply–demand network problem involving real-valued cost functions with
capacity constraints and uncertain demands. The equivalence relation between the strict
network equilibrium flow and the strictly efficient solution of variational inequalities is
established. The existence of the strict network equilibrium flows is also derived by means
of the Fan–Browder fixed point theorem. Section 4 proposes a strict network equilibrium
principle for a multi-product supply–demand network problem with capacity constraints
and uncertain demands involving vector-valued cost functions, and the similar equivalence
relation of strict network equilibrium flows in terms of vector variational inequalities is de-
duced by using Gerstewitz’s scalarization function. Section 5 gives an illustrative example.
Section 6 provides a brief summary of the paper.

2. Definition and Preliminaries

In this section, some notations are set and we recall the notions of efficient points of
a nonempty set, and the variational inequality and strictly efficient points of a nonempty
set. Throughout the paper, we suppose that the vectors are always row vectors unless
otherwise stated. Let Rn be the n-dimensional Euclidean space and Rn

+ be its non-negative
orthant. Let Rn×n be the n × n matrix space and

Rn×n
+ = {k = (k1, · · · , kn) ∈ Rn×n : ki = (k1

i , · · · , kn
i )

′
, kj

i ≥ 0, j = 1, · · · , n}

be its non-negative orthant, where (k1
i , · · · , kn

i )
′
denotes the transpose of the matrix (k1

i , · · · , kn
i ).

Given y, z ∈ Rn×n, let ⟨y, z
′⟩ = yz

′
represent the multiplication of matrix y and z. A pointed

closed convex cone Γ ⊂ Rn induces the orderings in Rn: for any x1, x2 ∈ Rn,

x1 ⩽ x2 iff x2 − x1 ∈ Γ,

x1 < x2 iff x2 − x1 ∈ intΓ,
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where intΓ denotes the nonempty interior of Γ. For convenience of writing, let Rn = X. Let
ΞX be a nonempty convex subset of the cone Γ and cl(ΞX) be its closure. cone(ΞX) = {σx :
σ ∈ R1

+, x ∈ ΞX} is the conic hull of the set ΞX. If 0 /∈ cl(ΞX), Γ = cone(ΞX), then the set
ΞX is said to be a base of the cone Γ.

Let N be a nonempty subset of X; H : N → Rn is a mapping. The notion of efficient
points of the set N is as follows.

Definition 1 (see [21]). A vector x̄ ∈ N is said to be an efficient point of the set N if

(N − x̄) ∩ (−Γ\{0}) = ∅.

Let EP(N) denote the set of the efficient points of the set N.

The variational inequality is to find a vector x̄ ∈ N, such that

⟨H(x̄), x − x̄⟩ ≥ 0, ∀x ∈ N.

The concept of strictly efficient points of the set N is as follows.

Definition 2 (see [21]). Suppose that ΞX is a base of Γ. The vector x̄ ∈ N is called a strictly
efficient point of the set N with ΞX if there is a neighborhood ΘX of 0, such that

cone(N − x̄ + Γ) ∩ (ΘX − ΞX) = ∅.

Let SEP(N) denote the set of strictly efficient points of the set N.

3. Existence of Strict Vector Equilibrium Flows with Single Criterion

For a supply–demand networkG =[N , C,V ,P ,D], let N , C,P , and D denote the set of
nodes, the set of arcs, the set of OD pairs, and the uncertain demand vectors, respectively.
Let us suppose that there are m different kinds of products passing through the network
and that a typical product is denoted by o. For each arc c ∈ C and product o, ϱo

c represents
arc flow of product o between two different nodes. V = (ϱ̄o

c)∈C denotes the capacity vector,
where ϱ̄o

c > 0 implies the capacity of arc c for the product o. The arc flow ϱo
c needs to satisfy

the following capacity constraint:
0 ≤ ϱo

c ≤ ϱ̄o
c .

Let us assume that there are s OD pairs in the set P . The available paths connecting
OD pair p ∈ P form the set ωp, and let ∑p∈P |ωp| = n, where n is a positive integer. For
each acyclic path a ∈ ωp, we denote by ϱo

a ≥ 0 the path flow of the product o on path a. The
relation between arc flows and path flows is as follows:

ϱo
c = ∑

p∈P
∑

a∈ωp

δcaϱo
a,

where

δca =

{
1, i f c belongs to path a,
0, otherwise.

Let us suppose that µo
a and λo

a are the lower and upper capacity constraints on path a
with product o, respectively, i.e.,

µo
a ≤ ϱo

a ≤ λo
a.

The matrix ϱ = (ϱo
a)m×n is called a network flow. Thus, each column vector ϱa =

(ϱ1
a, · · · , ϱm

a )
′

of the matrix ϱ is the flow on path a, while the row vector ϱo = (ϱo
1, · · · , ϱo

n) is
the network flow with product o.

We denote demand vectors of the network flow by D = (do
p(ε

o
p) : p ∈ P , o = 1, · · · , m),

where the component do
p(ε

o
p) denotes the uncertain demand for OD pair p and product o. Let
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us suppose that do
p(ε

o
p) belongs to a closed interval ∆o

p, i.e., do
p(ε

o
p) ∈ ∆o

p = [do
p − εo

p, do
p + εo

p],
where do

p represents an appropriate fixed demand and εo
p ≥ 0 denotes a deviation. It is

reasonable to assume that the values of do
p and εo

p that depend on p and o are different for
each OD pair and product in practical supply–demand network problems. We would like
to point out that the uncertain demand do

p(ε
o
p) that is irrelevant to the costs is significantly

different from the one introduced in [12,22].
We say that the network flow ϱ satisfies the uncertain demands constraint if and only if

∑
a∈ωp

ϱo
a = do

p(ε
o
p), ∀p ∈ P , o = 1, · · · , m.

A network flow ϱ satisfying both the capacity constraints and the uncertain demands
constraints is called a feasible flow. The set of all feasible flows is denoted by

Q =

{
ϱ : µo

a ≤ ϱo
a ≤ λo

a, 0 ≤ ∑
p∈P

∑
a∈ωp

δcaϱo
a ≤ ϱ̄o

c , ∀c ∈ C, and

∑
a∈ωp

ϱo
a = do

p(ε
o
p), ∀p ∈ P , ∀o = 1, · · · , m

}
.

Let Q ̸= ∅. Clearly, Q is closed, convex, and compact.
For each product o, let ho

c(ϱ) : Rm×n → R+ be the cost function on arc c; the cost
function on path a ∈ ωp is computed by

ho
a(ϱ) = ∑

c∈a
ho

c(ϱ).

The cost on the network is given as a form of matrix h(ϱ) = (ho
a(ϱ))m×n, where the ath

column ha(ϱ) = (h1
a(ϱ), · · · , hm

a (ϱ))
′

represents the cost on path a; the oth row ho(ϱ) =
(ho

1(ϱ), · · · , ho
n(ϱ)) represents the cost on the network with product o. In this paper, unless

otherwise stated, we always assume that for any p ∈ P and a, b ∈ ωp,

hb(ϱ)− ha(ϱ) ̸= 0, if b ̸= a,

which has been also used in the literature [7].

Definition 3. Supposing a flow ϱ ∈ Q,

(i) for an arc c ∈ C and product o = 1, · · · , m, if ϱo
c = ϱ̄o

c , then c is called a saturated arc of
product o and flow ϱ, or a nonsaturated arc of product o and flow ϱ.

(ii) for a path a ∈ ⋃
p∈P ωp and product o = 1, · · · , m, if the path a contains a saturated arc c of

product o and flow ϱ, then a is called a saturated path of product o and flow ϱ, otherwise, a
nonsaturated path of product o and flow ϱ.

In the following content, we propose the concept of strict network equilibrium flow for
a kind of multi-product supply–demand network involving real-valued cost functions with
capacity constraints and uncertain demands, which has not been studied in the existing
literature. In what follows, we always assume that Ξ is a base of Rm

+, Ξ̃ is a base of Rm×m
+ ,

Θ is a neighborhood of 0 in Rm, and Θ̃ is a neighborhood of 0 in Rm×m.

Definition 4. (Strict network equilibrium principle). A feasible network flow ϱ ∈ Q is a strict
network equilibrium flow, if, for each p ∈ P , a, b ∈ ωp, o = 1, · · · , m, there is a neighborhood Θ of
0 in Rm satisfying Θ − Ξ ⊂ −intRm

+, one has as an implication

cone(hωp(ϱ) +Rm
+ − ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

hb(ϱ)− ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path with product o and flow ϱ.
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Now, let us review the concept of the strict efficiency of vector variational inequalities,
which will be employed to derive the main conclusions.

Definition 5. A flow ϱ ∈ Q is said to be a strictly efficient solution of the vector variational
inequality if and only if there exist Ξ̃ and Θ̃ satisfying Θ̃ − Ξ̃ ⊂ −intRm×m

+ ,

cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}) = ∅, ∀χ ∈ Q.

It is noteworthy that the vector ϱ ∈ Q is a strictly efficient solution of the following
variational inequality:

cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}) = ∅, ∀χ ∈ Q,

if the vector ϱ ∈ Q is a solution of the following variational inequality: find ϱ ∈ Q, satisfying

⟨h(ϱ), (χ − ϱ)
′⟩ /∈ −Rm×m

+ \{0}, ∀χ ∈ Q,

Next, we shall consider the relations between a strictly efficient solution of the vector
variational inequality and the strict network equilibrium flow.

Theorem 1. If the vector ϱ ∈ Q is a strict network equilibrium flow, then ϱ is a strictly efficient
solution of the following variational inequality: find ϱ ∈ Q, satisfying

cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}) = ∅, ∀χ ∈ Q.

Proof. If the vector ϱ ∈ Q is a strict network equilibrium flow, for each p ∈ P , a, b ∈ ωp,
o = 1, · · · , m, it has the following implication:

cone(hωp(ϱ) +Rm
+ − ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

hb(ϱ)− ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ.
We first show that

⟨h(ϱ), (χ − ϱ)
′⟩ /∈ −Rm×m

+ , ∀χ ∈ Q. (1)

For any χ ∈ Q, it holds

⟨h(ϱ), (χ − ϱ)
′⟩

= ⟨(h1(ϱ), · · · , hn(ϱ)), (χ1 − ϱ1, · · · , χn − ϱn)
′⟩

=
n

∑̄
a=1

⟨hā(ϱ), (χā − ϱā)
′⟩

=
s

∑
p=1

[ ∑
ā∈ωp

⟨hā(ϱ), (χā − ϱā)
′⟩].

Because ⟨hā(ϱ), (χā − ϱā)
′⟩ is an m × m matrix, the component is hρ

ā(ϱ)(χ
η
ā − ϱ

η
ā ),

ρ, η = 1, 2, · · · , m; so, ⟨h(ϱ), (χ − ϱ)
′⟩ is also an m × m matrix, the component is

∑s
p=1[∑ā∈ωp hρ

ā(ϱ)(χ
η
ā − ϱ

η
ā )], ρ, η = 1, 2, · · · , m. Let

∧p(ϱ) = {b̄ ∈ ωp : hb̄(ϱ) ∈ SEP{hb(ϱ) : b ∈ ωp}} ⊂ ωp.

Hence, for each b̄ ∈ ∧p(ϱ) ⊂ ωp,

cone(hωp(ϱ) +Rm
+ − hb̄(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅.
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It follows from Definition 4 that for any b ∈ ωp, o = 1, · · · , m and b ̸= b̄, ϱo
b = µo

b ,
ϱo

b̄ = λo
b̄, or path b̄ is a saturated path of product o and flow ϱ. Because SEP{hb(ϱ) : b ∈ ωp} ⊂

EP{hb(ϱ) : b ∈ ωp}, we obtain

hb̄(ϱ) ∈ EP{hb(ϱ) : b ∈ ωp},

that is,
hb(ϱ)− hb̄(ϱ) /∈ −Rm

+\{0}, ∀b ∈ ωp, p ∈ P and b ̸= b̄.

Due to hb(ϱ)− hb̄(ϱ) ̸= 0, one has

hb(ϱ)− hb̄(ϱ) /∈ −Rm
+, ∀b ∈ ωp, p ∈ P and b ̸= b̄.

So there is an ρ̄ = 1, 2, · · · , m such that

hρ̄
b(ϱ)− hρ̄

b̄(ϱ) > 0.

Hence, one has

s

∑
p=1

[
∑

ā∈ωp

hρ̄
ā(ϱ)(χ

η
ā − ϱ

η
ā )

]

=
s

∑
p=1

 ∑
ā∈ωp\{b̄}

hρ̄
ā(ϱ)(χ

η
ā − ϱ

η
ā ) + hρ̄

b̄(ϱ)(χ
η

b̄ − ϱ
η

b̄ )

.

Because ā ∈ ωp\{b̄}, we have ϱ
η
ā = µ

η
ā , ϱ

η

b̄ = λ
η

b̄ for each η = 1, 2, · · · , m,

s

∑
p=1

[
∑

ā∈ωp

hρ̄
ā(ϱ)(χ

η
ā − ϱ

η
ā )

]

=
s

∑
p=1

 ∑
ā∈ωp\{b̄}

hρ̄
ā(ϱ)(χ

η
ā − µ

η
ā ) + hρ̄

b̄(ϱ)(χ
η

b̄ − λ
η

b̄ )

.

And, because ā ∈ ωp\{b̄}, it holds that hρ̄
ā(ϱ) > hρ̄

b̄(ϱ). Due to χ ∈ Q, there must exist

η̄ = 1, 2, · · · , m satisfying χ
η̄
ā − µ

η̄
ā > 0. Hence, we obtain

s

∑
p=1

 ∑
ā∈ωp\{b̄}

hρ̄
ā(ϱ)(χ

η̄
ā − µ

η̄
ā ) + hρ̄

b̄(ϱ)(χ
η̄

b̄ − λ
η̄

b̄ )


>

s

∑
p=1

hρ̄

b̄(ϱ)

 ∑
ā∈ωp

χ
η̄
ā −

 ∑
ā∈ωp\{b̄}

µ
η̄
ā + λ

η̄

b̄


=

s

∑
p=1

hρ̄

b̄(ϱ)

 ∑
ā∈ωp

χ
η̄
ā −

 ∑
ā∈ωp\{b̄}

ϱ
η̄
ā + ϱ

η̄

b̄


=

s

∑
p=1

hρ̄

b̄(ϱ)

[
∑

ā∈ωp

χ
η̄
ā − ∑

ā∈ωp

ϱ
η̄
ā

]
.

Since χ ∈ Q and ϱ ∈ Q, we obtain that

∑
ā∈ωp

χ
η̄
ā = dη̄

p(ε
η̄
p), ∑

ā∈ωp

ϱ
η̄
ā = dη̄

p(ε
η̄
p).
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Therefore, there exist ρ̄ = 1, 2, · · · , m and η̄ = 1, 2, · · · , m, satisfying

s

∑
p=1

[
∑

ā∈ωp

hρ̄
ā(ϱ)(χ

η
ā − ϱ

η
ā )

]

>
s

∑
p=1

hρ̄

b̄(ϱ)
[
dη̄

p(ε
η̄
p)− dη̄

p(ε
η̄
p)
]

= 0.

Thus, inequation (1) holds.
Next, let

cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}) ̸= ∅, ∀χ ∈ Q.

Therefore, there must be an k̄ ̸= 0 satisfying

k̄ ∈ cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}), ∀χ ∈ Q.

We set k̄ = δ̃k̃, where k̃ ∈ ⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ , δ̃ > 0 because of k̄ ̸= 0. Hence, δ̃k̃ ∈
cone(Θ̃ − Ξ̃)\{0}. Thus there are σ̃ > 0 and r̃ ∈ Θ̃ − Ξ̃ satisfying δ̃k̃ = σ̃r̃. Therefore, there
are χ̃ ∈ Q and θ ∈ Rm×m

+ satisfying k̃ = σ̃r̃
δ̃
= ⟨h(ϱ), (χ̃ − ϱ)

′⟩+ θ, which is equivalent to

⟨h(ϱ), (χ̃ − ϱ)
′⟩ = σ̃r̃

δ̃
− θ ∈ −Rm×m

+ ,

which contradicts (1). Hence, it holds that

cone(⟨h(ϱ), (χ − ϱ)
′⟩+Rm×m

+ ) ∩ (cone(Θ̃ − Ξ̃)\{0}) = ∅, ∀χ ∈ Q.

Theorem 2. The vector ϱ ∈ Q is a strict network equilibrium flow if ϱ is a solution of the following
vector variational inequality: find ϱ ∈ Q satisfying

⟨h(ϱ), (χ − ϱ)
′⟩ /∈ −Rm×m

+ \{0}, ∀χ ∈ Q. (2)

Proof. Assume that ϱ ∈ Q satisfies inequality (2). For each p ∈ P and a, b ∈ ωp, b ̸= a,
o = 1, · · · , m, if

cone(hωp(ϱ) +Rm
+ − ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅,

hb(ϱ)− ha(ϱ) ̸= 0, and a is a nonsaturated path of product o and flow ϱ, we will deduce
ϱo

b = µo
b or ϱo

a = λo
a. Let ℶa = {c ∈ C : arc c belongs to path a}. We assume that the

conclusion is false, i.e., ϱb ̸= µb or ϱa ̸= λa. Taking ∇o = min
{

min
c∈ℶa

(ϱ̄o
c − ϱo

c), ϱo
b − µo

b, λo
a −

ϱo
a
}
> 0 and ∇ = (∇1, · · · ,∇o, · · · ,∇m)

′
, let χ be

χā =


ϱā, if ā ̸= b or a,
ϱb −∇, if ā = b,
ϱa +∇, if ā = a.

Because ϱ ∈ Q, i.e., ∀p ∈ P , o = 1, 2, · · · , m, ∑ā∈ωp ϱo
ā = do

p(ε
o
p), one has

∑
ā∈ωp

χo
ā = ∑

ā∈ωp\{b,a}
χo

ā + χo
b + χo

a

= ∑
ā∈ωp\{b,a}

ϱo
ā + ϱo

b −∇o + ϱo
a +∇o

= ∑
ā∈ωp

ϱo
ā = do

p(ε
o
p).
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So, χ ∈ Q. Now,

⟨h(ϱ), (χ − ϱ)
′⟩

=
n

∑̄
a=1

⟨hā(ϱ), (χā − ϱā)
′⟩

= ∑
ā ̸=b,a

⟨hā(ϱ), (ϱā − ϱā)
′⟩+ ⟨hb(ϱ), (ϱb −∇− ϱb)

′⟩+ ⟨ha(ϱ), (ϱa +∇− ϱa)
′⟩

= ⟨∇, (ha(ϱ)− hb(ϱ))
′⟩ /∈ −Rm×m

+ \{0}.

We know that ⟨h(ϱ), (χ − ϱ)
′⟩ is an m × m matrix; the component is (hρ

a(ϱ)− hρ
b(ϱ))ϱ

η
b ,

ρ, η = 1, 2, · · · , m. If ⟨∇, (ha(ϱ)− hb(ϱ))
′⟩ ̸= 0, then for each ρ, η = 1, 2, · · · , m,

(hρ
a(ϱ)− hρ

b(ϱ))∇
η ≥ 0,

with strict inequality holding for some ρ, η = 1, 2, · · · , m. By ∇η ≥ 0, one has

hρ
a(ϱ)− hρ

b(ϱ) ≥ 0,

that is,
ha(ϱ)− hb(ϱ) ∈ Rm

+\{0},

which is equivalent to
hb(ϱ)− ha(ϱ) ∈ −Rm

+\{0}.

Noticing that
−Rm

+\{0} ⊂ (cone(Θ − Ξ)\{0}),

and

hb(ϱ)− ha(ϱ) ∈ cone(hωi (ϱ) +Rm
+ − ha(ϱ)), (3)

we get

hb(ϱ)− ha(ϱ) ∈ cone(Θ − Ξ)\{0}. (4)

By Equations (3) and (4) and hb(ϱ)− ha(ϱ) ̸= 0, we obtain

hb(ϱ)− ha(ϱ) ∈ cone(hωp(ϱ) +Rm
+ − ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}),

a contradiction. Thus, the conclusion ϱb = µb or ϱa = λa holds.

We now propose the existence of strict network equilibrium flow by virtue of an
equivalent form of Fan–Browder’s fixed point theorem ([23,24]), which is formulated in the
following lemma.

Lemma 1 (see [10]). Let ℧ denote a Hausdorff topological vector space; K is a nonempty compact
convex subset of ℧. Assume that the set-valued map g : K → 2K ∪ {∅} has the following
conditions:

(i) for any ς ∈ K, g(ς) is a convex set;
(ii) for any ς ∈ K, ς /∈ g(ς);
(iii) for any ι ∈ K, g−1(ι) = {ς ∈ K : ι ∈ g(ς)} is an open set in K.

Then, there exists ς̃ ∈ K satisfying g(ς̃) = ∅.

Theorem 3. Consider a multi-product supply–demand network equilibrium problem with capacity
constraints and uncertain demands G = [N , C,V ,P ,D]. Let ϱ̄ ∈ intRm×m

+ be given. If, for any
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χ ∈ Q, the function ⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)
′⟩⟩ is continuous on Q. Then, the network G exists as a

strict vector equilibrium flow.

Proof. Consider the following variational inequality: find ϱ ∈ Q satisfying

⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)
′⟩⟩ ∈ Rm×m

+ , ∀χ ∈ Q. (5)

Firstly, we will show that the variational inequality (5) admits a solution. We de-
fine a set-valued map Ω : Q → 2Q ∪ {∅} as Ω(ϱ) =

{
χ ∈ Q : ⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)

′⟩⟩ ∈
int(−Rm×m

+ )
}

. Then, one has the following results:

(i) Ω(ϱ) is convex;
(ii) for each ϱ ∈ Q, ϱ /∈ Ω(ϱ);
(iii) if χ ∈ Ω(ϱ), one has ⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)

′⟩⟩ ∈ int(−Rm×m
+ ), which implies that there ex-

ists a ξ ∈ Rm×m
+ such that ⟨ϱ̄, ⟨h(ϱ), (χ− ϱ)

′⟩⟩+ ξ ∈ int(−Rm×m
+ ). Since ⟨ϱ̄, ⟨h(ϱ), (χ−

ϱ)
′⟩⟩ is continuous on Q by hypothesis, one can reach that there exists an open neigh-

borhood Θ(ϱ) of ϱ such that

⟨ϱ̄, ⟨h(ϱ̂), (χ − ϱ̂)
′⟩⟩ < ⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)

′⟩⟩+ ξ ∈ int(−Rm×m
+ ), ∀ϱ̂ ∈ Θ(ϱ)

which implies that

Θ(ϱ) ⊂ Ω−1(χ) = {ϱ ∈ Q : ⟨ϱ̄, ⟨h(ϱ), (χ − ϱ)
′⟩⟩ ∈ int(−Rm×m

+ ),

i.e., Ω−1(χ) is open.
By Lemma 1, we obtain that the variational inequality (5) has a solution ϱ̃ ∈ Q. Next,

we prove that ϱ̃ is a strict network equilibrium flow. According to Theorem 2, we needs to
prove that ϱ̃ is a solution to the following vector variational inequality:

⟨h(ϱ), (χ − ϱ)
′⟩ /∈ −Rm×m

+ \{0}, ∀χ ∈ Q.

Let us suppose to the contrary that ϱ̃ is not a solution; then, there is χ̃ ∈ Q, such that
⟨h(ϱ̃), (χ̃ − ϱ̃)

′⟩ ∈ −Rm×m
+ \{0}. For ϱ̄ ∈ intRm×m

+ , we obtain

⟨ϱ̄, ⟨h(ϱ̃), (χ̃ − ϱ̃)
′⟩⟩ ∈ −Rm×m

+ \{0},

a contradiction.

4. Strict Vector Equilibrium Flows with Multi-Criteria via Scalarization

It seems unreasonable for network users to choose a path based on a single criterion.
In fact, the network users need to consider time, tariffs, fuel, and other relevant cost factors
simultaneously. That is, the cost function is a multi-criteria one. In the following sections,
the equilibrium model of the multi-product supply–demand network G = [N , C,V ,P ,D]
based on multi-criteria cost functions is investigated. Let us suppose that the cost on arc
c ∈ C with product o is: Ho

c (ϱ) : Rm×n → Re
+, where e > 1 is a positive integer. The cost on

the path a ∈ ωp, p ∈ P with product o is computed by

Ho
a(ϱ) = ∑

c∈a
Ho

c (ϱ).

Hence, Ho
a(ϱ) : Rm×n → Re

+ and we set it in the form

Ho
a(ϱ) = uo

a(ϱ)ϑ0, ∀a ∈ ωp, p ∈ P and o = 1, · · · , m, (6)

where uo
a(ϱ) : Rm×n → R+, ϑ0 ∈ intRe

+.
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The cost on the network concerning product o is denoted by Ho(ϱ) = (Ho
1(ϱ), · · · , Ho

n(ϱ)),
the cost on path a is denoted by Ha(ϱ) = (H1

a (ϱ), · · · , Ho
a(ϱ), · · · , Hm

a (ϱ)), and the cost of the
network is denoted by H(ϱ) = (Ha(ϱ) : a ∈ ωp, p ∈ P).

In the following, Y = Re is a e-dimensional Euclidean space with the ordering cone
Re
+, where e > 1 is a positive integer. Ξ̄ always denotes a base of Rm×e

+ , and Θ̄ denotes a
neighborhood of 0 in Rm×e. Firstly, we introduce the concept of strict network equilibrium
flow for a multi-product, multi-criteria supply–demand network with capacity constraints
and uncertain demands.

Definition 6. The feasible network flow ϱ ∈ Q is called a strict network equilibrium flow for a
multi-product, multi-criteria supply–demand network with capacity constraints and uncertain
demands, if, for any p ∈ P , a, b ∈ ωp, o = 1, · · · , m, there is a neighborhood Θ̄ of 0 in Rm×e, such
that Θ̄ − Ξ̄ ⊂ −intRm×e

+ , one has the implication

cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

Hb(ϱ)− Ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ.

As we all know, a viable approach to solve vector problems is to convert them into
scalar problems. In this paper, we use the following nonlinear scalarization function
(i.e., Gerstewitz’s function) to scalarize the vector-valued strict network equilibrium flows
without any assumptions about convexity.

Definition 7 (see [25]). For a given v ∈ intRe
+, let ψv : Re → R be defined by

ψv(x) = min{δ ∈ R : x ∈ δv −Re
+}, ∀x ∈ Re.

Lemma 2 and Lemma 3 provide some properties of the above function that we will
use in the proof of Theorem 4.

Lemma 2 (see [26]). Let v ∈ intRe
+. For each σ ∈ R and x ∈ Re, one has

(i) ψv(x) < σ ⇔ x ∈ σv − intRe
+;

(ii) ψv(x) ⩽ σ ⇔ x ∈ σv −Re
+;

(iii) ψv(x) ⩾ σ ⇔ x /∈ σv − intRe
+;

(iv) ψv(x) > σ ⇔ x /∈ σv −Re
+;

(v) ψv(x) = σ ⇔ x ∈ σv − ∂Re
+, where ∂Re

+ is the topological boundary of Re
+.

Lemma 3 (see [7]). Given v ∈ intRe
+, x ∈ Re, and σ ∈ R, one has

ψv(−x) ⩾ −ψv(x), ψv(−σx) ⩾ −ψv(σx),

and
ψv(−σv) = −ψv(σv) = −σ.

We denote

ψv ◦ Ho
a(ϱ) = ψv(Ho

a(ϱ)) = min{δ ∈ R : Ho
a(ϱ) ∈ δv −Re

+},

for any ϱ ∈ Q, a ∈ ωp, p ∈ P , o = 1, · · · , m;

ψv ◦ Ha(ϱ) = (ψv ◦ Ho
a(ϱ) : o = 1, · · · , m)

′ ∈ Rm;

and
ψv(ϱ) = ψv ◦ H(ϱ) = (ψv ◦ Ha(ϱ) : a ∈ ωp, p ∈ P) ∈ Rm×n.



Axioms 2024, 13, 263 11 of 16

Definition 8. The feasible network flow ϱ ∈ Q is called in ψv-strict vector equilibrium for a
multi-product supply–demand network involving vector-valued cost functions, if, for any p ∈ P ,
a, b ∈ ωp, o = 1, · · · , m, there exist v ∈ intRe

+ and a neighborhood Θ of 0 in Rm satisfying
Θ − Ξ ⊂ −intRm

+, one has the implication

cone(ψv ◦ Hωp(ϱ) +Rm
+ − ψv ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

ψv ◦ Hb(ϱ)− ψv ◦ Ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ.

Now, we will scalarize strict vector equilibrium problems for a multi-product supply–
demand network involving vector-valued cost functions.

Theorem 4. Let us suppose that Ho
a(ϱ) is defined as in (6) for each a ∈ ωp, p ∈ P , and

o = 1, · · · , m. The feasible network flow ϱ ∈ Q is a strict network equilibrium flow for a multi-
product, multi-criteria supply–demand network with capacity constraints and uncertain demands if
and only if ϱ is in ψϑ0 -strict vector equilibrium.

Proof. Necessity: suppose that ϱ ∈ Q is a strict network equilibrium flow for a multi-
product, multi-criteria supply–demand network with capacity constraints and uncertain
demands. For any p ∈ P , a, b ∈ ωp and o = 1, · · · , m, it is necessary to verify the
following implication:

cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ.
Firstly, it holds that{

cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0

implies {
cone(Hωp(ϱ) +Rm×e

+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅
Hb(ϱ)− Ha(ϱ) ̸= 0.

Indeed, from ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0, we have

Hb(ϱ)− Ha(ϱ) ̸= 0, ∀ a, b ∈ ωp , b ̸= a.

From (6), one has Hωp(ϱ) = uωp(ϱ) ◦ ϑ0, where uωp(ϱ) =
{

ub(ϱ) : b ∈ ωp
}

, ub(ϱ) =

(u1
b(ϱ), · · · , uo

b(ϱ), · · · , um
b (ϱ)). By Lemma 3, it holds that

ψϑ0 ◦ Hωp(ϱ) = {ψϑ0 ◦ Hb(ϱ) : b ∈ ωp}
= {(ψϑ0 ◦ H1

b (ϱ), ψϑ0 ◦ H2
b (ϱ), · · · , ψϑ0 ◦ Hm

b (ϱ)) : b ∈ ωp}
= {(u1

b(ϱ), · · · , um
b (ϱ)) : b ∈ ωp}

= uωp(ϱ).

Therefore, cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅ turns into

cone(uωp(ϱ) +Rm
+ − ua(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅.

That is, ua(ϱ) ∈ SEP{ub(ϱ) : b ∈ ωp}. Due to SEP{ub(ϱ) : b ∈ ωp} ⊂ EP{ub(ϱ) : b ∈ ωp},
so ua(ϱ) ∈ EP{ub(ϱ) : b ∈ ωp}, that is,

ub(ϱ)− ua(ϱ) /∈ −Rm
+\{0}, ∀b ∈ ωp. (7)
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Let us suppose that

cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) ̸= ∅,

there is a k̄ ̸= 0 satisfying k̄ ∈ cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ))∩ (cone(Θ̄ − Ξ̄)\{0}). We set

k̄ = δ̃k̃, where k̃ ∈ Hωp(ϱ) +Rm×e
+ − Ha(ϱ), δ̃ > 0. Because δ̃k̃ ∈ cone(Θ̄ − Ξ̄)\{0}, there

exist σ̃ > 0 and r̃ ∈ Θ̄ − Ξ̄ satisfying δ̃k̃ = σ̃r̃. So k̃ = σ̃r̃
δ̃
∈ Hωi (ϱ) +Rm×e

+ − Ha(ϱ) ∩ (Θ̄ −
Ξ̄), k̃ ̸= 0. Hence, there are b̃ ∈ ωp, θ̃ ∈ Rm×e

+ satisfying

k̃ = Hb̃(ϱ) + θ̃ − Ha(ϱ),

equivalently,
Hb̃(ϱ)− Ha(ϱ) = k̃ − θ̃ ∈ −Rm×e

+ .

i.e.,
Ho

b̃(ϱ)− Ho
a(ϱ) ∈ −Re

+, o = 1, · · · , m.

It follows from Lemma 2 that

ψϑ0(Ho
b̃(ϱ)− Ho

a(ϱ)) ≤ 0.

By (6) and Lemma 3, one has

uo
b̃(ϱ)− uo

a(ϱ) ≤ 0, o = 1, · · · , m,

i.e.,
ub̃(ϱ)− ua(ϱ) ∈ −Rm

+.

If ub̃(ϱ) − ua(ϱ) = 0, Hb̃(ϱ) − Ha(ϱ) = 0, so k̃ = θ̃, which contradicts k̃ ∈ Θ̄ − Ξ̄ and
θ̃ ∈ Rm×e

+ . Hence,
ub̃(ϱ)− ua(ϱ) ∈ −Rm

+\{0},

which leads to a contradiction with (7). Therefore, one has the implication:{
cone(ψϑ0 ◦ Hωp(ϱ) +Rm

+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅
ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0

⇒
{

cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

Hb(ϱ)− Ha(ϱ) ̸= 0.

Since ϱ ∈ Q is a strict network equilibrium flow, for any p ∈ P , a, b ∈ ωp, o = 1, · · · , m,
one has

cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

Hb(ϱ)− Ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ. Hence, we
obtain that

cone(ψϑ0 ◦ Hωi (ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0

}
⇒

ϱo
b = µo

b, b ̸= a, or ϱo
a = λo

a, or path a is a saturated path of product o and flow ϱ, for any
p ∈ P , a, b ∈ ωp and o = 1, · · · , m.

Sufficiency: assume that ϱ ∈ Q is in ψϑ0-strict vector equilibrium for a multi-product
supply–demand network involving vector-valued cost functions. We first verify the implication{

cone(Hωp(ϱ) +Rm×e
+ − Ha(ϱ)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

Hb(ϱ)− Ha(ϱ) ̸= 0
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⇒
{

cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅

ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0.

If

cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) ̸= ∅.

The following is similar to the proof of necessity. There is a r̃ ∈ (ψϑ0 ◦ Hωp(ϱ) +Rm
+ −

ψϑ0 ◦ Ha(ϱ)) ∩ (Θ − Ξ) satisfying r̃ ̸= 0. Therefore, there are b̃ ∈ ωp and θ̂ ∈ Rm
+ satisfying

r̃ = ψϑ0 ◦ Hb̃(ϱ) + θ̂ − ψϑ0 ◦ Ha(ϱ).

i.e.,
ψϑ0 ◦ Hb̃(ϱ)− ψϑ0 ◦ Ha(ϱ) = r̃ − θ̂ ∈ −Rm

+.

Together (6) with Lemma 3, one has

ub̃(ϱ)− ua(ϱ) ∈ −Rm
+.

Hence, it holds that
Hb̃(ϱ)− Ha(ϱ) ∈ −Rm×e

+ .

If Hb̃(ϱ) − Ha(ϱ) = 0, r̃ = θ̂, which leads to a contradiction with r̃ ∈ Θ − Ξ and
θ̂ ∈ Rm

+. Therefore,

Hb̃(ϱ)− Ha(ϱ) ∈ −Rm×e
+ \{0}. (8)

Because cone(Hωp(ϱ)+Rm×e
+ −Ha(ϱ))∩ (cone(Θ̄− Ξ̄)\{0}) = ∅, then Ha(ϱ) ∈ SEP{Hb(ϱ) :

b ∈ ωp}. Therefore, Ha(ϱ) ∈ EP{Hb(ϱ) : b ∈ ωp}, i.e.,

Hb(ϱ)− Ha(ϱ) /∈ −Rm×e
+ \{0},∀b ∈ ωp,

which leads to a contradiction with (8). Hence, it holds that

cone(ψϑ0 ◦ Hωp(ϱ) +Rm
+ − ψϑ0 ◦ Ha(ϱ)) ∩ (cone(Θ − Ξ)\{0}) = ∅.

Additionally, due to Hb(ϱ)− Ha(ϱ) ̸= 0, one has ψϑ0 ◦ Hb(ϱ)− ψϑ0 ◦ Ha(ϱ) ̸= 0. It
follows from Definition 8 that ϱo

b = µo
b, b ̸= a, or ϱo

a = λo
a, or path a is a saturated path of

product o and flow ϱ, for any p ∈ P , a, b ∈ ωp and o = 1, · · · , m. Therefore, ϱ ∈ Q is a strict
network equilibrium flow for a multi-product, multi-criteria supply–demand network with
capacity constraints and uncertain demands. This completes the proof.

It should be noted that the relations among strict network equilibrium flows involving
real-valued cost functions, ψϑ0-strict vector equilibrium flows, and vector variational in-
equalities have been investigated in Theorems 1, 2, and 4. Then, strict network equilibrium
flows for a multi-product supply–demand network involving vector-valued cost functions
can be replaced by the following corresponding vector variational inequality: find ϱ ∈ Q
satisfying

⟨ψϑ0(ϱ), (χ − ϱ)
′⟩ /∈ −Rm×m

+ \{0}, ∀χ ∈ Q. (9)

Additionally, it was shown in [7] (see Theorem 3.2 and Theorem 3.3) that the variational
inequality (9) is equivalent to the following variational inequality: find ϱ ∈ Q satisfying

⟨H(ϱ), (χ − ϱ)
′⟩ /∈ −(Re

+)
m×m\{0}, ∀χ ∈ Q.

These approaches allow us to obtain strict network equilibrium flows for a multi-
product supply–demand network involving vector-valued cost functions.
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5. An Illustrative Example

In this section, an example is provided to demonstrate the application of the obtained
theoretical results. The example has the network topology depicted in Figure 1. Table 1
summarizes the constituent paths of each OD pair.

 

Figure 1. Network topology of the example.

Table 1. OD pairs and paths.

p ODp ωp

1 N1 → N4 a1 (c1, c5)
a2 (c2)

2 N3 → N4 a3 (c3, c5)
a4 (c4)

The network consists of four nodes: N = {N1,N2,N3,N4} and five arcs: C =
{c1, c2, c3, c4, c5}. We assume that V = {ϱ̄1

c1
, ϱ̄1

c2
, ϱ̄1

c3
, ϱ̄1

c4
, ϱ̄1

c5
} = {5, 4, 3, 6, 4}, P = {{N1,N4},

{N3,N4}}, m = 1, e = 2, and D = {d1
1(ε

1
1), d1

2(ε
1
2)}, where d1

1 = 5, d1
2 = 5, ε1

1 = 5
2 ,

ε1
2 = 3

2 , then d1
1(ε

1
1) ∈ [ 5

2 , 15
2 ], d1

2(ε
1
2) ∈ [ 7

2 , 13
2 ]. Let (µ1

1, µ1
2, µ1

3, µ1
4) = (2, 3

2 , 1
2 , 1) and

(λ1
1, λ1

2, λ1
3, λ1

4) = (5, 4, 3, 6). The costs on each arc are chosen as follows:

H1
c1
(ϱ1

1) = (ϱ1
1, ϱ1

1), H1
c2
(ϱ1

2) = (4ϱ1
2, 5ϱ1

2), H1
c3
(ϱ1

3) = (2ϱ1
3, 3ϱ1

3),

H1
c4
(ϱ1

4) = (5ϱ1
4, 6ϱ1

4), H1
c5
(ϱ1

1) = (ϱ1
1, 2ϱ1

1), H1
c5
(ϱ1

3) = (ϱ1
3, 2ϱ1

3).

By a direct calculation, we derive the costs on four different paths:

H1
1(ϱ

1
1) = H1

a1
(ϱ1

1) + H1
a5
(ϱ1

1) = (2ϱ1
1, 3ϱ1

1), H1
2(ϱ

1
2) = H1

a2
(ϱ1

2) = (4ϱ1
2, 5ϱ1

2),

H1
3(ϱ

1
3) = H1

a3
(ϱ1

3) + H1
a5
(ϱ1

3) = (3ϱ1
3, 5ϱ1

3), H1
4(ϱ

1
4) = H1

a4
(ϱ1

4) = (5ϱ1
4, 6ϱ1

4).

Setting ϱ = (ϱ1
1, ϱ1

2, ϱ1
3, ϱ1

4) = (3, 2, 1, 4). Obviously, ϱ ∈ Q is a feasible network flow.
Thus,

H1
1(ϱ

1
1) = (6, 9), H1

2(ϱ
1
2) = (8, 10), H1

3(ϱ
1
3) = (3, 5), H1

4(ϱ
1
4) = (20, 24).

Now, we verify that the feasible flow ϱ is a strict vector equilibrium flow. For OD pairs
{N1,N4}, {N3,N4}, we choose Θ̄ = (0, 1) and Ξ̄ = (1, 1); it holds that{

cone(H1
2(ϱ

1
2) +R2

+ − H1
1(ϱ

1
1)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

H2(ϱ)− H1(ϱ) ̸= 0

and {
cone(H1

4(ϱ
1
4) +R2

+ − H1
3(ϱ

1
3)) ∩ (cone(Θ̄ − Ξ̄)\{0}) = ∅

H4(ϱ)− H3(ϱ) ̸= 0
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Since the arc flow ϱ1
c5

is

ϱ1
c5
= ∑

i∈I
∑

k∈ωi

δckϱ
j
k = ϱ1

1 + ϱ1
3 = 4 = ϱ̄1

c5
,

it follows from Definition 3 that arc c5 is a saturated arc of flow ϱ, paths 3 and 5 are saturated
paths of flow ϱ. Hence, by Definition 6, we obtain that ϱ is a strict vector equilibrium flow.

Next, we show that ϱ = (ϱ1
1, ϱ1

2, ϱ1
3, ϱ1

4) = (3, 2, 1, 4) is a solution of the following
variational inequality:

⟨H(ϱ), (χ − ϱ)
′⟩ /∈ −R2

+\{0}, ∀χ ∈ Q. (10)

We take χ = (χ1
1, χ1

2, χ1
3, χ1

4) = (3, 3, 1, 4); it is obvious that χ ∈ Q. Direct computation
shows that

⟨H(ϱ), (χ − ϱ)
′⟩

= ⟨(H1
1(ϱ

1
1), H1

2(ϱ
1
2), H1

3(ϱ
1
3), H1

4(ϱ
1
4)), (χ

1
1 − ϱ1

1, χ1
2 − ϱ1

2, χ1
3 − ϱ1

3, χ1
4 − ϱ1

4)
′⟩

=

〈(
2ϱ1

1 4ϱ1
2 3ϱ1

3 5ϱ1
4

3ϱ1
1 5ϱ1

2 5ϱ1
3 6ϱ1

4

)
,
(

3 − ϱ1
1, 3 − ϱ1

2, 1 − ϱ1
3, 4 − ϱ1

4
)′〉

=

(
2ϱ1

1(3 − ϱ1
1) + 4ϱ1

2(3 − ϱ1
2) + 3ϱ1

3(1 − ϱ1
3) + 5ϱ1

4(4 − ϱ1
4)

3ϱ1
1(3 − ϱ1

1) + 5ϱ1
2(3 − ϱ1

2) + 5ϱ1
3(1 − ϱ1

3) + 6ϱ1
4(4 − ϱ1

4)

)′

=
(

8, 10
)

/∈ −R2
+\{0}.

Therefore, the strict vector equilibrium flow ϱ = (3, 2, 1, 4) is a solution of variational
inequality (10).

6. Conclusions

This paper considered the strict network equilibrium flows for a multi-product supply–
demand network with capacity constraints and uncertain demands, where the uncertain
demands were assumed to be in a closed interval. The main contribution is theoretical
in nature, in that we derived the existence results of strict network equilibrium flows by
virtue of the Fan–Browder fixed point theorem based on a single criterion cost function and
showed that such a strict network equilibrium flow for a multi-product supply–demand
network with capacity constraints and uncertain demands is equivalent to a vector varia-
tional inequality when considering both real value and vector value cost function, and we
developed a scalarization method for strict vector equilibrium flows based on vector-valued
cost functions by using Gerstewitz’s function. The results obtained in this paper provide
a viable approach to solving the multi-product, multi-criteria supply–demand network
equilibrium model with capacity constraints and uncertain demands.

In this paper, we presented an analytical framework based on the concept of network
equilibrium to attain optimal performance for a multi-product supply–demand network
with capacity constraints and uncertain demands. In future research, designing concrete
simulation experiments and developing substantial areas of applications of the theory
presented in our paper should be considered as a potential research project.
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