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Abstract: Taiwan’s auditors have suffered from processing excessive audit data, including drawing
audit evidence. This study advances sampling techniques by integrating machine learning with
sampling. This machine learning integration helps avoid sampling bias, keep randomness and
variability, and target risker samples. We first classify data using a Naive Bayes classifier into some
classes. Next, a user-based, item-based, or hybrid approach is employed to draw audit evidence. The
representativeness index is the primary metric for measuring its representativeness. The user-based
approach samples data symmetrically around the median of a class as audit evidence. It may be
equivalent to a combination of monetary and variable samplings. The item-based approach represents
asymmetric sampling based on posterior probabilities for obtaining risky samples as audit evidence. It
may be identical to a combination of non-statistical and monetary samplings. Auditors can hybridize
those user-based and item-based approaches to balance representativeness and riskiness in selecting
audit evidence. Three experiments show that sampling using machine learning integration has the
benefits of drawing unbiased samples; handling complex patterns, correlations, and unstructured
data; and improving efficiency in sampling big data. However, the limitations are the classification
accuracy output by machine learning algorithms and the range of prior probabilities.

Keywords: symmetrical sampling; asymmetrical sampling; audit evidence; representativeness index;
Naive Bayes classifier

1. Introduction

Taiwan’s auditors have recently suffered from processing excessive data, including
drawing audit evidence. This audit evidence refers to the information to support auditors’
findings or conclusions about those excessive data. Auditors desire assistance from emerg-
ing technologies such as machine learning algorithms or software robots in completing
the sampling. The overload of sampling excessive data causes Taiwan’s small to medium
accounting firms to need more young auditors to help accountants. They even ask Taiwan’s
universities to provide excellent accounting students as potential employees.

This study develops a Naive Bayes classifier (e.g., [1]) as a sampling tool. It is employed
to help auditors generate audit evidence from a massive volume of data. For example,
enterprises employ enterprise resource planning or information management systems to
manage accounting data. They output a colossal number of data each day. For economic
reasons, auditing all data is almost impossible. Auditors rely on sampling methods to
generate audit evidence. It denotes that auditors audit less than 100% of data; nevertheless,
the sampling risk will occur correspondingly. It implies the likelihood that auditors’
conclusions based on samples may differ from the conclusion made from the entire data.

A previous study [2] suggested applying a classification algorithm to mitigate the
sampling risk in choosing audit evidence. This published research constructed a neural
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network to classify data into some classes and generate audit evidence from each class. If
the classification results are accurate, the corresponding audit evidence is representative.

However, we may make intelligent demands in drawing audit evidence. For example,
it is risky for financial accounts to accept frequent transactions as this may indicate money
laundering. Criminals may own these financial accounts to receive black money. An auditor
will be grateful to sample such risky financial accounts as audit evidence. We select a Naive
Bayes classifier to complete those intelligent demands of generating audit evidence since it
provides the (posterior) probabilities of members in a class. Other alternative classification
algorithms cannot provide (posterior) probabilities. We should derive another expression
to predict the probabilities; thus, each class member has an equal chance of being sampled.

Many published studies (e.g., [3–5]) attempted to integrate machine learning with sam-
pling; however, the research interest of most was not auditing. Their goal was to develop
unique sampling methods for improving the performance of machine learning algorithms
in solving specific problems (e.g., [3]). Some studies (e.g., [4]) suggested sampling with
machine learning in auditing; moreover, only some researchers (e.g., [5]) have implemented
machine-learning-based sampling in auditing.

This study starts acquiring audit evidence by appending some columns to data to
store the classification results of a Naive Bayes classifier. It next classifies data into different
classes. Referring to existing sampling methods, we next implement a user-based, item-
based, or hybrid approach to draw audit evidence. The representativeness index [6] is
the primary metric for measuring whether audit evidence is representative. The user-
based approach draws samples symmetrically around the median of a class. It may be
equivalent to a combination of monetary and variable sampling methods [7]. The item-
based approach denotes the asymmetric sampling based on posterior probabilities for
detecting riskier samples. It may be equivalent to combining non-statistical and monetary
sampling methods [7]. Auditors may hybridize these user- and item-based approaches to
balance the representativeness and riskiness in selecting audit evidence.

The contribution of this study is as follows:

1. It demonstrates that machine learning algorithms can simplify auditors’ work. En-
terprises can thus reduce the number of auditors and save human expenses. Few
auditors are needed to obtain representative samples.

2. It exploits a machine-learning-based tool to support the sampling of audit evidence.
Auditors had similar tools.

3. It shows that an ordinary Naive Bayes classifier can be a perfect ’Black Box’ to support
the selection of audit evidence.

The remainder of this study has five sections. Section 2 presents a review of relevant
studies to this study. Section 3 shows an integration of a Naive Bayes classifier with
sampling. Section 4 presents three experiments for testing the resulting works in Section 3.
Section 5 discusses the experimental results. Based on the previous two sections, Section 6
lists this study’s conclusion and concluding remarks.

2. Literature Review

As stated earlier, only some studies have sampled data using a machine learning algo-
rithm in auditing. This sparsity leads to harassment in searching for advice to implement
this study.

If the purpose is to improve the efficiency of auditing, some published studies
(e.g., [5]) integrated machine learning with sampling for detecting anomalies. For ex-
ample, Chen et al. [5] selected the ID3, CART, and C4.5 algorithms to find anomalies
in financial transactions. Their results indicated that a machine learning algorithm can
simplify the audit of financial transactions by efficiently exploring their attributes.

Schreyer et al. [8,9] constructed an autoencoder neural network to sample journal
entries in their two papers. They fed attributes of these journal entries into the resulting
autoencoder. However, Schreyer et al. plotted figures to describe the representatives
of samples.
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Lee [10] built another autoencoder neural network to sample taxpayers. Unlike
Schreyer et al. [8,9], Lee calculated the reconstruction error to quantify the representa-
tiveness of samples. This metric measures the difference between input data and outputs
reconstructed using samples. Lower reconstruction errors indicate better representativeness
of original taxpayers. Moreover, Lee [10] used the Apriori algorithm to find those taxpayers
who may be valuable to sample together. If one taxpayer breaks some laws, other taxpayers
may also be fraudulent.

Chen et al. [11] applied the random forest classifier, XGBoost algorithm, quadratic
discriminant analysis, and support vector machines model to sample attributes of Bitcoin
daily transaction data. These attributes contain the property and network, trading and
market, attention, and gold spot prices. The goal of this previous research is to predict Bit-
coin daily prices. Chen et al. [11] found that machine learning algorithms more accurately
predicted Bitcoin 5-min interval prices than statistical methods did.

Different from the above-mentioned four studies, Zhang and Trubey [3] designed
under-sampling and over-sampling methods to highlight rare events in a money laundering
problem. Their goal was improving the performance of machine learning algorithms in
modeling money laundering events. Zhang and Trubey [3] adopted the Bayes logistic
regression, decision tree, random forest classifier, support vector machines model, and
artificial neural network.

In fields other than auditing, three examples are listed: Liberty et al. [12] defined a
specialized regression problem to calculate the probability of sampling each record of a
browse dataset. The goal was to sample a small set of records over which the evaluation of
aggregate queries can be carried out efficiently and accurately. Deriving their solution to the
regression problem employs a simple regularized empirical risk minimization algorithm.
Liberty et al. [12] concluded that machine learning integration improved both uniform and
standard stratified sampling methods.

Hollingsworth et al. [13] derived generative machine learning models to improve the
computational efficiency in sampling high-dimensional parameter spaces. Their results
achieve orders-of-magnitude improvements in sampling efficiency compared to a brute-
force search.

Artrith et al. [14] combined a genetic algorithm and specialized machine learning
potential based on artificial neural networks to quicken the sampling of amorphous and
disordered materials. They found that machine learning integration decreased the required
calculations in sampling.

Other relevant studies discussed the benefits or challenges of integrating a machine
learning algorithm with the audit of data. These studies only encourage or remind the
current study to notice these benefits or challenges. For example, Huang et al. [15]
suggested that a machine learning algorithm may serve as a ‘Black Box’ to help an auditor.
However, auditors may need help in mastering a machine learning algorithm. Furthermore,
auditors may have a wrong understanding of the performance of a machine learning
algorithm. This misunderstanding causes auditors to believe we can always obtain accurate
classification or clustering of data using a machine learning algorithm. Moreover, it
improves effectiveness and cost efficiency, analyzes massive data sets, and reduces time
spent on tasks. Therefore, we should ensure that the performance of a machine learning
algorithm is sufficiently good before applying it to aid auditors’ work.

3. Naive Bayes Classifier

This study applies a Naive Bayes classifier (e.g., [1]) to select audit evidence since
this classification algorithm provides posterior probabilities to implement the selection. A
Naive Bayes classifier classifies data according to posterior probabilities. We may employ
posterior probabilities to relate different members of a class.

Suppose (X1, C1), (X2, C2) . . . , (XN , CN) denote N items of data where Ci is the class
variable, Xi = (Xi1, Xi2 . . . , Xin), Xij (j = 1, 2 . . . , n) is the j-th attribute of Xi, and n is the
total number of attributes.
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A Naive Bayes classifier is a supervised multi-class classification algorithm. As shown
in Figure 1, developing a Naive Bayes classifier considers Bayes’ theorem with conditional
independence assumption between every pair of variables:

Pr
(
Ci|Xj

)
=

Pr
(
Xj|Ci

)
Pr(Ci)

Pr
(
Xj
) (1)

in which i, j = 1, 2 . . . , N, Pr
(
Ci|Xj

)
is the posterior probability, Pr

(
Xj|Ci

)
denotes the

likelihood, and Pr(Ci) and Pr
(
Xj
)

comprise the prior probability.
Applying the assumption that features Xi1, Xi2 . . . , Xin are independent of each other

yields

Pr
(
Ci|Xj

)
=

Pr(Ci)
n
∏

k=1
Pr

(
Xjk|Ci

)
Pr

(
Xj
) (2)

where i, j = 1, 2 . . . , N. Since the denominator of Equation (2) is the same for all Ci classes,
comparing the numerator of it for each Ci class is implemented in classifying features
X1, X2, . . . , XN , Xij (j = 1, 2 . . . , n). This comparison ends when Equations (3) and (4) are
satisfied:

Pr
(
Ci|Xj

)
∝ Pr(Ci)

n

∏
k=1

Pr
(

Xjk|Ci

)
(3)

ŷ ∈ argmax
i∈{1,2...,N}

[
Pr(Ci)

n

∏
k=1

Pr
(

Xjk|Ci

)]
(4)

where ŷ denotes a class variable.

Figure 1. Bayes’ theorem.

Regarding conventional sampling methods [7], this study designs user-based and item-
based approaches in integrating Equations (3) and (4) with the selection of audit evidence:

i. User-based approach: In an attempt to generate unbiased representations of data,
classify (X1, C1), (X2, C2) . . . , (XN , CN) and compute two percentile symmetric around
the median of each class according to an auditor’s professional preferences. Draw the
X1, X2, . . . , XN bounded by the resulting percentiles as audit evidence;

ii. Item-based approach: Suppose the Xj, Cj (1 ≤ j ≤ N) represent risky samples.
Asymmetrically sample them based on the Pr

(
Ci|Xj

)
(1 ≤ i ≤ N) values as audit

evidence after classifying (X1, C1), (X2, C2) . . . , (XN , CN).

3.1. User-Based Approach

Suppose the Ci (1 ≤ i ≤ N) is a class after classifying (X1, C1), (X2, C2) . . . , (XN , CN).
For implementing this classification, we compute posterior probabilities Pr

(
Ci|Xj

)
and

regress the resulting Pr
(
Ci|Xj

)
values by a posterior probability distribution. Figure 2

shows an example. Deriving the detailed expression of this posterior probability distri-
bution is unnecessary since deriving such an expression is not our goal. On the curve in
Figure 2, we can determine two percentiles symmetric around the median. Draw samples
XL, XL+1, . . . , XM bounded by the resulting percentiles audit evidence. In mathematical



Symmetry 2024, 16, 500 5 of 16

formulations, the present user-based approach implements the following Equation (5) to
output audit evidence:

P− ≤ XL,XL+1 . . . ,XM ≤ P+ (5)

where P+ and P− are two percentiles defining this confidence interval.
Auditors may have unique preferences of percentiles P+ and P−. For example, if P+

and P− are 97.5th and 2.5th percentiles, samples XL, XL+1, . . . , XM represent audit evidence
in a 95% confidence interval.

Furthermore, computing posterior probabilities of samples XL, XL+1, . . . , XM yields

Pr(Ci|P− ≤ XL,XL+1 . . . ,XM ≤ P+)=

Pr(Ci|XL)+Pr(Ci|XL+1)+ . . .+Pr(Ci|XM)=
M
∑

k=L
Pr(Ci|Xk)

(6)

Figure 2. Construction of a posterior probability distribution.

After drawing audit evidence, this study measures the representativeness of these
XL, XL+1, . . . , XM by [6]

Representativeness index (RI)=1− 12N(Ci)

4[N(Ci)]
2−1

M

∑
r=L

[
F(XL)−

2r−1
2N(Ci)

]
(7)

in which i = 1, 2 . . . , N, N(Ci) is the total number of members in the Ci class, and F is
the cumulative distribution function of the curve in Figure 2. Since XL, XL+1, . . . , XM are
discrete, this F function is equal to

F(Xr)=
r

∑
k=L

Pr(Ci|Xk) (8)

where L ≤ i ≤ M. If total members in the Ci (1 ≤ I ≤ N) class are sampled, the
representativeness index RI is identical to 1. On this RI value, the goal of drawing audit
evidence may be choosing sufficient samples but maintaining high RI values.

Regarding existing audit sampling methods [7], the present user-based approach may
be identical to a combination of the monetary and variable sampling methods.

3.2. Item-Based Approach

Similarly, manipulating Section 3.1, suppose Ci (1 ≤ i ≤ N) is one of the classes
resulting from the classification of data in which XL, XL+1, . . . , XM are members of this
Ci class.

If we have a null hypothesis H0 that members of the Ci (1 ≤ i ≤ N) class are
risky, a member XL (1 ≤ L ≤ N) of this Ci class with a lower Pr(Ci|Xk) value increases
the possibility of rejecting this H0. Hence, drawing this XL as an audit evidence is val-
ueless. To strengthen the belief that H0 is true, it is better to asymmetrically sample
members satisfying:

0<σ1 ≤ Pr(Ci|Xk)≤1 (9)

where L ≤ k ≤ M and σ1 represents a selected threshold.
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Furthermore, samples XL and XM may be simultaneously risky. Selecting them as
audit evidence may be valuable. This selection may be based on the posterior probabilities
of XL ∩ XM:

Pr(Ci|XL ∩ XM)=
Pr(XL ∩ XM|Ci)Pr(Ci)

Pr(XL ∩ XM)
(10)

Further simplifying Equation (10) results in

Pr(Ci|XL ∩ XM)=
Pr(XL|Ci)Pr(XM|Ci)Pr(Ci)

Pr(XL)Pr(XM)
=

Pr(Ci|XL)Pr(Ci|XM)

Pr(Ci)
(11)

Samples satisfying 0<σ2 ≤ Pr(Ci|XL ∩ XM) ≤ 1
Pr(Ci)

are drawn as audit evidence in
which σ2 is another selected threshold. The upper bound of Equation (11) depends upon the
Pr(Ci) value. To save time in searching those XL, XM suitable for applying Equation (11),
the Apriori algorithm states that we may start the search from those samples satisfying
Equation (9). Such audit evidence may produce larger numerators in the last expression of
Equation (11).

Furthermore, extending Equation (10) to samples XL, XL+1, . . . , XM yields

Pr(Ci|XL ∩ XL ∩ ... ∩ XM)=

=Pr(XL |Ci)Pr(XL+1|Ci)×...×Pr(XM |Ci)Pr(Ci)
Pr(XL)Pr(XL+1)×...×Pr(XM)

=Pr(Ci |XL)Pr(Ci |XL+1)×...×Pr(Ci |XM)

[Pr(Ci)]
M−L

(12)

Samples satisfying 0<œ3 ≤ Pr(Ci|XL ∩ XL ∩ ... ∩ XM) ≤ 1
[Pr(Ci)]

M−L are selected as

audit evidence in which σ3 denotes third chosen threshold. Similarly, the upper bound of
Equation (12) depends upon the [Pr(Ci)]

L−M value. Again, the Apriori algorithm suggests
that we can choose samples from those satisfying Pr(Ci|XL ∩ XM) ≥ σ2.

Regarding existing audit sampling methods [7], the present item-based approach may
be equivalent to a combination of non-statistical and monetary sampling methods.

Like Section 3.1, we calculate the representativeness index RI [6] to check whether
audit evidence is sufficiently representative.

If the Python programming language is employed, one may use the Scikit-learn
package to implement Equations (3) and (4). The classification results can be stored in an
Excel file. We just program a few codes to implement Sections 3.1 and 3.2. Teaching an
auditor to create such codes is feasible.

3.3. Hybrid Approach

Auditors may hybridize the resulting works in Sections 3.1 and 3.2 to balance represen-
tativeness and riskiness. We first apply the user-based approach to sample representative
members bounded by two percentiles symmetric around the median of a Ci (1 ≤ i ≤ N)
class. Applying the item-based approach to sample asymmetrically risker samples is next
performed among those resulting representative samples.

4. Results

This study generates three experiments to illustrate the benefits and limitations of
combining a machine learning algorithm with sampling. The first experiment demonstrates
that machine learning integration helps avoid sampling bias and maintains randomness
and variability. The second experiment shows that the proposed works help sample
unstructured data. The final experiment shows that the hybrid approach balances represen-
tativeness and riskiness in sampling audit evidence.

Referring to the previous study [15], implementing machine learning integration
with sampling is better based on the accurate classification results provided by a machine
learning algorithm. Therefore, this study chooses a random forest classifier and a support
vector machines model with a radial basis function kernel as baseline models.
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4.1. Experiment 1

A customer ad click prediction data set contains 103 (i.e., N = 103) records in which
50% of customers clicked the advertisement and the remaining 50% did not. This study
uses the ‘Daily time spent on site’, ‘Age’, ‘Area income’, ‘Daily internet usage’, and ‘Clicked
on Ad’ columns as experimental data. Two-thirds of those 103 records are randomly chosen
as train data, whereas others are test data. The ‘Daily time spent on site’, ‘Age’, ‘Area
income’, and ‘Daily internet usage’ columns are attributes Xij, (i = 1–4, j = 1, 2 . . . , N).
Moreover, set the class variable Cj to indicate the ‘Clicked on Ad’ column equal to ‘Clicked’
or ‘Not clicked’. Figure 3 shows variations of those Xij values.

Figure 3. Distributions of attributes Xij, (i = 1–4, j = 1, 2 . . . , N) values in Experiment 1.

To avoid sampling frame errors [15], studying the classification accuracy output by
Equations (3) and (4) is necessary. Figure 4 shows the resulting ROC curves in which
NB, RF, and SVM are abbreviations of Naive Bayes, random forest, and support vector
machines. This figure also shows the confusion matrix output by Equations (3) and (4).
Its components have been normalized based on the amount of test data. Moreover, this
study computes:

accuracy =
true positive+true negative

all samples
= 0.964 (13)

precision =
true positive

true positive + false positive
= 0.977 (14)

recall =
true positive

true positive + false negative
= 0.956 (15)

specificity =
true negative

true negative + false positive
= 0.974 (16)

Further computing the F1 score from Equations (14) and (15) yields

F1 score =
2 × precision × recall

precision+recall
= 0.965 (17)

Meanwhile, calculating the AUC from Figure 4 obtains 0.965 (Equations (3) and (4)),
0.953 (a random forest classifier), and 0.955 (a support vector machines model with a
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radial basis function kernel). These AUC values indicate that Equations (3) and (4) slightly
outperform the random forest classifier and support vector machines model with a radial
basis function kernel in avoiding sampling frame errors and undercoverage. However, all
three algorithms are good models.

Figure 4. ROC curves provided by different machine learning algorithms and the confusion matrix
output by Equations (3) and (4) for Experiment 1.

Our aim for testing Section 3.1 is to sample an unbiased representation of experimental
data with machine learning integration. Figure 5 shows the resulting audit evidence with
a 50% confidence interval for each class. Histograms on this figure’s top and right sides
compare the distributions of original customers and audit evidence. In this figure, light
and heavy gray points denote experimental data, whereas red and blue colors mark audit
evidence. The total number of blue and red points in Figure 5 equals 250, respectively.
Substituting the resulting audit evidence into Equation (7) obtains the representativeness
indices RI listed in the legend of Figure 5.

Suppose the null hypothesis defines that the experimental data and audit evidence
originate from the same probability distribution. We calculate the Kolmogorov–Smirnov
test statistic [16] to quantify the possibility of rejecting this null hypothesis. The result is
equal to 0.044, and it is less than the critical value equal to 0.055 ∼= 1.22√

500
[16] for concluding

Kolmogorov–Smirnov test statistics while considering the probability of 10% in rejecting
the null hypothesize.

Calculating the Kolmogorov–Smirnov test statistic ensures that the audit evidence in
Figure 5 is unbiased and representative of original customers. If the resulting Kolmogorov–
Smirnov test statistic is lower than the critical value for concluding this test statistic, the
original customers and audit evidence originate from the same probability distribution.
Thus, we can reduce the risk of system errors or biases in estimating customers’ attributes.
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Figure 5. Audit evidence for 50% confidence intervals.

We have another aim of keeping the variability in testing Section 3.2. As marked by a
blue cross in Figure 6, choose a customer with the predicted posterior probability of 0.999.
The caption of Figure 6 lists the attributes of this customer. Other customers relevant to this
customer are drawn as audit evidence and marked using red points in Figure 6. Moreover,
we still use light or heavy gray points representing the experimental data and histograms
besides Figure 6 to describe the distribution of audit evidence. Since the denominator Pr(Ci)
of Equation (11) equals 0.5, setting the σ2 threshold to 1.9999 is considered. Substituting
the resulting audit evidence into Equation (7) yields the representativeness index RI in the
legend of Figure 7. Counting the number of drawn audit evidence yields 294.

Table 1 compares variability between the original ’Daily Internet use’ variable and au-
dit evidence. We employ the range, standard deviation, interquartile range, and coefficient
of variation to measure the variability.

Measuring the variability helps one understand the shape and spread of audit evidence.
Table 1 shows that the audit evidence maintains the variability.

Figure 6. Audit evidence relevant to a chosen customer (‘Daily time spent on site’ = 67.51, ‘Age’ = 43,
‘Area in-come’ = 23,942.61, ‘Daily internet usage’ = 127.2, and ‘Clicked on Ad’ = ‘Not clicked’).
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Table 1. Comparison of the variability between original customers and audit evidence.

Original Data Audit Evidence

Range [104.78, 225.24] [104.78, 225.24]
Standard deviation 24.55 24.53
Interquartile range 34.58 34.58

Skewness 0.674 0.673
Coefficient of variation 0.1731 0.173

Figure 7. Comparison of top 20 keywords in ham and spam messages: (a) ham messages; (b) spam
messages.

4.2. Experiment 2

A spam message is one of the unstructured data that did not appear in the conventional
sampling. In this experiment, this study introduces a data set containing 5572 messages,
and 13% of them are spam. This study randomly selects 75% of them as train data. The
other 25% are test data. In implementing this experiment, the first step is preprocessing
these train and test data by vectorizing each message into a series of keywords. We employ
a dictionary to select candidate keywords. Counting their frequencies is next performed.
Classifying ham and spam messages is done by setting a class variable Ci (1 ≤ i ≤ N)
indicating a spam or ham message, and attributes are the frequency of keywords.

Based on the counts of keywords in the ham and spam messages of experimental data,
Figure 7 compares the top 20 keywords. Choosing them eliminates ordinary conjunctions
and prepositions such as ’to’ and ’and.’ We can understand the unique keywords of spam
messages from Figure 7.

To prevent sampling frame errors and undercoverage [15], Figure 8 compares the
corresponding ROC curves versus different machine learning algorithms. It also shows
the confusion matrix output by Equations (3) and (4). We have normalized its components
based on the amount of test data. Table 2 lists other metrics for demonstrating classification
accuracy on this confusion matrix.

Calculating the AUC values from Figure 8 yields 0.989 (Equations (3) and (4)), 0.923
(random forest classifier), and 0.934 (a support vector machines model with a radial basis
function kernel). Such AUC values indicate a support vector machines model and random
forest classifier, and Equations (3) and (4) are all good models for preventing sampling
frame errors and undercoverage; however, the performance of Equations (3) and (4) is still
the best.
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Figure 8. ROC curves provided by different machine learning algorithms and the confusion matrix
output by Equations (3) and (4) for Experiment 2.

Table 2. Metrics output by Equations (3) and (4) for checking the classification accuracy for Experi-
ment 2.

Metric Value

Accuracy 0.983
Precision 0.992

Recall 0.989
Specificity 0.992
F1 score 0.99

Next, this study chooses the 75% confidence interval of spam messages to generate
audit evidence. We obtained 652 samples of spam messages. Figure 9 compares counts of
the top 20 keywords of original text data and audit evidence. Substituting their posterior
probabilities to compute the representativeness index RI equals 0.997.

Figure 9. Comparison of top 20 keywords in original text data and audit evidence.

Figure 9 demonstrates that machine learning integration promotes sampling unstruc-
tured data (e.g., spam messages) while keeping their crucial information. The design of
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conventional sampling methods does not consider unstructured data [7]. In this figure,
sampling spam messages keeps the ranking of all the top 20 keywords. The resulting
samples may form a benchmark data set for testing the performance of different spam
message detection methods.

4.3. Experiment 3

The third experiment illustrates that integrating machine learning with sampling can
balance representativeness and riskiness. We use the Panama Papers to create a directed
graph model that has 535,891 vertices, in which each vertex denotes a suspicious financial
account. Its attributes are the degree centrality and clustering coefficient.

The Panama Papers were a massive leak of documents. They exposed how wealthy
individuals, politicians, and public figures worldwide used offshore financial accounts and
shell companies to evade taxes, launder money, and engage in other illegal activities.

The degree centrality D [17] is the number of edges connecting to a vertex. The higher
the degree centrality, the greater the possibility detects black money flows. Moreover,
we consider that two financial accounts may have repeated money transfers. Therefore,
computing the degree centrality considers the existence of multiple edges. For example, if
a sender transfers money to a payee two times, the degree of a vertex simulating such a
sender or payee equals 2.

Meanwhile, the clustering coefficient c [17] measures the degree to which nodes in
a graph tend to group. Evidence shows that in real-world networks, vertices may create
close groups characterized by a relatively high density of ties. In a money laundering
problem, a unique clustering coefficient may highlight a group within which its members
exchange black money. Like the computation of degree centrality, calculating the clustering
coefficient considers the possible existence of multiple edges.

The purpose of generating Experiment 3 is to demonstrate that integrating machine
learning with sampling can balance representativeness and riskiness. Therefore, we set the
Ci (1 ≤ i ≤ N) variable according to the Di and ci values. Table 3 lists the results. Its final
column lists the total members corresponding to each Ci class.

Table 3. The resulting degree centrality Di, clustering coefficient ci (1 ≤ i ≤ N), and total number of
members in each Ci class.

Class Variable ci Degree Centrality Di
Clustering

Coefficient ci

Total Number of
Members

1 [0, 2) [0, 1] 338,800
2 [2, 4) [0, 1] 117,323
3 [4, 6) [0, 0.417] 41,720
4 [6, 10) [0, 0.367] 22,743
5 [10, ∞) [0, 0.28] 15,304

To prevent sampling frame errors and undercoverage [15], Figure 10 compares the
ROC curves output by different machine learning algorithms in classifying nodes in Exper-
iment 3. In Figure 10, 80% of random nodes are chosen as train data and other vertices are
chosen as test data. Moreover, Equations (3) and (4) output the confusion matrix shown in
Equation (18): 

0.6311 0 0 0 0
0 0.2198 0 0 0
0 0.00139 0.077 0 0
0 0 0.00031 0.0042 0
0 0 0 0.004 0.0244

 (18)

in which each component has been normalized based on the amount of test data.
From Equation (18), we further calculate the averaged accuracy, specificity, recall,

precision, and F1 value, as shown in Table 4. Next, calculating the AUC values from
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Figure 10 and Table 4 results in 0.965 (Equations (3) and (4)), 0.844 (random forest classifier),
and 0.866 (support vector machines model with a radial basis function kernel). Figure 10
indicates that the random forest classifier and support vector machines model with a
radial basis function kernel are unsuitable for this experiment. Since we have a high
volume of data in this experiment, these two algorithms may output unacceptable errors in
sampling nodes.

Figure 10. ROC curves provided by different machine learning algorithms for Experiment 3.

Table 4. Metrics calculated from Equation (18).

Metric Averaged Value

Accuracy 0.995
Precision 0.992

Recall 0.989
Specificity 0.992
F1 score 0.99

Suppose a 75% confidence interval to sample members of each class Ci (i = 1, 2 . . . , N).
However, we agree that the Ci = 5 class has the risker members. High Di values imply
frequent transactions. Therefore, further drawing audit evidence from samples with
Pr

(
Ci=5|Xj

)
(1 ≤ i,j ≤ N) = 1 values within the 75% confidence interval of the Ci = 5

class. The red points in Figure 11 represent the resulting audit evidence. Heavy gray points
denote original data. The legend of this figure lists the corresponding representativeness
index RI and the number of drawn samples.

Carefully inspecting Figure 11 indicates that vertices (Di ≥ 13 (i = 1, 2 . . . , N)) are
drawn as audit evidence. They are riskier than other nodes in the Ci = 5 class. With
the help of a Naive Bayes classifier (Equations (3) and (4)), profiling the class Ci = 5 is
unnecessary before sampling this Ci = 5 class. This unnecessity illustrates the difference
between sampling with machine learning integration and conventional sampling methods.
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Figure 11. Risker audit evidence for Experiment 3.

5. Discussion

Section 4 implies the benefits and limitations of integrating a Naive Bayes classifier
with sampling. We further list these benefits and limitations:

• Conventional sampling methods [7] may not profile the full diversity of data; thus,
they may provide biased samples. Since this study samples data after classifying
them using a Naive Bayes classifier, it substitutes for a sampling method to profile the
full diversity of data. The experimental results of Section 4 indicate that the Naive
Bayes classifier classifies three open data sets accurately, even if they are excessive.
Those accurate classification results indicate that we capture the full diversity of the
experimental data.

• Developing conventional sampling methods may not consider complex patterns or
correlations in data [7]. In this study, we handle complex correlations or patterns in
data (for example, a graph structure in Section 4.3) using a Naive Bayes classifier. This
design mitigates the sampling bias caused by complex patterns or correlations if it
provides accurate classification results.

• Section 4.3 indicates that a Naive Bayes classifier works well for big data in a money
laundering problem. It outperforms the random forest classifier and support vector
machines model with a radial basis function kernel in classifying massive vertices.
Thus, we illustrate that the efficiency of sampling big data can be improved. One can
sample risker nodes modeling fraudulent financial accounts without profiling specific
groups of nodes.

• The development of conventional sampling methods considers structured data; how-
ever, they struggled to handle unstructured data such as spam messages in Section 4.2.
We resolve this difficulty by employing a Naive Bayes classifier before sampling.

• Since this study samples data from each class classified by a Naive Bayes classi-
fier, accurate classification results eliminate sample frame errors and improper sam-
pling sizes.

• Although the source of this study is Taiwan’s auditors’ unsatisfactory workplace
environment, our resulting works are applicable to auditors in other nations.

Nevertheless, this study also finds limitations in integrating machine learning and
sampling. They are listed as follows:
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• It is still possible that a Naive Bayes classifier provides inaccurate classification results.
One should test the classification accuracy before sampling with machine learning
integration.

• In implementing Section 3.2, thresholds σj (j = 1–3) are needed. However, we should
inspect variations of the prior probabilities for determining proper σj (j = 1–3) values.
They denote the second limitation of our machine-learning-based sampling.

6. Conclusions

Sampling plays a crucial role in auditing. It provides a mechanism for auditors
to draw audit evidence. However, various challenges exist within available sampling
methodologies, including selection bias, sampling frame errors, improper sampling sizes,
and the handling of unstructured and massive data. This study develops a Naive Bayes
classifier as a sampling tool for drawing data within a confidence interval symmetric to
the median or sampling asymmetrically riskier samples. It is employed to overcome the
challenges mentioned above. Auditors can build such a Naive Bayes if they have learned
ordinary functions of the Python programming language.

From Section 4, we conclude:

• A Naive Bayes classifier is a more suitable classification algorithm for implementing
the sampling with machine learning integration. It calculates posterior probabilities
for the classification. These posterior probabilities are perfectly suitable as attributes
in sampling.

• Sampling with machine learning integration has the benefits of providing unbiased
samples, handling complex patterns or correlations in data, processing unstructured
or big data, and avoiding sampling frame errors or improper sampling sizes.

• An ordinary Naive Bayes classifier is sufficient as a ’Black Box’ for sampling data.
Implementing a Naive Bayes classifier to sample excessive data can be completed by a
few auditors.

• The first step of sampling unstructured data can be classifying these unstructured
data. Sampling classification results is the next step.

• Machine learning can help reduce human expenses. It mitigates the need for more
young auditors. With the introduction of machine learning algorithms, enterprises
require few auditors.

However, sampling using a Naive Bayes classifier has limitations. Inaccurate classifica-
tion results output by the Naive Bayes classifier may result in biased samples or sampling
frame errors. Overcoming them requires testing the Naive Bayes classifier before applying
it to sampling. Precalculating the range of posterior probabilities is also necessary for
choosing specific samples. Fortunately, such calculation is necessary to implement a Naive
Bayes classifier.
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