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Abstract: In this article, a distributed charging strategy problem for plug-in electric vehicles (PEVs)
with feeder constraints based on generalized Nash equilibria (GNE) in a novel smart charging station
(SCS) is investigated. The purpose is to coordinate the charging strategies of all PEVs in SCS to
minimize the energy cost of SCS. Therefore, we build a non-cooperative game framework and propose
a new price-driven charging control game by considering the overload constraint of the assigned
feeder, where each PEV minimizes the fees it pays to satisfy its optimal charging strategy. On this
basis, the existence of GNE is given. Furthermore, we employ a distributed algorithm based on
forward–backward operator splitting methods to find the GNE. The effectiveness of the employed
algorithm is verified by the final simulation results.

Keywords: plug-in electric vehicle (PEV); generalized Nash equilibria (GNE); feeder constraint;
non-cooperative game; charging strategy
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1. Introduction
1.1. Background and Research Gaps

In recent years, “carbon neutrality” has become the focus of green energy development.
How to achieve the goal of mitigating climate change without seriously affecting economic
growth is an important issue that all countries will pay attention to in the future [1]. The
development and promotion of new energy electric vehicles (EVs) are an important link
to promote the development of energy transformation. From a report released by the
International Energy Agency, the global EV inventory will increase by 36% every year and
will reach 245 million vehicles by 2030. As a new generation of transportation systems,
PEVs have become a popular solution in recent years to reduce greenhouse gas emissions
from gasoline-powered vehicles [2].

However, with the large-scale connection of PEVs to the power grid, the charging
load randomly forms an impact load, which has an adverse impact on the safe and stable
operation of the power grid. It often results in the negative impact of “peak-to-peak”,
further increasing the demand for traditional fossil energy, but reducing the environmental
protection advantages of PEVs [3]. Therefore, in order to cope with the increasingly
prominent problem of charging coordination of PEVs in the power grid, questions of how
to meet the charging needs of all PEVs, reduce the energy cost of the power grid, avoid
energy waste, battery overload, power grid collapse and other problems [4,5], and achieve
the security and stable development of the power grid have become the research focus of
domestic and foreign scholars.

Since the batteries of PEVs can reserve electric energy, the PEVs have a greater abilities
in charging and discharging. For example, during periods of peak electricity consumption,
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some PEVs could in turn play the role of energy suppliers rather than consumers. Lately,
researches on PEV charging coordination in smart grids have focused on PEVs themselves
or groups, such as one-way/two-way vehicle-to-grid (V2G) [6], vehicle-to-home (V2H) [7],
vehicle-to-building (V2B) [8] and vehicle-to-vehicle (V2V) [9] mechanisms. Generally
speaking, the most common interaction of PEVs is through SCS, which can coordinate and
guide the charging and discharging of PEVs to reduce the influence of overcharging [10].

Next, as shown in Figure 1, two different interaction modes between SCS and PEVs are
shown. Figure 1a shows the traditional interaction mode; that is, each PEV communicates
with the aggregator embedded in the SCS. Specifically, in response to time-varying price,
each PEV individually increases/decreases its charging request or switches from a high
price period to a low price period charging request. However, this traditional interaction
mode is limited by the independent property of PEVs, and it is likely that the optimal
charging strategy cannot be found to make the cost of SCS minimum. Unlike V2G, which
refers to a mechanism that allows bidirectional power transmission between PEVs and the
grid, V2V refers to the mechanism that allows direct communication between vehicles in
the same area without the need to pass through the grid. The concept of V2V produces a
mobile charger, which allows electric vehicles to charge the batteries of PEVs when access
to the grid is limited. Thus, the work [11] proposes a new interaction mode combined with
a V2V mechanism, as shown in Figure 1b. This mechanism first coordinates the charging
strategy of all PEVs according to the time-varying price determined by the aggregator, and
then transfers the aggregated load information to the aggregator of the SCS.

(a) (b)

Figure 1. (a) Traditional interaction mode. (b) New interaction mode.

Recently, more and more research papers on the charging of EVs are being published.
A charging strategy for V2G-capable PEVs is proposed in [12,13], and the effect of different
penetration levels on the voltage stability and power loss of the distribution network is
investigated. And, the work [12] improves the accuracy and computational efficiency of
the model by exploring the additional constraint sum of capacitated flow refueling location
model based on subpaths. In addition, some other works, such as [14,15], mainly focus on
adopting V2G technology to optimize the charging and discharging mode. Among them,
the work [14] ranks the candidate lines as an operational strategy to minimize the total
operating cost. In [16], considering the constraints of the transportation network and the
power grid, the authors obtain a fast charging scheme with two objectives of total charging
time and cost. Furthermore, considering the practical application of the community, a
fairness strategy is designed in [17] to share the battery of PEV with neighbors. And in [18],
a distributed control method with a consensus algorithm is proposed to handle large-scale
PEV charging coordination based on grid side preference.

1.2. Motivation

However, most of the above works fail to take into account the interactions between
players in SCS. Therefore, we will use game theory [19] to discuss the interactions between
players. In the last several years, many works have been completed on the charging
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problem under different conditions based on game theory. Meanwhile, with the in-depth
study of the distributed optimization, distributed optimization is also gradually applied
to game theory. Distributed optimization is a task of effectively realizing optimization
through cooperative coordination between multiple agents, and can be used to solve
large-scale complex optimization problems that many centralized algorithms cannot. A
mechanism by which the grid determines the price to increase profitability is established
in [20] and the PEV groups select a charging strategy to optimize the trade-off between
personal charging income and related costs. In [21], the non-cooperative game model
based on price-incentivization is adopted to generate equilibria solutions for energy reserve
systems. Furthermore, the work [22] proposes a distributed charging method based on a
non-cooperative game with distribution network security constraints, which can adequately
solve the network failure problem caused by spatial and temporal security constraints. And
for PEV-based taxis, the work [23] introduces a random game to research a charging strategy
based on a data-driven approach. Moreover, the authors in [24] also propose a charging
management method with EV social contribution behavior. Nevertheless, the above studies
rarely consider the potential interactions between PEVs, which is not conducive to the
rational allocation of power resources and minimizing the cost.

At the same time, the existing research on PEVs charging mostly focuses on minimiz-
ing the total charging cost of all PEVs. In work [25], the authors decompose the random
network security bidding problem into bidding and network sub-problems by using the al-
ternating direction method of multipliers (ADMM), and solve them in parallel, respectively.
This maintains data privacy, and uses the non-convex bifurcation formula to simulate
the constraint of the distribution network. The constraint condition is the power flow
constraints, which is a direction that can be considered for application in the field of PEVs
charging. Whereas, some other works emphasize that the transformer/feeder overload
constraints must be considered when coordinating the PEV charging behavior [26,27], other-
wise the feeder overload may cause the entire grid to collapse. Among them, the work [26]
proposes a feeder overload control model based on the topology of the distribution network.
However, the subgradient-based method proposed by it needs a time-consuming iterative
procedure to converge, which is impractical in practice. Another work [27] employs a
distributed charging control method to seek the proportional and fair rate allocation for
each PEV. But the total load of each PEV charge is not considered, and the optimization is
performed for only one time period.

1.3. Contributions

Based on the motivation discussed above, this article investigates a charging coordi-
nation problem of PEVs considering feeder constraints and a new interaction mode. In
this problem, the player’s decisions are influenced not only by local constraints but also by
coupling constraints, so the optimal strategy for all players is called a generalized Nash
equilibrium (GNE) [28,29]. The main contributions are as follows:

(1) To take into account the flexible property of PEVs to a greater extent; unlike the
interactions considered by the V2G mechanism [20], we employ a novel interaction
mechanism between PEVs and SCS, which integrates the V2V mechanism to allow the
interaction between PEVs. At the same time, in order to reduce the duration of the total
SCS load peak and minimize the cost to the PEV owner, we develop a non-cooperative
game framework that considers distribution feeder overload constraints and propose
a novel price-driven charging control game that considers both minimizing charging
costs and reducing feeder overload and avoids grid collapse.

(2) To solve the generalized Nash equilibria problem (GNEP) considered in this article,
we employ a distributed algorithm based on forward–backward operator splitting
methods [30–32]. Using this algorithm, we can simultaneously treat the inequality
constraints and the equality constraints in GNEP. We put together the constraints of all
PEVs in GNEP from a global perspective, putting the local constraints into the global



Axioms 2024, 13, 259 4 of 16

coupling constraints, and then treating the inequality constraints in GNEP together.
Simulation results verify the effectiveness of the algorithm.

This article is organized as follows: the system model and problem formulation are
presented in Section 2. Section 3 provides the framework of the non-cooperative game. The
distributed algorithm based on forward–backward operator splitting methods is established
in Section 4. The experimental results are reported and discussed in Section 5. Section 6 is
the conclusion of this article and some ideas for future.

2. System Model and Problem Formulation

In this section, we assume an SCS, which is situated in a residential/commercial area.
The owners of PEVs in this residential/commercial area will typically go to the SCS closest
to them to charge their vehicles. This SCS needs to meet all the charging needs of PEVs as
much as possible, while reducing the energy cost of the grid and avoiding energy waste to
achieve greater profit, while coordinating and guiding the charge and discharge of PEVs
to reduce the impact of overcharge. The PEVs in SCS has a more flexible charging and
discharging capacity, and during peak electricity consumption periods, some PEVs may in
turn act as energy suppliers, and the PEVs can interact to minimize the charging cost of
the PEVs.

Then let a finite set N = {1, 2, . . . , N} represent the set of PEVs that need to be charged
in the SCS, a finite set T = {1, 2, . . . , T} represent the set of charging time periods, and
a finite set L = {1, 2, . . . , L} represent the set of distribution feeders. And the vector
xn = (xn,1, xn,2, . . . , xn,T)

T represents the charging curve of PEV n (n ∈ N) in the SCS at the
charging horizon (where xn,t represents the charging power of PEV n at time t [11]). Let
x = (xT

1 , xT
2 , . . . , xT

N)
T represent the charging curve of all PEVs in the SCS.

2.1. System Model

(1) Viable Charging Configuration Set: At the end of charging, the total energy of PEV n
shall reach the energy required for the terminal level:

T

∑
t=1

xn,t = Rn, ∀n ∈ N, (1)

Rn = πT
n − π0

n, ∀n ∈ N, (2)

where Rn represents the energy required for PEV n, π0
n represents the initial energy level of

PEV n (i.e., the energy value when PEV n reaches the SCS), and πT
n represents the terminal

energy level of PEV n (i.e., the charging target value when PEV n leaves the SCS).
Then, the energy level of PEV n shall not exceed its battery capacity at time t (t ∈ T):

πmin
n ≤ πt

n ≤ πmax
n , ∀t ∈ T, n ∈ N, (3)

πt
n = π0

n +
t

∑
τ=1

xn,τ , ∀t ∈ T, n ∈ N, (4)

where πt
n represents the energy level of PEV n at time t, πmin

n indicates the lower battery
capacity limit of PEV n, then πmax

n indicates the upper battery capacity limit of PEV n.
In addition, the charging power of PEV n shall not exceed its rated power:

−xmax
n ≤ xn,t ≤ xmax

n , ∀t ∈ T, ∀n ∈ N, (5)

where −xmax
n indicates the rated discharging power of PEV n, then xmax

n indicates the rated
charging power of PEV n.

Moreover, considering the feeder overload constraints, for feeder l, we have

Pl,t = ∑
n∈Γl

xn,t ≤ ηl,tPmax
l,t , ∀t ∈ T, ∀l ∈ L, (6)
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Pmax
l,t = Lmax

l,t − Cl,t, ∀t ∈ T, ∀l ∈ L, (7)

and we regard the radial power distribution electric network as a tree, with the distribution
substation as its root. Each PEV is connected to a leaf node of the tree. Let Πn represent
the set of distribution feeders that transfer power from the distribution substation to PEV
n. Then in (6) and (7), Γl = {n : l ∈ Πn} represents the set of PEVs using the distribution
feeder l to carry the power, Pl,t represents the total load of PEVs through feeder l at time t,
and Cl,t represents the basic demand load (non-PEV demand) transmitted through feeder l
at time t. As feeder l has a maximum loading capacity Lmax

l,t , the maximum PEV demand
it can support at time t is Pmax

l,t = Lmax
l,t − Cl,t. Here, ηl,t represents the overload control

threshold on feeder l at time t, which satisfies the condition 0 ≤ ηl,t ≤ 1.
In summary, for PEV n, the feasible charging configuration set is as follows:

Xn = {xn|(1), (3), (5), (6)}. (8)

Accordingly, X = {(x1, x2, . . . , xN)|xn ∈ Xn, ∀n ∈ N} is the set of feasible charging
configurations for all PEVs in the SCS.

(2) PEV User Cost Model: The charging unit price cost of PEVs at time t is expressed by
the following linear price function:

pt = αtLt + βt + αtC1,t, ∀t ∈ T, (9)

where αt represents the positive price coefficient related to the time-of-use electricity price
and βt represents the positive price coefficient related to the basic price of the SCS. Here,
Lt = ∑N

n=1 xn,t represents the aggregate load of the SCS at time t. Note that pt is affected by
the basic demand load transmitted through feeder 1 at time t due to the consideration of
feeder constraints, i.e., αtC1,t.

(3) SCS Cost Model: According to cost price pt, we define Ct(Lt) as the energy cost of
the SCS at time t. Then the model is shown in the following function:

Ct(Lt) = ptLt = αtL2
t + βtLt + αtC1,tLt, ∀t ∈ T. (10)

The total cost of the SCS during the whole charging time can be expressed as

Ctol =
T

∑
t=1

Ct(Lt). (11)

Then, we use fn to represent the fees paid by PEV n. Note that under normal commer-
cial profitability, it should be ensured that the total cost of all PEVs should not be less than

the total cost of the SCS, namely: ∑N
n=1 fn ≥ ∑T

t=1 Ct(Lt). Next, we define δ := ∑N
n=1 fn

∑T
t=1 Ct(Lt)

to represent the profitability index, if δ = 1, the SCS revenue and expenditure balance; if
δ > 1, the SCS is profitable. Then, we assume an ideal state, i.e.,

fn

fm
=

∑T
t=1 xn,t

∑T
t=1 xm,t

, ∀n, m ∈ N. (12)

Considering all PEVs, summing both sides of (12), we have

fn =
∑T

t=1 xn,t

∑N
m=1 ∑T

t=1 xm,t

N

∑
m=1

fm. (13)

Combined with the definition of δ and (13), we have

fn =
δ ∑T

t=1 xn,t

∑N
m=1 ∑T

t=1 xm,t

T

∑
t=1

Ct(Lt)
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= σn

T

∑
t=1

(
αtLt

2 + βtLt + αtC1,tLt

)
= σn

T

∑
t=1

[
αt

(
N
∑

n=1
xn,t

)2

+ βt
N
∑

n=1
xn,t + αtC1,t

N
∑

n=1
xn,t

]
, (14)

where σn = δξn with ξn = ∑T
t=1 xn,t

∑N
m=1 ∑T

t=1 xm,t
as the proportion of the total energy consumption

of PEV n in the aggregate load of the SCS.

2.2. Problem Formulation

To sum up, this problem can be expressed as follows:

min
xn

Ctol =
T
∑

t=1
Ct(Lt), (15a)

s.t. (1), (3), (5), (6), ∀n ∈ N. (15b)

That is, the problem is to minimize the total cost of the SCS under the conditions
corresponding to (15b).

3. Non-Cooperative PEV Charging Game

We build a non-cooperative game framework for charging with PEVs and discuss
the existence of GNE in this section. Different from cooperative games, the behaviors and
decisions of players in a non-cooperative game are independent of each other [33].

3.1. Game Model

Here, a non-cooperative PEV charging game G = {N, {Xn}n∈N, { fn}n∈N} is estab-
lished, where the components are expressed as

Players: The PEVs in set N;
Policy set: Xn ⊆ RT for n ∈ N, is nonempty, compact, and convex;
Cost function:

fn(xn, x−n) = σn

T

∑
t=1

[
αt

(
N
∑

n=1
xn,t

)2

+ βt
N
∑

n=1
xn,t + αtC1,t

N
∑

n=1
xn,t

]
, ∀n ∈ N, (16)

where x−n = (x1, . . . , xn−1, xn+1, . . . , xN) represents the strategies of all players except
player n.

Definition 1. The game G for Xn and fn, is given by considering (8) and (16), respectively. The
vector x∗ = (x∗n, x∗−n) ∈ X is a GNE of G, if and only if

fn(x∗n, x∗−n) ≤ fn(xn, x∗−n), ∀(xn, x∗−n) ∈ X, ∀n ∈ N. (17)

That is, it is impossible for any player to reduce the payments of it by using a unilateral
deviation from the GNE strategy.

3.2. Existence of GNE

Then, here is a lemma proving the existence of a GNE for the game G.

Lemma 1. Consider the game G for Xn and fn given by (8) and (16), respectively. Then, the GNE
of the game G always exists (see [11] (Theorem 1)).

4. Distributed Algorithm

In this section, we employ a distributed algorithm based on forward-backward opera-
tor splitting methods. The algorithm is characterized by the fact that each player only needs
to know its local objective function, locally feasible set and a local block of affine constraints,
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and there is no centralized coordinator to update and broadcast dual variables. Each player
needs to observe the decisions that directly affect his local objective function and share
information related to the multiplier with his neighbors [30]. We assume that each player
n only knows their own local data, i.e., fn(xn, x−n), Ωn ∈ R, An ∈ R(2NT+LT+N)×T , and
bn ∈ R(2NT+LT+N)×1. Player n has a local first-order oracle of fn(xn, x−n), which returns
∇xn fn(xn, x−n) given col(xn, x−n).

4.1. Target Question

The objective function (14) of the model that we need to solve can be rewritten as follows:

fn =
∑T

t=1 xn,t

∑T
t=1 ∑N

m=1 xm,t

T

∑
t=1

[
αt

(
N
∑

n=1
xn,t

)2

+ βt
N
∑

n=1
xn,t + αtC1,t

N
∑

n=1
xn,t

]

=
1T

Txn

1T
T ∑N

m=1 xm

[ (
N
∑

n=1
xn

)T

α

(
N
∑

n=1
xn

)
+ 1T

T β
N
∑

n=1
xn + CT

1 α

(
N
∑

n=1
xn

) ]
, (18)

where α = diag(α1, . . . , αT), β = diag(β1, . . . , βT), C1 = (C1,1, . . . , C1,T)
T, and 1T represents

the one vector of T dimension.

4.2. Constraint Handling

Constraint (3) can be rewritten as constraint (19) according to the transformation in (4):

(
πmin

n − π0
n

)
1T ≤ Exn, (19a)

Exn ≤
(

πmax
n − π0

n

)
1T , (19b)

where E =



1
1 1
· · ·
· · ·
· · ·
1 1 · · · 1

 ∈ RT×T .

In addition, constraint (6) can be rewritten as constraint (22) by the following transformation.
Assuming that there are L feeders, Γl represents the set of vehicles powered by the lth

feeder, and the power supply constraint on the lth feeder can be expressed as
N

∑
n=1

Kl,nxn ≤ Pmax
l , (20)

where Pmax
l =

(
ηl,1Pmax

l,1 , . . . , ηl,T Pmax
l,T

)T
and Kl,n =

{
IT , if n ∈ Γl ,
OT , if n /∈ Γl .

Here, IT repre-

sents the identity matrix of T dimension and OT represents the zero matrix of T dimension.

Defining a matrix K =

 K1,1 · · · K1,N
...

. . .
...

KL,1 · · · KL,N

 ∈ RLT×NT and Pmax =
(
Pmax

1 , . . . , Pmax
L

)T,

the constraints of all feeders can be expressed as

KXT ≤ Pmax. (21)

For distributed solution, the matrix K can be split into N matrices by column
Kn = (K1,n, . . . , KL,n)

T, n ∈ N. Then KXT ≤ Pmax can be equivalently expressed as
N
∑

n=1
Knxn ≤

N
∑

n=1
Dn, (22)
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where Dn = (P1,n, . . . , PL,n)
T and Pl,n =

{
1
κl

Pmax
l , if n ∈ Γl ,

0T , if n /∈ Γl .
Here, 0T represents the

zero vector of T dimension. And κl represents the number of elements in Γl ; that is, the
number of vehicles powered by the lth feeder.

For example, if there are four feeders and the connection method is shown in
Figure 2, then

D1 =

(
1
4

Pmax
a , 0T , 0T , 0T

)T
,

D2 =

(
1
4

Pmax
a , Pmax

b , 0T , 0T

)T
,

D3 =

(
1
4

Pmax
a , 0T ,

1
2

Pmax
c , 0T

)T
,

D4 =

(
1
4

Pmax
a , 0T ,

1
2

Pmax
c , Pmax

d

)T
;

therefore, we can get Pmax = D1 + D2 + D3 + D4 =
(

Pmax
a , Pmax

b , Pmax
c , Pmax

d
)T.

Figure 2. Example of feeders link mode.

Then rewrite (18) as

Rn

Rn + 1T
T ∑N

m ̸=n xm

[ (
N
∑

n=1
xn

)T

α

(
N
∑

n=1
xn

)
+ 1T

T β
N
∑

n=1
xn + CT

1 α

(
N
∑

n=1
xn

) ]

and the problem (15) is reformulated as

min
xn

fn(xn, x−n), (23a)

s.t. (1), (5), (19a), (19b), (22). (23b)

Next, the pseudo gradient can be expressed as

Fn(x) = ∇xn fn(xn, x−n) =
Rn

Rn + 1T
T ∑N

m ̸=n xm

[
2α

(
N
∑

n=1
xn

)
+ β1T + αC1

]
. (24)

Then we define a column vector F(x) = col(F1(x), . . . , FN(x)).

4.3. Element Derivation

The classical forward–backward algorithm is known to solve game problems of the
following form:

min
xn

fn(xn, x−n), (25a)

s.t.
N

∑
n=1

Anxn ≤
N

∑
n=1

bn, (25b)

xn ∈ Ωn. (25c)

The constraints of problem (23) are different from (25). Thus, consider writing all the
constraints of PEV n in (23) together from a global perspective to get Ax ≤ b. Then divide
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the matrix A and vector b into multiple sub-matrices An and sub-vectors bn, and obtain the
equivalent form of Ax ≤ b as (25b).

Write all the constraints that need to be satisfied in the form of matrix and vector
multiplication. For the global, the following must be satisfied:

WXT ≤ B, (26a)

HXT = P, (26b)

where W ∈ R(2NT+LT)×NT and B ∈ R(2NT+LT)×1 represent the inequality constraint factors
of PEVs, H ∈ RN×NT and P ∈ RN×1 represent the equality constraint factors of PEVs.

Letting Wn denote column n of W and Hn denote column n of H, we have

WXT =
N

∑
n=1

Wnxn ≤
N

∑
n=1

Bn, (27a)

HXT =
N

∑
n=1

Hnxn =
N

∑
n=1

Pn, (27b)

where Bn consists of local information known to PEV n. Thus, the constraint can be satisfied
as shown in (27), then the constraints of problem (23) are satisfied. Note that since (27b)
is an equality constraint, there is only an inequality constraint (25b) in problem (25), so
considering the processing of the inequality constraint (25b), the dual variable λ needs
to be projected to a non-negative set. According to the Lagrange multiplier method, if
the equality constraints are dealt with, the corresponding dual variables do not need to
be projected.

Let dual variable un correspond to inequality constraint Wnxn ≤ Bn and the dual
variable qn correspond to equality constraint Hnxn = Pn. The dual variable un needs to be
non-negative. Then let

An =

[
Wn
Hn

]
, (28a)

bn =

[
Bn
Pn

]
, (28b)

λn =

[
un
qn

]
. (28c)

After that, we only need to project some of the dimensions of λn’s corresponding
inequality constraints onto the non-negative set. Then we can handle both inequality
constraints and equality constraints at the same time.

Next, considering the constraint condition −xmax
n ≤ xn,t ≤ xmax

n , at this time, it is only
necessary to let

xn,t =

{
xmax

n , if xn,t > xmax
n ,

−xmax
n , if xn,t < −xmax

n ,
(29)

and the projection function can be realized.
From this, (28a) and (28b) can be obtained, where
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Wn =



0(n−1)T×T
−E

0(N−n)T×T
0(n−1)T×T

E
0(N−n)T×T

Kn


, Bn =



0(n−1)T
(π0

n − πmin
n )1T

0(N−n)T
0(n−1)T

(πmax
n − π0

n)1T
0(N−n)T

Dn


,

Hn =


0(n−1)×T

11×T
0(N−n)×T

, and Pn =

 0(n−1)
Rn

0(N−n)

,

in which 0m×n represents the zero matrix of m× n dimension.
Next, we further define the set Ωn in problem (25) as follows:

Ωn = {x̃| − xmax
n ≤ x̃ ≤ xmax

n }. (30)

To sum up, (24), (29), and (30) are obtained by analysis. Then the problem can be
solved by the following distributed algorithm.

4.4. Distributed Algorithm

In this algorithm, agent n controls its local decision xn, local copy of multiplier λn, and
has a local assistant variable zn. Furthermore, M represents the dimension of the local data,
i.e., M = 2NT + LT + N. Note that because Hnxn = Pn is an equality constraint, when λn is
updated, only the last N dimensions do not need to be projected. The remaining dimensions
must be non-negative; that is, the dimension of the corresponding inequality constraint
part in this set needs to be projected to non-negative, and the dimension corresponding to
the equality constraint part does not need to be projected.

Algorithm 1 is shown below, where xk
n, zk

n, and λk
n denote xn, zn, and λn at iteration k,

κn, τn and γn are fixed constant step-sizes of player n, Nn represents the set of neighbors of
the agent n, and if m ∈ Nn, then wnm = 1, otherwise wnm = 0.

Algorithm 1 Distributed Algorithm Based on Forward-Backward Operator Splitting Methods

1: Initialization: k = 1, for all n ∈ N, x1
n ∈ Ωn, λ1

n ∈ RM
+ , z1

n ∈ RM,
2: Iteration k:
3: for each n ∈ N do
4: Step 1:
5: xk+1

n = PΩn

(
xk

n − κn

(
∇xn fn

(
xk

n, xk
−n

)
+ AT

nλk
n

))
,

6: zk+1
n = zk+1

n − τn ∑
m∈Nn

wnm

(
λk

n − λk
m

)
,

7: Step 2:

8: λk+1
n = PRM

+


λk

n + γn

(
2Anxk+1

n − Anxk
n − bn

)
+ γn ∑

m∈Nn

wnm

[
2
(

zk+1
n − zk+1

m

)]
−γn ∑

m∈Nn

wnm

(
zk

n − zk
m

)
− γn ∑

m∈Nn

wnm

(
λk

n − λk
m

)
,

9: end for
10: k← k + 1,
11: Until the k approaches 100,000,
12: Return x1, . . . , xn.

5. Simulation Results

We demonstrate the function of the employed distributed algorithm through the
simulation results in this section. For illustration purpose, we consider the SCS with ten
PEVs in a residential area [22].
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In this case, ten PEVs perform charging and discharging interactions in the SCS. The
feeder constraints for these ten different PEVs in the SCS are considered in the manner of
Figure 3. Table 1 lists the parameters, arrival time (AT), and departure time (DT) for the
PEVs. Table 2 lists the corresponding numbers of the cars affected by each feeder. Table 3
lists the supplier of the maximum supply on the feeder l at time t. Table 4 lists the base
power consumption (non-PEV demand) on the feeder l at time t.

Figure 3. Feeders and PEVs connection mode.

Table 1. Parameter Settings of PEVs.

PEV π0
n πT

n πmin
n πmax

n xmax
n AT DT

1 7.5 67.5 5 75 15 17:00 22:00
2 6 72 5 80 15 18:00 23:00
3 7 67.5 5 75 10 19:00 6:00
4 5.6 63 5 70 8 17:00 7:00
5 6.7 58.5 5 65 10 11:00 23:00
6 7.5 67.5 5 75 12 12:00 18:00
7 8.1 58.5 5 65 10 11:00 23:00
8 9 72 5 80 10 12:00 6:00
9 7.2 63 5 70 8 13:00 7:00

10 7.5 67.5 5 75 15 14:00 20:00

Table 2. The PEVs Affected by the Feeder.

Feeder Affected PEVs (Remaining at 0)

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
2 2, 4, 6, 7, 10, 0, 0, 0, 0, 0
3 3, 5, 8, 9, 0, 0, 0, 0, 0, 0
4 4, 6, 7, 10, 0, 0, 0, 0, 0, 0
5 5, 8, 9, 0, 0, 0, 0, 0, 0, 0
6 6, 10, 0, 0, 0, 0, 0, 0, 0, 0
7 7, 0, 0, 0, 0, 0, 0, 0, 0, 0
8 8, 0, 0, 0, 0, 0, 0, 0, 0, 0
9 9, 0, 0, 0, 0, 0, 0, 0, 0, 0
10 10, 0, 0, 0, 0, 0, 0, 0, 0, 0

Table 3. Maximum Power Supply.

Feeder 1:00–6:00 7:00–17:00 18:00–24:00

1 50 45 50
2 48 44.5 47
3 46 44 44
4 44 43.5 41
5 42 43 38
6 40 42.5 35
7 38 42 32
8 36 41.5 29
9 34 41 26
10 32 40.5 23
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Table 4. Basic Power Consumption (Non-PEV Demand).

Feeder 1:00–6:00 7:00–17:00 18:00–24:00

1 5 7 10
2 4.8 6.9 9
3 4.6 6.8 8.1
4 4.4 6.7 7.3
5 4.2 6.6 6.6
6 4 6.5 6
7 3.8 6.4 5.5
8 3.6 6.3 5.1
9 3.4 6.2 4.8
10 3.2 6.1 4.6

The price coefficient is αt = 0.2 $/kWh (i.e., from 7:00 to 17:00), αt = 0.3 $/kWh (i.e.,
from 18:00 to 6:00 the next day), and βt = 0.8 $/kWh. Furthermore, the overload control
threshold is ηl,t = 1 (i.e., from 7:00 to 17:00) and ηl,t = 0.95 (i.e., from 18:00 to 6:00 the next
day). In addition, here, δ = 1.

Then, the charging strategy without feeder constraints is shown in Figure 4a. From
Figure 4b, it can be seen that the demand peak occurs from 13:00 to 17:00, and during
this period, the SCS is in an overload state. In addition, the total energy cost of the SCS is
$5985.1. Then, we employ the distributed algorithm based on forward–backward operator
splitting methods to coordinate PEVs for charging, where the fixed constant step-sizes are
κn = 0.025, τn = 0.25, and γn = 0.025, and the convergence analysis of the algorithm is
shown in [30] (Theorem 3); therefore, the results are shown below.

(a) (b)

Figure 4. (a) Charging strategies without feeder constraints. (b) Aggregate load of the SCS without
feeder constraints.

(1) Convergence Accuracy: The calculation results are shown in Figure 5. We can
observe that the distributed algorithm has a convergence accuracy of 10−2.41421 at the
50,000th iteration.

Figure 5. Convergence accuracy.
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(2) Coordinate Charging Results: As shown in Figure 6, we further provide a charging
strategy and total load considering feeder constraints.

(a) (b)

Figure 6. (a) Charging strategies with feeder constraints. (b) Aggregate load of the SCS with
feeder constraints.

As can be seen in Figure 6a, five PEVs emit more electricity. Therefore, the aggregate
load at this time does not make the SCS in an overload state, as shown in Figure 6b. In
addition, from the calculation result and Figure 6b, we can further get that although the
total energy cost of the SCS rises to $5995.1, the peak of demand is no longer overloaded,
which greatly reduces the load on the line and saves energy. Furthermore, we provide an
iterative process by ten PEVs in a time interval (i.e., 19:00), as shown in Figure 7, to further
verify the effectiveness of the employed algorithm.

Figure 7. Charging curves of ten PEVs at 19:00.

It is intuitively clear that each PEV converges to its own optimal charging strategy.
Therefore, in the non-cooperative framework considering feeder constraints, the distributed
algorithm employed in this article can solve the charging problem in the SCS effectively.

6. Conclusions

This article considered the charging problem based on feeder constraints and the inter-
action between PEVs in the SCS, and studied it by using the method of the non-cooperative
game. A distributed algorithm based on forward–backward operator splitting methods
was employed to solve the GNE in the framework of the non-cooperative game, and the
algorithm was proved to be effective by the simulation results. That is, the distributed
algorithm adopted in this article can effectively solve the charging problem in the power
grid in a non-cooperative framework considering the feeder constraints. It should be noted
that the fees paid by PEVs are greatly affected by the energy cost of the SCS. This article pri-
marily focuses on minimizing the energy cost of the SCS under feeder constraints. Thus, we
modelled the cost function as the fees paid by the PEVs’ owners to the SCS. Note that this
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article did not consider the battery degradation caused by frequent charging/discharging
of PEVs, which will increase the possibility of hidden costs [34], so that future work should
consider this cost problem and try to compensate the owners of PEVs to eliminate their
concerns and encourage them to participate. At the same time, we will continue to focus
on improving our work by comparing and analyzing different optimization methods. For
example, the hybrid policy-based reinforcement learning (HPRL) adaptive energy man-
agement approach [35] can effectively avoid oversimplification of the model and achieve
an optimized strategy. Another example is the event-triggered-based distributed algo-
rithm [36], which can solve future and real-time energy management problems in a fully
distributed way, with better flexibility, reliability and scalability, and is also conducive to
privacy protection.
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Nomenclature
The following momenclature are used in this manuscript:

N Set of all PEVs
T Set of charging time periods
L Set of distribution feeders
xn,t Charging power of PEV n at time t
xn (x) Charging curve of PEV n (PEVs) over the entire charging horizon
Rn Required energy of PEV n
π0

n/πT
n Initial/Terminal energy level of PEV n

πmin
n /πmax

n Lower/Upper battery capacity limit of PEV n
πt

n Energy level of PEV n at time t
xmax

n /− xmax
n Rated charging/discharging power of PEV n

Pl,t Total load of PEVs on feeder l at time t
ηl,t Overload control threshold on feeder l at time t
Pmax

l,t Maximum PEV demand that feeder l can support at time t
Lmax

l,t Maximum loading capacity of feeder l at time t

Cl,t (Cl)
Basic demand load (i.e., non-PEV demand) transmitted on feeder l at time t
(over the entire charging horizon)

Πn
Set of distribution feeders that transfer power from the distribution substation
to PEV n

Γl Set of PEVs using the distribution feeder l to carry the power
Xn (X) Set of feasible charging configurations for PEV n (PEVs)
pt Electricity price at time t
αt, βt (α, β) Positive price coefficients at time t(α = diag(α1, . . . , αT), β = diag(β1, . . . , βT))

Lt Aggregate load of SCS at time t
Ct(Lt) Energy cost of SCS at time t
Ctol Total energy cost of SCS
fn Fees paid by PEV n
δ Index of profitability

ξn
Proportion of the total energy consumption of PEV n in the aggregate load
of SCS

fn(xn, x−n) Cost function of PEV n
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x−n Charging strategies of all PEVs except PEV n
x∗ Generalized Nash equilibria of G
Ωn, An, bn (A, b) Local data of PEV n (PEVs)
1T One vector of T dimension
AT Transpose of A
Fn(x) Pseudo gradient for cost function of PEV n
F(x) Column vector of pseudo gradient for cost function of PEVs
Wn, Bn (W, B) Inequality constraint factors of PEV n (PEVs)
Hn, Pn (H, P) Equality constraint factors of PEV n (PEVs)
λn, un, qn (λ, u, q) Dual variables of PEV n (PEVs)
0n (0m×n) Zero vector (matrix) of n (m× n) dimension
Nn Set of neighbors of PEV n
λn Local copy of multiplier of PEV n
zn Local auxiliary variable of PEV n
k Index of iterations
M Dimension of local data for PEV n
RM(RM

+ ) Euclidean space of M dimension (non-negative)
κn, τn, γn Fixed constant step-sizes of PEV n
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29. Drăgan, V.; Ivanov, I.G.; Popa, I.L. A Game—Theoretic Model for a Stochastic Linear Quadratic Tracking Problem. Axioms 2023,
12, 76. [CrossRef]

30. Yi, P.; Pavel, L. An operator splitting approach for distributed generalized Nash equilibria computation. Automatica 2019,
102, 111–121. [CrossRef]

31. Izuchukwu, C.; Reich, S.; Shehu, Y.; Taiwo, A. Strong convergence of forward–reflected–backward splitting methods for solving
monotone inclusions with applications to image restoration and optimal control. J. Sci. Comput. 2023, 94, 73. [CrossRef]

32. Dadashi, V.; Postolache, M. Forward–backward splitting algorithm for fixed point problems and zeros of the sum of monotone
operators. Arab. J. Math. 2020, 9, 89–99. [CrossRef]

33. Lin, X.; Zhang, T.; Li, M.; Zhang, R.; Zhang, W. Multi-Player Non-Cooperative Game Strategy of a Nonlinear Stochastic System
with Time-Varying Parameters. Axioms 2023, 13, 3. [CrossRef]

34. Wang, Z.; Li, X.; Liang, W.; Ma, J. Does a New Electric Vehicle Manufacturer Have the Incentive for Battery Life Investment? A
Study Based on the Game Framework. Mathematics 2023, 11, 3551. [CrossRef]

35. Yang, L.; Li, X.; Sun, M.; Sun, C. Hybrid policy-based reinforcement learning of adaptive energy management for the Energy
transmission-constrained island group. IEEE Trans. Ind. Inform. 2023. [CrossRef]

36. Li, Y.; Zhang, H.; Liang, X.; Huang, B. Event-triggered-based distributed cooperative energy management for multienergy
systems. IEEE Trans. Ind. Inform. 2018, 15, 2008–2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSG.2012.2211901
http://dx.doi.org/10.1109/TSMC.2019.2903485
http://dx.doi.org/10.1109/TII.2016.2632761
http://dx.doi.org/10.1109/TCST.2017.2713321
http://dx.doi.org/10.1109/TII.2019.2950460
http://dx.doi.org/10.1016/j.segan.2022.100666
http://dx.doi.org/10.1109/TAC.2016.2516240
http://dx.doi.org/10.1109/TSG.2014.2327203
http://dx.doi.org/10.1007/s10107-024-02063-6
http://dx.doi.org/10.3390/axioms12010076
http://dx.doi.org/10.1016/j.automatica.2019.01.008
http://dx.doi.org/10.1007/s10915-023-02132-6
http://dx.doi.org/10.1007/s40065-018-0236-2
http://dx.doi.org/10.3390/axioms13010003
http://dx.doi.org/10.3390/math11163551
http://dx.doi.org/10.1109/TII.2023.3241682
http://dx.doi.org/10.1109/TII.2018.2862436

	Introduction
	Background and Research Gaps
	Motivation
	Contributions

	System Model and Problem Formulation
	System Model
	Problem Formulation

	Non-Cooperative PEV Charging Game
	Game Model
	Existence of GNE

	Distributed Algorithm
	Target Question
	Constraint Handling
	Element Derivation
	Distributed Algorithm

	Simulation Results
	Conclusions
	References

