Article

Directed Path 3-Arc-Connectivity of Cartesian Product Digraphs

Xiaosha Wei

School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China; weixiaosha0226@163.com

Abstract

Let $D=(V(D), A(D))$ be a digraph of order n and let $r \in S \subseteq V(D)$ with $2 \leq|S| \leq n$. A directed (S, r)-Steiner path (or an (S, r)-path for short) is a directed path P beginning at r such that $S \subseteq V(P)$. Arc-disjoint between two (S, r)-paths is characterized by the absence of common arcs. Let $\lambda_{S, r}^{p}(D)$ be the maximum number of arc-disjoint (S, r)-paths in D. The directed path k-arcconnectivity of D is defined as $\lambda_{k}^{p}(D)=\min \left\{\lambda_{S, r}^{p}(D)|S \subseteq V(D),|S|=k, r \in S\}\right.$. In this paper, we shall investigate the directed path 3-arc-connectivity of Cartesian product $\lambda_{3}^{p}(G \square H)$ and prove that if G and H are two digraphs such that $\delta^{0}(G) \geq 4, \delta^{0}(H) \geq 4$, and $\kappa(G) \geq 2, \kappa(H) \geq 2$, then $\lambda_{3}^{p}(G \square H) \geq \min \{2 \kappa(G), 2 \kappa(H)\}$; moreover, this bound is sharp. We also obtain exact values for $\lambda_{3}^{p}(G \square H)$ for some digraph classes G and H, and most of these digraphs are symmetric.

Keywords: connectivity; directed path k-connectivity; Cartesian product

Citation: Wei, X. Directed Path 3-Arc-Connectivity of Cartesian Product Digraphs. Symmetry 2024, 16, 497. https://doi.org/10.3390/ sym16040497

Academic Editor: Calogero Vetro
Received: 13 March 2024
Revised: 6 April 2024
Accepted: 7 April 2024
Published: 19 April 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

For a detailed explanation of graph theoretical notation and terminology not provided here, readers are directed to reference [1]. It should be noted that all digraphs discussed in this paper do not contain parallel arcs or loops. The set of all natural numbers from 1 to n is denoted by $[n]$. If a directed graph D can be obtained from its underlying graph G by replacing each edge in G with corresponding arcs in both directions, then D is said to be symmetric, denoted as $D=\overleftrightarrow{G}$. The notation $\overleftrightarrow{T}_{n}$ is used for a symmetric digraph whose underlying graph forms a tree of order n. The notation $\overleftrightarrow{C}_{n}$ is used for a symmetric digraph whose underlying graph forms a cycle of order n. The cycle digraph of order n is denoted by \vec{C}_{n}. We denote the complete digraph of order n as $\overleftrightarrow{K}_{n}$.

The well-known Steiner tree packing problem is characterized as follows. Given a graph G and a set of terminal vertices $S \subseteq V(G)$, the goal is to identify as many edgedisjoint S-Steiner trees (i.e., trees T in G with $S \subseteq V(T)$) as feasible. This particular problem, along with its associated topics, garners significant interest from researchers due to its extensive applications in VLSI circuit design [2-4] and Internet Domain [5]. In practical applications, the construction of vertex-disjoint or arc-disjoint paths in graphs holds significance, as they play a crucial role in improving transmission reliability and boosting network transmission rates [6]. This paper will specifically delve into a variant of the directed Steiner tree packing problem, termed the directed Steiner path packing problem, closely interconnected with the Steiner path problem and the Steiner path cover problem [7,8].

We now consider two types of directed Steiner path packing problems and related parameters. Let $D=(V(D), A(D))$ be a digraph of order n and let $r \in S \subseteq V(D)$ with $2 \leq|S| \leq n$. A directed (S, r)-Steiner path, or simply an (S, r)-path, refers to a directed path P originating from r such that S is a subset of the vertices in P. Arc-disjoint between two (S, r)-paths implies that they share no common arcs, while two arc-disjoint (S, r)-paths are internally disjoint when their common vertex set is precisely S. Let $\lambda_{S, r}^{p}(D)$ (and $\kappa_{S, r}^{p}(D)$) represent the maximum number of arc-disjoint (and internally disjoint) (S, r)-paths in D, respectively. The Arc-disjoint (or Internally disjoint) Directed Steiner Path Packing problem is formulated as follows. Given a digraph D and letting $r \in S \subseteq V(D)$, the objective is
to maximize the count of arc-disjoint (or internally disjoint) (S, r)-paths. The notion of directed path connectivity, which is a derivative of path connectivity in undirected graphs, is intricately linked to the directed Steiner path packing problem and serves as a logical progression from path connectivity in directed graphs (refer to [5] for the initial presentation of path connectivity). The directed path k-connectivity [9] of D is defined as

$$
\kappa_{k}^{p}(D)=\min \left\{\kappa_{S, r}^{p}(D)|S \subseteq V(D),|S|=k, r \in S\}\right.
$$

Similarly, the directed path k-arc-connectivity [9] of D is defined as

$$
\lambda_{k}^{p}(D)=\min \left\{\lambda_{S, r}^{p}(D)|S \subseteq V(D),|S|=k, r \in S\}\right.
$$

The concepts of directed path k-connectivity and directed path k-arc-connectivity are synonymous with directed path connectivity. In the context of $k=2, \kappa_{2}^{p}(D)$ equates to $\kappa(D)$ and $\lambda_{2}^{p}(D)$ equates to $\lambda(D)$, where $\kappa(D)$ and $\lambda(D)$ denote vertex-strong connectivity and arc-strong connectivity of digraphs, respectively. Hence, these parameters can be viewed as extensions of the classical connectivity measures in a digraph. It is pertinent to emphasize the close relationship between strong subgraph connectivity and directed path connectivity; refer to [10-12] for further insights on this interconnected topic.

It is a widely recognized fact that Cartesian products of digraphs are of great interest in graph theory and its applications. For a comprehensive overview of various findings on Cartesian products of digraphs, one may refer to a recent survey chapter by Hammack [13]. In this paper, we continue research on directed path connectivity and focus on the directed path 3-arc-connectivity of Cartesian products of digraphs.

In Section 2, we introduce terminology and notation on Cartesian products of digraphs. In Section 3, we prove that if G and H are two digraphs such that $\delta^{0}(G) \geq 4, \delta^{0}(H) \geq 4$, and $\kappa(G) \geq 2, \kappa(H) \geq 2$, then

$$
\lambda_{3}^{p}(G \square H) \geq \min \{2 \kappa(G), 2 \kappa(H)\} ;
$$

moreover, this bound is sharp. Finally, we obtain exact values of $\lambda_{3}^{p}(G \square H)$ for some digraph classes G and H in Section 4.

2. Cartesian Product of Digraphs

Consider two digraphs G and H with vertex sets $V(G)=\left\{u_{i} \mid i \in[n]\right\}$ and $V(H)=\left\{v_{j} \mid j \in[m]\right\}$. The Cartesian product of G and H, denoted by $G \square H$, is a digraph with vertex set

$$
V(G \square H)=V(G) \times V(H)=\left\{\left(x, x^{\prime}\right) \mid x \in V(G), x^{\prime} \in V(H)\right\}
$$

The arc set of $G \square H$, denoted by $A(G \square H)$, is given by $\left\{\left(x, x^{\prime}\right)\left(y, y^{\prime}\right) \mid x y \in A(G)\right.$, $x^{\prime}=y^{\prime}$, or $\left.x=y, x^{\prime} y^{\prime} \in A(H)\right\}$. It is worth noting that Cartesian product is an associative and commutative operation. Furthermore, $G \square H$ is strongly connected if and only if both G and H are strongly connected, as shown in a recent survey chapter by Hammack [13].

In the rest of the paper, we will use $u_{i, j}$ to denote $\left(u_{i}, v_{j}\right)$. Additionally, $G\left(v_{j}\right)$ will refer to the subgraph of $G \square H$ induced by the vertex set $\left\{u_{i, j} \mid i \in[n]\right\}$ with $j \in[m]$, while $H\left(u_{i}\right)$ will denote the subgraph of $G \square H$ induced by the vertex set $\left\{u_{i, j} \mid j \in[m]\right\}$ with $i \in[n]$. It is evident that $G\left(v_{j}\right)$ is isomorphic to G and $H\left(u_{i}\right)$ is isomorphic to H. To illustrate this, refer to Figure 1 (this figure comes from [14]), where it can be observed that $G\left(v_{j}\right)$ is isomorphic to G for $1 \leq j \leq 4$, and $H\left(u_{i}\right)$ is isomorphic to H for $1 \leq i \leq 3$.

For distinct indices j_{1} and j_{2} with $1 \leq j_{1} \neq j_{2} \leq m$, the vertices $u_{i, j_{1}}$ and $u_{i, j_{2}}$ belong to the same digraph $H\left(u_{i}\right)$, where u_{i} is an element of $V(G) . u_{i, j_{2}}$ is referred to as the vertex corresponding to $u_{i, j_{1}}$ in $G\left(v_{j_{2}}\right)$. Similarly, for distinct indices i_{1} and i_{2} with $1 \leq i_{1} \neq i_{2} \leq n$, $u_{i_{2}, j}$ is the vertex corresponding to $u_{i_{1}, j}$ in $H\left(u_{i_{2}}\right)$. Analogously, the subgraph corresponding to a given subgraph can also be defined. For instance, in the digraph (c) depicted in Figure 1,
if we label the path 1 as P_{1} (and the path 2 as P_{2}) in $H\left(u_{1}\right)\left(H\left(u_{2}\right)\right.$), then P_{2} is identified as the path that corresponds to P_{1} in $H\left(u_{2}\right)$.

Figure 1. G, H and their Cartesian product [14] (1 denotes arc $u_{1,1} u_{1,2}, u_{1,2} u_{1,3}$ and arc $u_{1,3} u_{1,4}$; 2 denotes arc $u_{2,1} u_{2,2}, u_{2,2} u_{2,3}$ and $\left.\operatorname{arc} u_{2,3} u_{2,4}\right)$.

Sun and Zhang proved some results of directed path connectivity, that is, the following lemma.

Lemma 1 ([9]). Let D be a digraph of order n, and let k be an integer satisfying $2 \leq k \leq n$. The following statements are valid:
(1): $\lambda_{k+1}^{p}(D) \leq \lambda_{k}^{p}(D)$ when $k \leq n-1$.
(2): $\kappa_{k}^{p}(D) \leq \lambda_{k}^{p}(D) \leq \delta^{0}(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$.

Lemma 2 ([15]). $\kappa\left(\overleftrightarrow{K}_{n}\right)=n-1$

3. A General Lower Bound

Now we will provide a lower bound for $\lambda_{3}^{p}(G \square H)$.
Theorem 1. Let G and H be two digraphs such that $\delta^{0}(G) \geq 4, \delta^{0}(H) \geq 4$, and $\kappa(G) \geq 2$, $\kappa(H) \geq 2$. We have

$$
\lambda_{3}^{p}(G \square H) \geq \min \{2 \kappa(G), 2 \kappa(H)\} .
$$

Furthermore, this bound is sharp.
Proof. It suffices to show that there are at least $2 \kappa(G)$ or $2 \kappa(H)$ arc-disjoint (S, r)-paths for any $S \subseteq V(G \square H)$ with $|S|=3, r \in S$. Let $S=\{x, y, z\}$ and let $r=x$. Without loss of generality, we may assume $\kappa(G) \leq \kappa(H)$ and consider the following six cases.
Case 1. Let x, y and z be in the same $H\left(u_{i}\right)$ or $G\left(v_{j}\right)$ for some $i \in[n], j \in[m]$. Without loss of generality, we may assume that $x=u_{1,1}, y=u_{2,1}, z=u_{3,1}$. In this case, our overall goal is that we will use arc-disjoint paths between x and y in $G\left(v_{1}\right), y$ and z in $G\left(v_{1}\right), x$ and its out-neighbors in $H\left(u_{1}\right), y$ and its in-neighbors in $H\left(u_{2}\right), z$ and its in-neighbors in $H\left(u_{3}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 2. The vertices and paths contained in Figure 2 are explained below.

Let $S_{1}=\{x, y\}, r_{1}=x$. It is known that there are at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $G\left(v_{1}\right)$, denoted as $\widetilde{P}_{1 i}(i \in[\kappa(G)])$. Considering $S_{1}^{\prime}=\{y, z\}, r_{1}^{\prime}=y$, there are at least $\kappa(G)$ internally disjoint $\left(S_{1}^{\prime}, r_{1}^{\prime}\right)$-paths in $G\left(v_{1}\right)$, denoted as $\bar{P}_{2 j}(j \in[\kappa(G)])$. For each $j \in[\kappa(G)]$, let $u_{s, 1}$ be the out-neighbor of y in $\bar{P}_{2 j}$; clearly these out-neighbors are distinct. Similarly, an in-neighbor $u_{k_{j}, 1}(j \in[\kappa(G)])$ of z in $\bar{P}_{2 j}$ can be chosen such that these in-neighbors are distinct. In $H\left(u_{1}\right)$, if there is a vertex that is not an out-neighbor of x, then choose such a vertex as $u_{1, a}$, where $a \neq 1$. If there is no such vertex, that is, all vertices are out-neighbours of x, then choose any vertex as $u_{1, a}$, where $a \neq 1$. In $H\left(u_{1}\right)$, let $S_{2}^{\prime}=\left\{x, u_{1, a}\right\}, r_{2}^{\prime}=x$, and it is established that there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}^{\prime}, r_{2}^{\prime}\right)$-paths, say $\widetilde{P}_{2 j}(j \in[\kappa(G)])$. In $G\left(v_{a}\right)$, let $S_{3}^{\prime}=\left\{u_{1, a}, u_{2, a}\right\}, r_{3}^{\prime}=u_{1, a}$,
and it is established that there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}^{\prime}, r_{3}^{\prime}\right)$-paths, say $\widehat{P}_{2 j}$ $(j \in[\kappa(G)])$. In $H\left(u_{2}\right)$, let $S_{4}^{\prime}=\left\{y, u_{2, a}\right\}, r_{4}^{\prime}=u_{2, a}$, and it is established that there exist at least $\kappa(G)$ internally disjoint $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-paths, say $\widehat{P}_{2 j}(j \in[\kappa(G)])$.

$$
\widetilde{P}_{2 j}
$$

Figure 2. Depiction of the arc-disjoint paths found in Case 1 of the proof of Theorem 1.
In $H\left(u_{1}\right)$, if there is a vertex that is not an out-neighbor of x in $\widetilde{P}_{2 j}$, then choose such a vertex as $u_{1, d}$, with $d \notin\{1, a\}$. If there is no such vertex, then choose any vertex as $u_{1, d}$, with $d \notin\{1, a\}$. In $H\left(u_{2}\right)$, with $S_{2}=\left\{y, u_{2, d}\right\}$ and $r_{2}=y$, it is known that there are at least $\kappa(G)$ internally disjoint $\left(S_{2}, r_{2}\right)$-paths, denoted as $\bar{P}_{1 i}(i \in[\kappa(G)])$. For each $i \in[\kappa(G)]$, let $u_{2, f_{i}}$ be the out-neighbor of y in $\bar{P}_{1 i}$; clearly these out-neighbors are distinct. For each $i \in[\kappa(G)]$, since $\delta^{0}(G) \geq 4$, an out-neighbor of $u_{2, f_{i}}$ in $G\left(v_{f_{i}}\right)$, denoted by $u_{b, f_{i}}(b \in[n])$, can be chosen, with $b \notin\{1,3\}$. If there exists a vertex $u_{s_{j}, 1} \notin\left\{u_{1,1}, u_{3,1}\right\}$, let $b=s_{j}$. If there is no such vertex, then let $b \neq k_{j}$. In $H\left(u_{b}\right), \bar{P}_{1 i}^{\prime}$ is the $\left(S_{3}, r_{3}\right)$-path corresponding to $\bar{P}_{1 i}$, where $S_{3}=\left\{u_{b, 1}, u_{b, d}\right\}$, and $r_{3}=u_{b, 1}$. In $\bar{P}_{1 i}^{\prime}$, the path from vertex $u_{b, f_{i}}$ to $u_{b, d}$ is denoted as $\bar{P}_{1 i}^{\prime \prime}$. Let $S_{4}=\left\{u_{b, d}, u_{3, d}\right\}, r_{4}=u_{b, d}$, and it is established that there exist at least $\kappa(G)$ internally disjoint $\left(S_{4}, r_{4}\right)$-paths, say $\widehat{P}_{1 i}(i \in[\kappa(G)])$. If $u_{2, f_{t}}=u_{2, d}(t \in[\kappa(G)])$, then let $u_{2, d} \notin \widehat{P}_{1 t}$ in $\widehat{P}_{1 t}$. In $H\left(u_{3}\right)$, let $S_{5}=\left\{u_{3, d}, z\right\}, r_{5}=u_{3, d}$, and it is established that there exist at least $\kappa(G)$ internally disjoint $\left(S_{5}, r_{5}\right)$-paths, say $\widehat{P}_{1 i}(i \in[\kappa(G)])$.

In $H\left(u_{1}\right)$, if there is an out-neighbor of x that is not an out-neighbor of x in $\widetilde{P}_{2 j}$, then choose such a vertex as $u_{1, c}$, with $c \notin\{a, d\}$. If there is no such vertex, then choose any out-neighbor of x as $u_{1, c}$, with $c \notin\{a, d\}$. And $u_{s_{j}, c}$ is an out-neighbor of $u_{s_{j}, 1}$ in $H\left(u_{s_{j}}\right)$. In $G\left(v_{c}\right), \bar{P}_{2 j}^{\prime}$ is the $\left(S_{5}^{\prime}, r_{5}^{\prime}\right)$-path corresponding to $\bar{P}_{2 j}$, where $S_{5}^{\prime}=\left\{u_{2, c}, u_{3, c}\right\}$ and $r_{5}^{\prime}=u_{2, c}$. In $\bar{P}_{2 j}^{\prime}$, the path from vertex $u_{s_{j}, c}$ to $u_{k_{j}, c}$ is denoted as $\bar{P}_{2 j}^{\prime \prime}$. If $u_{s_{t, 1}}=u_{k_{t}, 1}(t \in[\kappa(G)])$, then $\bar{P}_{2 t}^{\prime \prime}=\left\{y u_{s_{t}, 1}, u_{s_{t}, 1} z\right\}$. If $u_{s_{l}, 1}=z(l \in[\kappa(G)])$, then $\bar{P}_{2 l}^{\prime \prime}=\{y z\}$. If $u_{1, c} \in \bar{P}_{2 h}^{\prime \prime}(h \in[\kappa(G)])$, then $u_{1, c} \notin \widetilde{P}_{2 h}$. In $H\left(u_{k_{j}}\right)$, with $S_{6_{j}}^{\prime}=\left\{u_{k_{j}, c}, u_{k_{j}, 1}\right\}$, and $r_{6_{j}}^{\prime}=u_{k_{j}, c}$, it is known that there
exist at least $\kappa(G)$ internally disjoint $\left(S_{6_{j}}^{\prime}, r_{6_{j}}^{\prime}\right)$-paths. Then in these paths, one of the paths $\breve{P}_{2 j}(j \in[\kappa(G)])$ is chosen, with $u_{k_{j}, a} \notin \breve{P}_{2 j}$.
Subcase 1.1. In the set $\left\{u_{s_{j}, 1}, u_{k_{j}, 1}\right\}$, there is no vertex such that $u_{s_{j}, 1}=x$ or $u_{k_{j}, 1}=x$, and the vertex z is not in path $\widetilde{P}_{1 i}$. We now construct the arc-disjoint (S, r)-paths by letting
$P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i}^{\prime \prime} \cup \widehat{P}_{1 i} \cup \widehat{P}_{1 i} \cup\left\{y u_{2, f_{i}}, u_{2, f_{i}} u_{b, f_{i}}\right\}, i \in[\kappa(G)]$,
$P_{2 j}=\widetilde{P}_{2 j} \cup \widehat{P}_{2 j} \cup \widehat{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \breve{P}_{2 j} \cup\left\{y u_{s_{j}, 1}, u_{s_{j}, 1} u_{s_{j}, c}, u_{k_{j}, 1} z\right\}, j \in[\kappa(G)] \backslash\{t, l\}$,
$P_{2 t}=\widetilde{P}_{2 t} \cup \widehat{P}_{2 t} \cup \bar{P}_{2 t}^{\prime \prime} \cup \widehat{P}_{2 t}$,
$P_{2 l}=\widetilde{P}_{2 l} \cup \widehat{P}_{2 l} \cup \bar{P}_{2 l}^{\prime \prime} \cup \widehat{P}_{2 l}$.
Then we obtain $2 \kappa(G)$ arc-disjoint (S, r)-paths.
Subcase 1.2. In the set $\left\{u_{s_{j}, 1}, u_{k_{j}, 1}\right\}$, there is no vertex such that $u_{s_{j}, 1}=x$ or $u_{k_{j}, 1}=x$, and there exist $z \in \widetilde{P}_{1 h}(h \in[\kappa(G)])$, but there is no arc $u_{k_{j}, 1} z$ in path $\widetilde{P}_{1 h}$. Let $P_{1 h}=\widetilde{P}_{1 h}$. The other paths are the same as Subcase 1.1.
Subcase 1.3. There is an arc $u_{k_{r}, 1} z$ in path $\widetilde{P}_{1 h}(\{r, h\} \subseteq[\kappa(G)])$. In the set $\left\{u_{s_{j}, 1}, u_{k_{j}, 1}\right\}(j \neq$ $r)$, there is no vertex x. We can find a path $\widehat{P}_{2 r}$ such that $u_{2, f_{h}} \notin \widehat{P}_{2 r}$. If $u_{b, a} \in \bar{P}_{1 h}^{\prime \prime}$, then let $u_{b, a} \notin \widehat{P}_{2 r}$. If $u_{1, d} \in \widehat{P}_{1 h}$, then let $u_{1, d} \notin \widetilde{P}_{2 r}$. In $\widehat{P}_{1 h}$ and $\widehat{P}_{1 h}$, let $u_{2, d} \notin \widehat{P}_{1 h}$ and $u_{3, a} \notin \widehat{P}_{1 h}$. Let $P_{1 h}=\widetilde{P}_{1 h}$,
$P_{2 r}=\widetilde{P}_{2 r} \cup \widehat{P}_{2 r} \cup \widehat{P}_{2 r} \cup \bar{P}_{1 h}^{\prime \prime} \cup \widehat{P}_{1 h} \cup \widehat{P}_{1 h} \cup\left\{y u_{2, f_{h}}, u_{2, f_{h}} u_{b, f_{h}}\right\}$.
The other paths are the same as Subcase 1.1.
Subcase 1.4. The set $\left\{u_{s_{j}, 1}, u_{k_{j}, 1}\right\}$ contains the vertex $u_{s_{q}, 1}=x$ and $u_{k_{j}, 1} \neq x$. There is no $\operatorname{arc} u_{k_{q}, 1} z$ in $\widetilde{P}_{1 q}$. In $\bar{P}_{2 q}$, there is an $\operatorname{arc} x u_{g_{1}, 1}\left(q \in[\kappa(G)], g_{1} \in[n]\right)$. In $\widetilde{P}_{2 j}$, there exists an out-neighbor $u_{1, g_{2}}$ of x, where $g_{2} \in[\kappa(G)] \backslash\{a, c, d\}$, and this path is denoted by $\widetilde{P}_{2 q}$.
Subcase 1.4.1. There is no $\operatorname{arc} x u_{g_{1}, 1}$ in $\widetilde{P}_{1 i}$.
In $\bar{P}_{2 q}^{\prime \prime}$, the path from vertex $u_{g_{1}, c}$ to $u_{k_{q}, c}$ is denoted as $\bar{P}_{2 q}^{\prime \prime \prime}$. In $G\left(v_{g_{2}}\right)$, with $S_{7}^{\prime}=\left\{u_{3, g_{2}}, u_{1, g_{2}}\right\}$ and $r_{7}^{\prime}=u_{3, g_{2}}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{7}^{\prime}, r_{7}^{\prime}\right)$-paths. Then in these paths, one of the paths \widetilde{P}_{q} is chosen, with $u_{k_{q}, g_{2}} \notin \widetilde{P}_{q}$. If $u_{2, g_{2}} \in \widetilde{P}_{q}$, then let $u_{2, g_{2}} \notin \widehat{P}_{2 q}$. In $\widetilde{P}_{2 q}$, the path from vertex $u_{1, g_{2}}$ to $u_{1, a}$ is denoted as $\widetilde{P}_{2 q}^{\prime}$. Let
$P_{2 q}=\bar{P}_{2 q}^{\prime \prime \prime} \cup \breve{P}_{2 q} \cup \widetilde{P}_{q} \cup \widetilde{P}_{2 q}^{\prime} \cup \widehat{P}_{2 q} \cup \widehat{P}_{2 q} \cup\left\{x u_{g_{1}, 1}, u_{g_{1}, 1} u_{g_{1}, c}, u_{k_{q}, 1} z, z u_{3, g_{2}}\right\}$.
If $u_{g_{1}, 1}=u_{k_{q}, 1}$, then $P_{2 q}=\widetilde{P}_{q} \cup \widetilde{P}_{2 q}^{\prime} \cup \widehat{P}_{2 q} \cup \widehat{P}_{2 q} \cup\left\{x u_{g_{1}, 1}, u_{k_{q}, 1} z, z u_{3, g_{2}}\right\}$. The other paths are the same as Subcases 1.1-1.3.
Subcase 1.4.2. If there exists an arc $x u_{g_{1}, 1}$ in $\widetilde{P}_{1 g}(g \in[\kappa(G)])$, then in $H\left(u_{g_{1}}\right)$, with $S_{6}=\left\{u_{g_{1}, 1}, u_{g_{1}, g_{2}}\right\}$ and $r_{6}=u_{g_{1}, g_{2}}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{6}, r_{6}\right)$-paths. Then in these paths, one of the paths \widetilde{P}_{g} is chosen, with $u_{g_{1}, d} \notin \widetilde{P}_{g}$. In $\widetilde{P}_{1 g}$, the path from vertex $u_{g_{1}, 1}$ to y is denoted as $\widetilde{P}_{1 g}^{\prime}$. Let $P_{2 q}$ be the same as in Subcase 1.4.1. Let
$P_{1 g}=\widetilde{P}_{g} \cup \widetilde{P}_{1 g}^{\prime} \cup \bar{P}_{1 g}^{\prime \prime} \cup \widehat{P}_{1 g} \cup \widehat{P}_{1 g} \cup\left\{x u_{1, g_{2}}, u_{1, g_{2}} u_{g_{1}, g_{2}}, y u_{2, f_{g},} u_{2, f_{g}} u_{b, f_{g}}\right\}$.
The other paths are the same as Subcases 1.1-1.3.
Subcase 1.5. In the set $\left\{u_{s_{j}, 1}, u_{k_{j}, 1}\right\}$, there exists vertex $u_{k_{p}, 1}=x$. And there is no arc $u_{k_{p}, 1} z$ in $\widetilde{P}_{1 p}$.

In $\widetilde{P}_{2 j}$, there is an out-neighbor $u_{1, g}$ of x such that $g \in[\kappa(G)] \backslash\{a, c, d\}$, and this path is denoted by $\widetilde{P}_{2 p}$. In $G\left(v_{g}\right)$, let $S_{8}^{\prime}=\left\{u_{3, g}, u_{1, g}\right\}, r_{8}^{\prime}=u_{3, g}$, and we know there exist at least $\kappa(G)$ internally disjoint $\left(S_{8}^{\prime}, r_{8}^{\prime}\right)$-paths. Then in these paths, we choose one of the paths \widetilde{P}_{p}, and let $u_{2, g} \notin \widetilde{P}_{p}$. In $\widetilde{P}_{2 p}$, we denote the path from vertex $u_{1, g}$ to $u_{1, a}$ as $\widetilde{P}_{2 p}^{\prime}$. Let

$$
P_{2 p}=\widetilde{P}_{p} \cup \widetilde{P}_{2 p}^{\prime} \cup \widehat{P}_{2 p} \cup \widehat{P}_{2 p} \cup\left\{x z, z u_{3, g}\right\}
$$

The other paths are the same as Subcases 1.1-1.3.
Case 2. Let x and y be in the same $G\left(v_{j}\right)$. Let x and z be in the same $H\left(u_{i}\right)$ for some $i \in[n]$, $j \in[m]$. Without loss of generality, we may assume that $x=u_{1,1}, y=u_{2,1}, z=u_{1,2}$. In this case, our overall goal is that we will use arc-disjoint paths between x and y in $G\left(v_{1}\right), y$ and its out-neighbors in $H\left(u_{2}\right), z$ and its in-neighbors in $G\left(v_{2}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 3. The vertices and paths contained in Figure 3 are explained below.

Figure 3. Depiction of the arc-disjoint paths found in Case 2 of the proof of Theorem 1.
Considering $S_{1}=\{x, y\}, r_{1}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $G\left(v_{1}\right)$, denoted as $\widetilde{P}_{1 i}(i \in[\kappa(G)])$. Let $S_{2}=\left\{y, u_{2,2}\right\}$, $r_{2}=y$, and there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}, r_{2}\right)$-paths in $H\left(u_{2}\right)$, denoted as $\bar{P}_{1 i}(i \in[\kappa(G)])$. For each $i \in[\kappa(G)]$, let $u_{2, f_{i}}$ be the out-neighbor of y in $\bar{P}_{1 i}$; clearly these out-neighbors are distinct. For each $i \in[\kappa(G)]$, an out-neighbor $u_{b, f_{i}}$ of $u_{2, f_{i}}$ in $G\left(v_{f_{i}}\right)$ can be chosen, with $b \neq 1$. In $H\left(u_{b}\right)$, with $S_{3}=\left\{u_{b, 1}, u_{b, 2}\right\}$ and $r_{3}=u_{b, 1} . \bar{P}_{1 i}^{\prime}$ is the $\left(S_{3}, r_{3}\right)$ path corresponding to $\bar{P}_{1 i}$. In $\bar{P}_{1 i}^{\prime}$, the path from vertex $u_{b, f_{i}}$ to $u_{b, 2}$ is denoted $\bar{P}_{1 i}^{\prime \prime}$. With $S_{4}=\left\{u_{b, 2}, z\right\}$ and $r_{4}=u_{b, 2}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{4}, r_{4}\right)$-paths in $G\left(v_{2}\right)$, denoted as $\widehat{P}_{1 i}(i \in[\kappa(G)])$. If $u_{2, f_{k}}=u_{2,2}$, then $u_{2,2} \notin \widehat{P}_{1 k}$. The arc-disjoint (S, r)-paths can be constructed as
$P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i}^{\prime \prime} \cup \widehat{P}_{1 i} \cup\left\{y u_{2, f_{i}}, u_{2, f_{i}} u_{b, f_{i}}\right\}, i \in[\kappa(G)]$.
Likewise, we can identify $\kappa(G)$ arc-disjoint (S, r)-paths from x to z and subsequently to y. Consequently, we can derive $2 \kappa(G)$ arc-disjoint (S, r)-paths.
Case 3. Let x, y and z be in different $H\left(u_{i}\right)$ and $G\left(v_{j}\right)$ for some $i \in[n], j \in[m]$. Without loss of generality, we can assume that $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. In this case, our overall goal is that, we will use arc-disjoint paths between x and its out-neighbors in $H\left(u_{1}\right), y$ and its out-neighbors in $H\left(u_{2}\right), z$ and its in-neighbors in $G\left(v_{3}\right), x$ and its out-neighbors in $G\left(v_{1}\right), y$ and its out-neighbors in $G\left(v_{2}\right), z$ and its in-neighbors in $H\left(u_{3}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 4. The vertices and paths contained in Figure 4 are explained below.

Considering $S_{1}=\left\{x, u_{2,1}\right\}, r_{1}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $G\left(v_{1}\right)$, denoted as $\widetilde{P}_{1 i}(i \in[\kappa(G)])$. Let $S_{2}=\left\{u_{2,1}, y\right\}, r_{2}=u_{2,1}$,
and there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}, r_{2}\right)$-paths in $H\left(u_{2}\right)$, denoted as $\widehat{P}_{1 i}(i \in$ $[\kappa(G)])$. Considering $S_{1}^{\prime}=\left\{x, u_{1,2}\right\}, r_{1}^{\prime}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}^{\prime}, r_{1}^{\prime}\right)$-paths in $H\left(u_{1}\right)$, denoted as $\widetilde{P}_{2 j}(j \in[\kappa(G)])$. Let $S_{2}^{\prime}=\left\{u_{1,2}, y\right\}$, $r_{2}^{\prime}=u_{1,2}$, and there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}^{\prime}, r_{2}^{\prime}\right)$-paths in $G\left(v_{2}\right)$, denoted as $\widehat{P}_{2 j}(j \in[\kappa(G)])$. In $H\left(u_{2}\right)$, with $S_{3}^{\prime}=\left\{y, u_{2,3}\right\}, r_{3}^{\prime}=y$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}^{\prime}, r_{3}^{\prime}\right)$-paths, denoted as $\bar{P}_{2 j}$. For each $j \in[\kappa(G)]$, let $u_{2, f_{j}}$ be the out-neighbor of y in $\bar{P}_{2 j}$, clearly these out-neighbors are distinct.

Figure 4. Depiction of the arc-disjoint paths found in Case 3 of the proof of Theorem 1.
In $G\left(v_{2}\right)$, with $S_{3}=\left\{y, u_{3,2}\right\}, r_{3}=y$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}, r_{3}\right)$-paths in $G\left(v_{2}\right)$, denoted as $\bar{P}_{1 i}$. For each $i \in[\kappa(G)]$, let $u_{s_{i}, 2}$ be the outneighbor of y in $\bar{P}_{1 i}$, clearly these out-neighbors are distinct. For each $i \in[\kappa(G)]$, an out-neighbor of $u_{s_{i}, 2}$ in $H\left(u_{s_{i}}\right)$ can be chosen, denoted by $u_{s_{i}, c}(c \in[m])$, with $c \notin\{1,3\}$. Similarly, an out-neighbor of $u_{2, f_{j}}$ in $G\left(v_{f_{j}}\right)$ can be chosen, denoted by $u_{b, f_{j}}(b \in[n])$, with $b \notin\{1,3\}$.

In $G\left(v_{c}\right)$, with $S_{4}=\left\{u_{2, c}, u_{3, c}\right\}, r_{4}=u_{2, c} . \bar{P}_{1 i}^{\prime}$ is the $\left(S_{4}, r_{4}\right)$-path corresponding to $\bar{P}_{1 i}$. In $\bar{P}_{1 i}^{\prime}$, the path from vertex $u_{s_{i}, c}$ to $u_{3, c}$ is denoted as $\bar{P}_{1 i}^{\prime \prime}$. In $H\left(u_{3}\right)$, with $S_{5}=\left\{u_{3, c}, z\right\}$, $r_{5}=u_{3, c}$, and it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{5}, r_{5}\right)$-paths, say $\breve{P}_{1 i}$. In $H\left(v_{b}\right)$, with $S_{4}^{\prime}=\left\{u_{b, 2}, u_{b, 3}\right\}, r_{4}^{\prime}=u_{b, 2}, \bar{P}_{2 j}^{\prime}$ is the $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-path corresponding to $\bar{P}_{2 j}$. In path $\bar{P}_{2 j}^{\prime}$, the path from vertex $u_{b, f_{j}}$ to $u_{b, 3}$ is denoted as $\bar{P}_{2 j}^{\prime \prime}$. In $G\left(v_{3}\right)$, with $S_{5}^{\prime}=\left\{u_{b, 3}, z\right\}, r_{5}^{\prime}=u_{b, 3}$, and it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{5}^{\prime}, r_{5}^{\prime}\right)$-paths in $G\left(v_{3}\right)$, say $\breve{P}_{2 j}$. If $u_{s_{k}, 2}=u_{3,2}$, then $u_{3,2} \notin \breve{P}_{1 k}(k \in[\kappa(G)])$. If $u_{3,1} \in \widetilde{P}_{1 t}$, then $u_{3,1} \notin \breve{P}_{1 t}(t \in[\kappa(G)])$. Similarly, if $u_{2, f_{r}}=u_{2,3}$, then $u_{2,3} \notin \breve{P}_{2 r}(r \in[\kappa(G)])$. If $u_{1,3} \in \widetilde{P}_{2 h}$, then $u_{1,3} \notin \breve{P}_{2 h}(h \in[\kappa(G)])$. The arc-disjoint (S, r)-paths can be constructed as
$P_{1 i}=\widetilde{P}_{1 i} \cup \widehat{P}_{1 i} \cup \bar{P}_{1 i}^{\prime \prime} \cup \breve{P}_{1 i} \cup\left\{y u_{s_{i}, 2}, u_{s_{i}, 2} u_{s_{i}, c}\right\}$,
$P_{2 j}=\widetilde{P}_{2 j} \cup \widehat{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \breve{P}_{2 j} \cup\left\{y u_{2, f_{j}}, u_{2, f_{j}} u_{b, f_{j}}\right\}$.
Then we obtain $2 \kappa(G)$ arc-disjoint (S, r)-paths.
Case 4. Let x and y be in the same $H\left(u_{i}\right)$. Let z, x, and y be in different $G\left(v_{j}\right)$ and let z, x be in different $H\left(u_{i}\right)$, for some $i \in[n], j \in[m]$. Without loss of generality, we can assume
that $x=u_{2,1}, y=u_{2,2}, z=u_{3,3}$. In this case, our overall goal is that we will use arc-disjoint paths between x and y in $H\left(u_{2}\right), y$ and its out-neighbors in $G\left(v_{2}\right), z$ and its in-neighbors in $H\left(u_{3}\right), x$ and its out-neighbors in $G\left(v_{2}\right), y$ and its out-neighbors in $H\left(u_{2}\right), z$ and its in-neighbors in $G\left(v_{3}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 5. The vertices and paths contained in Figure 5 are explained below.

Figure 5. Depiction of the arc-disjoint paths found in Case 4 of the proof of Theorem 1.
Considering $S_{1}=\{x, y\}, r_{1}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $H\left(u_{2}\right)$, denoted as $\widetilde{P}_{1 i}(i \in[\kappa(G)])$. In $G\left(v_{1}\right)$, with $S_{1}^{\prime}=\left\{x, u_{1,1}\right\}$, and $r_{1}^{\prime}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}^{\prime}, r_{1}^{\prime}\right)$-paths, denoted as $\widehat{P}_{2 j}$. In $H\left(u_{1}\right)$, with $S_{2}^{\prime}=\left\{u_{1,1}, u_{1,2}\right\}$, and $r_{2}^{\prime}=u_{1,1}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}^{\prime}, r_{2}^{\prime}\right)$-paths, denoted as $\widetilde{P}_{2 j}$. In $G\left(v_{2}\right)$, with $S_{3}^{\prime}=\left\{u_{1,2}, y\right\}$, and $r_{3}^{\prime}=u_{1,2}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}^{\prime}, r_{3}^{\prime}\right)$-paths, denoted as $\widehat{P}_{2 j}$. Let $u_{s_{i}, 2}, u_{s_{i}, c}, u_{2, f_{j}}, u_{b, f_{j},} \breve{P}_{1 i}, \breve{P}_{2 j}, \bar{P}_{1 i}^{\prime \prime}$ and $\bar{P}_{2 j}^{\prime \prime}$ be the same as in Case 3 .

If $u_{s_{k}, 2}=u_{3,2}$, then $u_{3,2} \notin \breve{P}_{1 k}(k \in[\kappa(G)])$. If $u_{2, f_{r}}=u_{2,3}$, then $u_{2,3} \notin \breve{P}_{2 r}(r \in[\kappa(G)])$. If $u_{1,3} \in \widetilde{P}_{2 h}$, then $u_{1,3} \notin \breve{P}_{2 h}(h \in[\kappa(G)])$. If $u_{b, 1} \in \bar{P}_{2 t}^{\prime \prime}$, then $u_{b, 1} \notin \widehat{P}_{2 t}(t \in[\kappa(G)])$. If $u_{1,3} \in \breve{P}_{2 l}$, then $u_{1,3} \notin \widetilde{P}_{2 l}(l \in[\kappa(G)])$.

Subcase 4.1. If there exists no vertex $u_{2, f_{j}}=x$. Let

$$
\begin{aligned}
& P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i}^{\prime \prime} \cup \breve{P}_{1 i} \cup\left\{y u_{s_{i}, 2}, u_{s_{i}, 2}, u_{s_{i}, c}\right\}, \\
& P_{2 j}=\widetilde{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \widehat{P}_{2 j} \cup \breve{P}_{2 j} \cup \widehat{P}_{2 j} \cup\left\{y u_{2, f_{j}}, u_{2, f_{j}} u_{b, f_{j}}\right\} .
\end{aligned}
$$

Subcase 4.2. If there exists a vertex $u_{2, f_{g}}=x(g \in[\kappa(G)])$, then in $G\left(v_{1}\right)$, there exists an out-neighbor $u_{b, 1}$ of x. If $u_{b, 1} \in \widehat{P}_{2 j}$, this path is denoted by $\widehat{P}_{2 g}$.

In $H\left(u_{3}\right)$, there exists an out-neighbor $u_{3, g_{1}}$ of z such that $g_{1} \in[m] \backslash\{c, 2,1\}$. In $G\left(v_{2}\right)$, there exists an in-neighbor $u_{g_{2}, 2}$ of y such that $g_{2} \in[n] \backslash\{1, b, 3\}$. If $u_{g_{2}, 2} \in \widehat{P}_{2 j}$, this path is denoted by $\widehat{P}_{2 g}$. Then in $H\left(u_{g_{2}}\right)$, with $S_{4}^{\prime}=\left\{u_{g_{2}, g_{1}}, u_{g_{2}, 2}\right\}$, and $r_{4}^{\prime}=u_{g_{2}, g_{1}}$, it is known that there are at least $\kappa(G)$ internally disjoint $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-paths. One such $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-path is chosen, denoted as \widehat{P}_{g}, with $u_{g_{2}, 3} \notin \widehat{P}_{g}$. In $G\left(v_{g_{1}}\right)$, with $S_{5}^{\prime}=\left\{u_{3, g_{1}}, u_{g_{2}, g_{1}}\right\}$, and $r_{5}^{\prime}=u_{3, g_{1}}$, it is known that there are at least $\kappa(G)$ internally disjoint $\left(S_{5}^{\prime}, r_{5}^{\prime}\right)$-paths. One such $\left(S_{5}^{\prime}, r_{5}^{\prime}\right)$-path is chosen, denoted as \bar{P}_{g}, with $u_{b, g_{1}} \notin \bar{P}_{g}$. Then, $P_{2 g}$ is constructed as
$P_{2 g}=\bar{P}_{2 g}^{\prime \prime} \cup \breve{P}_{2 g} \cup \bar{P}_{g} \cup \widehat{P}_{g} \cup\left\{x u_{b, 1}, z u_{3, g_{1}}, u_{g_{2}, 2} y\right\}$.
The other paths are the same as Subcase 4.1. Then we obtain $2 \kappa(G)$ arc-disjoint (S, r)-paths.

Case 5. Let x and y be in the same $H\left(u_{i}\right)$. Let y and z be in the same $G\left(v_{j}\right)$, for some $i \in[n]$, $j \in[m]$. Without loss of generality, we can assume that $x=u_{1,1}, y=u_{1,2}, z=u_{2,2}$. In this case, our overall goal is that we will use arc-disjoint paths between x and y in $H\left(u_{1}\right), y$ and z in $G\left(v_{2}\right), x$ and its out-neighbors in $G\left(v_{1}\right), x$ and its out-neighbors in $G\left(v_{1}\right), z$ and y in $G\left(v_{2}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 6. The vertices and paths contained in Figure 6 are explained below.

Figure 6. Depiction of the arc-disjoint paths found in Case 5 of the proof of Theorem 1.
It is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $H\left(u_{1}\right)$, denoted as $\widetilde{P}_{1 i}(i \in[\kappa(G)])$, where $S_{1}=\{x, y\}$ and $r_{1}=x$. In $G\left(v_{2}\right)$, there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}, r_{2}\right)$-paths, denoted as $\bar{P}_{1 i}(i \in[\kappa(G)])$, where $S_{2}=\{y, z\}$ and $r_{2}=y$. Similarly, in $G\left(v_{1}\right)$, there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}^{\prime}, r_{1}^{\prime}\right)$ paths, denoted as $\widetilde{P}_{2 j}(j \in[\kappa(G)])$, where $S_{1}^{\prime}=\left\{x, u_{2,1}\right\}$ and $r_{1}^{\prime}=x$. In $H\left(u_{2}\right)$, there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}^{\prime}, r_{2}^{\prime}\right)$-paths, denoted as $\widehat{P}_{2 j}(j \in[\kappa(G)])$, where $S_{2}^{\prime}=\left\{u_{2,1}, z\right\}$ and $r_{2}=u_{2,1}$. In $G\left(v_{2}\right)$, there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}^{\prime}, r_{3}^{\prime}\right)$ paths, denoted as $\bar{P}_{2 j}(j \in[\kappa(G)])$, where $S_{3}^{\prime}=\{z, y\}$ and $r_{3}^{\prime}=z$. For each $j \in[\kappa(G)]$, let $u_{s_{j}, 2}$ be the in-neighbor of y in $\bar{P}_{2 j}$, and clearly these in-neighbors are distinct. Similarly, let $u_{k_{j, 2}}(j \in[\kappa(G)])$ be the out-neighbor of z in $\bar{P}_{2 j}$. For each $j \in[\kappa(G)]$, an out-neighbor $u_{k_{j}, b}$ of $u_{k_{j}, 2}$ is chosen in $H\left(u_{k_{j}}\right)$, where $b \neq 1$.

In $G\left(v_{b}\right)$, with $S_{4}^{\prime}=\left\{u_{2, b}, u_{1, b}\right\}$ and $r_{4}^{\prime}=u_{2, b} . \bar{P}_{2 j}^{\prime}$ is the $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-path corresponding to $\bar{P}_{2 j}$. In $\bar{P}_{2 j}^{\prime}$, the path from vertex $u_{k_{j}, b}$ to $u_{s_{j}, b}$ is denoted as $\bar{P}_{2 j}^{\prime \prime}$. Then, in $H\left(u_{s_{j}}\right)$, with $S_{5_{j}}^{\prime}=\left\{u_{s_{j}, b}, u_{s_{j}, 2}\right\}$ and $r_{5_{j}}^{\prime}=u_{s_{j}, b}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{5_{j}}^{\prime}, r_{5_{j}}^{\prime}\right)$-paths. One such $\left(S_{5_{j}}^{\prime}, r_{5_{j}}^{\prime}\right)$-path, denoted as $\breve{P}_{2 j}(j \in[\kappa(G)])$, is chosen, with $u_{s_{j}, 1} \notin \breve{P}_{2 j}$. The arc-disjoint (S, r)-paths can be constructed as
$P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i}$,
$P_{2 j}=\widehat{P}_{2 j} \cup \widehat{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \breve{P}_{2 j} \cup\left\{z u_{k_{j}, 2}, u_{s_{j}, 2} y, u_{k_{j}, 2} u_{k_{j}, b}\right\}$.
If $u_{s_{t}, 2}=u_{k_{t}, 2}(t \in[\kappa(G)])$, then $P_{2 t}=\widetilde{P}_{2 t} \cup \widehat{P}_{2 t} \cup\left\{z u_{k_{t}, 2}, u_{s_{t}, 2} y\right\}$. And if $u_{k_{l}, 2}=y(l \in$ $[\kappa(G)])$, then $P_{2 l}=\widetilde{P}_{2 l} \cup \widehat{P}_{2 l} \cup\{z y\}$. This results in obtaining $2 \kappa(G)$ arc-disjoint (S, r)-paths.

Case 6. Let y and z be in the same $G\left(v_{j}\right)$. Let x, y be in different $G\left(v_{j}\right)$ and x, y, z be in different $H\left(u_{i}\right)$, for some $i \in[n], j \in[m]$. Without loss of generality, we can assume that $x=u_{3,1}, y=u_{1,2}, z=u_{2,2}$. Let $u_{s_{j}, 2}(j \in[\kappa(G)]), u_{k_{j}, 2}, \bar{P}_{1 i}, \bar{P}_{2 j}, \widehat{P}_{2 j}$ be the same as in Case 5. In $G\left(v_{1}\right)$, with $S_{1}^{\prime}=\left\{x, u_{2,1}\right\}$ and $r_{1}^{\prime}=x$, it is known that there exist at least $\kappa(G)$ internally
disjoint $\left(S_{1}^{\prime}, r_{1}^{\prime}\right)$-paths in $G\left(v_{1}\right)$, denoted as $\widetilde{P}_{2 j}$. In this case, our overall goal is that we will use arc-disjoint paths between x and its out-neighbors in $H\left(u_{3}\right), y$ and its in-neighbors in $H\left(u_{1}\right), y$ and z in $G\left(v_{2}\right), x$ and its out-neighbors in $G\left(v_{1}\right), z$ and its in-neighbors in $H\left(u_{2}\right)$, z and y in $G\left(v_{2}\right)$, and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 7. The vertices and paths contained in Figure 7 are explained below.

Figure 7. Depiction of the arc-disjoint paths found in Case 6 of the proof of Theorem 1.
Subcase 6.1. In the set $\left\{u_{s_{j}, 2}, u_{k_{j}, 2}\right\}$, there does not exist $u_{3,2} \in\left\{u_{s_{j}, 2}, u_{k_{j}, 2}\right\}$. Thus, $u_{s_{j}, b}, u_{k_{j}, b}$, $\breve{P}_{2 j}, \bar{P}_{2 j}^{\prime \prime}$ remain the same as in Case 5 .

In $H\left(u_{3}\right)$, with $S_{1}=\left\{x, u_{3, c}\right\}(c \in[m] \backslash\{1,2, b\})$ and $r_{1}=x$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{1}, r_{1}\right)$-paths in $H\left(u_{3}\right)$, denoted as $\widetilde{P}_{1 i}$. In $G\left(v_{c}\right)$, with $S_{2}=\left\{u_{3, c}, u_{1, c}\right\}$ and $r_{2}=u_{3, c}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{2}, r_{2}\right)$-paths in $G\left(v_{c}\right)$, denoted as $\widehat{P}_{1 i}$. In $H\left(u_{1}\right)$, with $S_{3}=\left\{u_{1, c}, y\right\}$ and $r_{3}=u_{1, c}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{3}, r_{3}\right)$-paths in $H\left(u_{1}\right)$, denoted as $\widehat{P}_{1 i}$. If $u_{3,2} \in \widetilde{P}_{1 r}$, then $u_{3,2} \notin \bar{P}_{1 r}$. Let
$P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i} \cup \widehat{P}_{1 i} \cup \widehat{P}_{1 i}$,
$P_{2 j}=\widetilde{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \widehat{P}_{2 j} \cup \breve{P}_{2 j} \cup\left\{z u_{k_{j}, 2}, u_{k_{j}, 2} u_{k_{j}, b}, u_{s_{j}, 2} y\right\}$.
If $u_{s_{t}, 2}=u_{k_{t}, 2}(t \in[\kappa(G)])$, then $P_{2 t}=\widetilde{P}_{2 t} \cup \widehat{P}_{2 t} \cup\left\{z u_{k_{t}, 2}, u_{s_{t}, 2} y\right\}$. And if $u_{k_{l}, 2}=y(l \in$ $[\kappa(G)])$, then $P_{2 l}=\widetilde{P}_{2 l} \cup \widehat{P}_{2 l} \cup\{z y\}$. Now we obtain $2 \kappa(G)$ arc-disjoint (S, r)-paths.
Subcase 6.2. In the set $\left\{u_{s_{j}, 2}, u_{k_{j}, 2}\right\}$, only one vertex $u_{k_{r}, 2}=u_{3,2}(r \in[\kappa(G)])$ exists. Thus, $u_{s_{j}, b}, u_{k_{j}, b}, \breve{P}_{2 j}, \bar{P}_{2 j}^{\prime \prime}$ remain the same as in Case 5 .

If $u_{k_{r}, 2} u_{k_{r}, b} \notin \widetilde{P}_{1 i}$ in $\widetilde{P}_{1 i}$, then $P_{1 i}, P_{2 j}$ remain the same as in Subcase 6.1. If an arc $u_{k_{r}, 2} u_{k_{r}, b}$ is in path $\widetilde{P}_{1 i}$, since $\delta(G) \geq 4$, then an out-neighbor $u_{k_{r, a}}$ of $u_{k_{r}, 2}$ can be found in $H\left(u_{3}\right)$ such that $u_{k_{r}, 2} u_{k_{r}, a} \notin \widetilde{P}_{1 i}$ and $a \in[m] \backslash\{c, 1\}$. In $G\left(v_{a}\right), \bar{P}_{2 r}^{\prime \prime \prime}$ is the $\left(S_{3}^{\prime}, r_{3}^{\prime}\right)$-path corresponding to $\bar{P}_{2 r}^{\prime \prime}$, where $S_{3}^{\prime}=\left\{u_{k_{r}, a}, u_{s_{r}, a}\right\}, r_{3}^{\prime}=u_{k_{r}, a}$. In $H\left(u_{s_{r}}\right)$, with $S_{4}^{\prime}=\left\{u_{s_{r}, a}, u_{s_{r}, 2}\right\}$ and $r_{4}^{\prime}=u_{s_{r}, a}$, it is known that there exist at least $\kappa(G)$ internally disjoint $\left(S_{4}^{\prime}, r_{4}^{\prime}\right)$-paths. Then in these paths, one of the paths $\breve{P}_{2 r}^{\prime}$ is chosen, with $u_{s_{r}, 1} \notin \breve{P}_{2 r}^{\prime} . P_{2 j}(j \neq r)$ and $P_{1 i}$ remain the same as in Subcase 6.1. $P_{2 r}$ is constructed as

$$
P_{2 r}=\widetilde{P}_{2 r} \cup \bar{P}_{2 r}^{\prime \prime \prime} \cup \widehat{P}_{2 r} \cup \breve{P}_{2 r}^{\prime} \cup\left\{z u_{k_{r}, 2}, u_{k_{r}, 2} u_{k_{r}, a}, u_{s_{r}, 2} y\right\} .
$$

Subcase 6.3. In the set $\left\{u_{s_{j}, 2}, u_{k_{j}, 2}\right\}$, there is only one vertex $u_{s_{g}, 2}=u_{3,2}(g \in[\kappa(G)])$.
For each $j \in[\kappa(G)]$, an in-neighbor of $u_{s_{j}, 1}$ in $H\left(u_{s_{j}}\right)$ can be chosen, denoted by $u_{s_{j}, d}(d \in[m])$, where $d \neq c, 1$. In $G\left(v_{d}\right)$, let $\bar{P}_{2 j}^{\prime}$ be the $\left(S_{5}^{\prime}, r_{5}^{\prime}\right)$-path corresponding to $\bar{P}_{2 j}$, where $S_{5}^{\prime}=\left\{u_{2, d}, u_{1, d}\right\}, r_{5}^{\prime}=u_{2, d}$. The path from vertex $u_{k_{j}, d}$ to $u_{s_{j}, d}$ in path $\bar{P}_{2 j}^{\prime}$ is denoted as $\bar{P}_{2 j}^{\prime \prime}$. In $H\left(u_{k_{j}}\right)$, let $S_{6_{j}}^{\prime}=\left\{u_{k_{j}, 2}, u_{k_{j}, d}\right\}, r_{6_{j}}^{\prime}=u_{k_{j}, 2}$, and at least $\kappa(G)$ internally disjoint $\left(S_{6_{j}}^{\prime}, r_{6_{j}}^{\prime}\right)$-paths are known to exist. Then, one of the paths $\breve{P}_{2 j}(j \in[\kappa(G)])$ is chosen, where $u_{k_{j}, 1} \notin \breve{P}_{2 j}$. If $u_{s_{t, 2}}=u_{k_{t}, 2}(t \in[\kappa(G)]), P_{2 t}=\widetilde{P}_{2 t} \cup \widehat{P}_{2 t} \cup\left\{z u_{k_{t}, 2}, u_{s_{t}, 2} y\right\}$. And if $u_{k_{l, 2}}=y(l \in[\kappa(G)]), P_{2 l}=\widetilde{P}_{2 l} \cup \widehat{P}_{2 l} \cup\{z y\}$. If $u_{s_{g}, d} u_{s_{g}, 2} \notin \widetilde{P}_{1 i}$ in the path $\widetilde{P}_{1 i}$. Let
$P_{1 i}=\widetilde{P}_{1 i} \cup \bar{P}_{1 i} \cup \widehat{P}_{1 i} \cup \widehat{P}_{1 i}$,
$P_{2 j}=\widetilde{P}_{2 j} \cup \bar{P}_{2 j}^{\prime \prime} \cup \widehat{P}_{2 j} \cup \breve{P}_{2 j} \cup\left\{z u_{k_{j}, 2}, u_{s_{j}, d} u_{s_{j}, 2}, u_{s_{j}, 2} y\right\}$.
If an arc $u_{s_{g}, d} u_{s_{g}, 2}$ is in path $\widetilde{P}_{1 i}$, an in-neighbor $u_{s_{g}, f}$ of $u_{s_{g}, 2}$ can be found in $H\left(u_{3}\right)$ such that $u_{s_{g}, f} u_{s_{g}, 2} \notin \widetilde{P}_{1 i}$ and $f \in[m] \backslash\{c, 1\}$. In $G\left(v_{f}\right)$, let $\bar{P}_{2 g}^{\prime \prime \prime}$ be the $\left(S_{7}^{\prime}, r_{7}^{\prime}\right)$-path corresponding to $\bar{P}_{2 g}^{\prime \prime}$, where $S_{7}^{\prime}=\left\{u_{k_{g}, f}, u_{s_{g}, f}\right\}, r_{7}^{\prime}=u_{k_{g}, f}$. In $H\left(u_{k_{g}}\right)$, let $S_{8}^{\prime}=\left\{u_{k_{g}, 2}, u_{k_{g}, f}\right\}, r_{8}^{\prime}=u_{k_{g}, 2}$, and at least $\kappa(G)$ internally disjoint $\left(S_{7}^{\prime}, r_{7}^{\prime}\right)$-paths are known to exist. Then, one of the paths $\breve{P}_{2 g}^{\prime}$ is chosen, and let $u_{k_{g}, 1} \notin \breve{P}_{2 g}^{\prime}$. Let
$P_{2 g}=\widetilde{P}_{2 g} \cup \bar{P}_{2 g}^{\prime \prime \prime} \cup \widehat{P}_{2 g} \cup \breve{P}_{2 g}^{\prime} \cup\left\{z u_{k_{g}, 2}, u_{s_{g}, f} u_{s_{g}, 2}, u_{s_{g}, 2} y\right\}$.
Hence, we obtain $2 \kappa(G)$ arc-disjoint ($S, r)$-paths.
Now we prove that this bound is sharp. By Proposition $1, \lambda_{3}^{p}\left(\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{m}\right)=n+m-2$. By Lemma $2, \kappa\left(\overleftrightarrow{K}_{n}\right)=n-1$. So we have $\lambda_{3}^{p}\left(\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{n}\right)=2 \kappa\left(\overleftrightarrow{K}_{n}\right)=2 n-2$, with $n \geq 5$. Therefore, the lower bound holds and is sharp.

4. Exact Values for Digraph Classes

In this section, we aim to determine precise values for the directed path 3-arc-connectivity of the Cartesian product of two digraphs within specific digraph classes.

Proposition 1. We have $\lambda_{3}^{p}\left(\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{m}\right)=n+m-2$.
Proof. Consider $S=\{x, y, z\}$ and $r=x$. We will focus solely on scenarios where x, y, and z do not all belong to the same $\overleftrightarrow{K}_{m}\left(u_{i}\right)$ or the same $\overleftrightarrow{K}_{n}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. It is feasible to derive $n+m-2$ arc-disjoint (S, r)-paths in $\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{m}$, say $P_{1}, P_{2}, \ldots, P_{a}(a=\min \{i+1,3<i \leq n\})$, $P_{i+1}(4<i \leq n), \ldots, P_{b}(b=\min \{n+j-2,3<j \leq n\}), P_{n+j-2}(4<j \leq m)$ (as shown in Figure 8) such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{1,3} z u_{3,2} y$,
$P_{4}: x u_{3,1} z u_{2,3} y, P_{a}: x u_{4,1} u_{4,3} z u_{1,3} u_{1,2} u_{4,2} y, P_{b}: x u_{1,4} u_{3,4} z u_{3,1} u_{2,1} u_{2,4} y$,
$P_{i+1}: x u_{i, 1} u_{i, 3} z u_{i-1,3} u_{i-1,2} u_{i, 2} y, P_{n+j-2}: x u_{1, j} u_{3, j} z u_{3, j-1} u_{2, j-1} u_{2, j} y$.
Now, we add two cases to prove that the proposition holds, so as to show that the proposition has no constraint conditions.

First, let $n=m=4$. We can assume that $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. Let
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{3,1} u_{3,2} y u_{4,2} u_{4,3} z$,
$P_{4}: x u_{4,1} u_{4,2} y u_{1,2} u_{1,3} z, P_{5}: x u_{1,3} u_{2,3} y u_{2,4} u_{3,4} z, P_{6}: x u_{1,4} u_{2,4} y u_{2,1} u_{3,1} z$.
Furthermore, let $n=2, m=4$. We can assume that $x=u_{1,1}, y=u_{1,2}, z=u_{1,3}$. Let
$P_{1}: x y z, P_{2}: x z y, P_{3}: x u_{1,4} z u_{2,3} u_{2,2} y, P_{4}: x u_{2,1} u_{2,3} z u_{1,4} y$.
Then we have $n+m-2=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{m}\right) \geq n+m-2$. This concludes the proof.

Figure 8. $\overleftrightarrow{K}_{n} \square \overleftrightarrow{K}_{m}$.
Proposition 2. We have $\lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{K}_{m}\right)=m+1$, with $n \geq 3$.
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\overleftrightarrow{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{K}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain $m+1$ arc-disjoint (S, r)-paths in $\overleftrightarrow{C}_{n} \square \overleftrightarrow{K}_{m}$, say $P_{1}, P_{2}, \ldots, P_{i+1}(4<i \leq m), P_{m-1}, P_{m}$ (as shown in Figure 9) such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{1, n} u_{3, n} u_{3,1} u_{3,2} y u_{1,2} u_{1,3} z$,
$P_{4}: x u_{3,1} u_{3, n} \ldots u_{3, j} \ldots z u_{2,3} y, P_{5}: x u_{4,1} u_{4, n} \ldots u_{4, j} \ldots u_{4,3} z u_{3,2} u_{4,2} y$,
$P_{i+1}: x u_{i, 1} u_{i, n} \ldots u_{i, j} \ldots u_{i, 3} z u_{i-1,3} u_{i-1,2} u_{i, 2} y$.
Now, we add two cases to prove that the proposition holds, so as to show that the proposition has no constraint conditions.

First, let $n=3, m=4$. We can assume that $x=u_{1,1}, y=u_{2,1}, z=u_{3,1}$. Let
$P_{1}: x y z, P_{2}: x z y, P_{3}: x u_{4,1} z u_{3,2} u_{2,2} y, P_{4}: x u_{1,3} u_{2,3} y u_{2,2} u_{3,2} u_{3,3} z$.
Furthermore, let $n=3, m=2$. We can assume that $x=u_{1,1} y=u_{1,2}, z=u_{1,3}$. Let
$P_{1}: x y z, P_{2}: x z u_{2,3} u_{2,2} y, P_{3}: x u_{2,1} u_{2,3} z y$.
Then we have $m+1=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{K}_{m}\right) \geq m+1$. This concludes the proof.

Figure 9. $\overleftrightarrow{C_{n}} \square \overleftrightarrow{K}_{m}$.
Proposition 3. We have $\lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{K}_{m}\right)=m$.

Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\vec{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{K}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain m arc-disjoint (S, r)-paths in $\vec{C}_{n} \square \overleftrightarrow{K}_{m}$. First assume that m is even number, let
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{3,1} u_{3,2} y u_{2,3} z$,
$P_{4}: x u_{4,1} u_{4,2} y u_{1,2} u_{1,3} z, P_{i-1}: x u_{i-1,1} u_{i-1,2} y u_{i, 2} u_{i, 3} z$,
$P_{i}: x u_{i, 1} u_{i, 2} y u_{i-1,2} u_{i-1,3} z, 4<i \leq m$, and i is an even number.
Conversely assume that m is odd number, let
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{3,1} u_{3,2} y u_{1,2} u_{1,3} z$,
$P_{i-1}: x u_{i-1,1} u_{i-1,2} y u_{i, 2} u_{i, 3} z$,
$P_{i}: x u_{i, 1} u_{i, 2} y u_{i-1,2} u_{i-1,3} z, 3<i \leq m$, and i is an odd number. Then we have $m=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{K}_{m}\right) \geq m$. This completes the proof.

Proposition 4. We have $\lambda_{3}^{p}\left(\overleftrightarrow{T}_{n} \square \overleftrightarrow{K}_{m}\right)=m$
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\overleftrightarrow{T}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{K}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain m arc-disjoint (S, r)-paths in $\overleftrightarrow{T}_{n} \square \overleftrightarrow{K}_{m}$, say $P_{1}, P_{2}, \ldots, P_{i}(4<i \leq m), P_{m-1}, P_{m}$ such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{1,3} u_{2,3} y u_{2,1} u_{3,1} z$,
$P_{4}: x u_{1,4} u_{2,4} u_{3,4} z u_{3,2} y, P_{i}: x u_{1, i} u_{2, i} u_{3, i} z u_{3, i-1} u_{2, i-1} y$.
Then we have $m=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{T}_{n} \square \overleftrightarrow{K}_{m}\right) \geq m$. This completes the proof.

Proposition 5. We have $\lambda_{3}^{p}\left(\vec{C}_{n} \square \vec{C}_{m}\right)=2$.
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\vec{C}_{n}\left(u_{i}\right)$ or the same $\vec{C}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain two arc-disjoint (S, r)-paths in $\vec{C}_{n} \square \vec{C}_{m}$, say P_{1} and P_{2} such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z$.
Then we have $2=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\vec{C}_{n} \square \vec{C}_{m}\right) \geq 2$. This completes the proof.

Proposition 6. We have $\lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{C}_{m}\right)=3$, with $m \geq 3$.
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\vec{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{C}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain three arc-disjoint (S, r)-paths in $\vec{C}_{n} \square \overleftrightarrow{C}_{m}$, say P_{1}, P_{2}, P_{3} such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z$,
$P_{3}: x u_{m, 1} u_{m, 2} u_{m-1,2} \ldots u_{3,2} y u_{1,2} u_{1,3} u_{m, 3} u_{m-1,3} \ldots z$.
Then we have $3=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{C}_{m}\right) \geq 3$. This completes the proof.

Proposition 7. We have $\lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{C}_{m}\right)=4$, with $n \geq 3, m \geq 3$

Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\overleftrightarrow{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{C}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain four arc-disjoint (S, r)-paths in $\overleftrightarrow{C}_{n} \square \overleftrightarrow{C}_{m}$, say $P_{1}, P_{2}, P_{3}, P_{4}$ such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z$,
$P_{3}: x u_{m, 1} u_{m, 2} u_{m, 3} u_{m-1,3} \ldots z u_{3,2} y, P_{4}: x u_{1, n} u_{2, n} u_{3, n} z u_{2,3} y$.
Then we have $4=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{C}_{m}\right) \geq 4$. This completes the proof.

Proposition 8. We have $\lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{T}_{m}\right)=2$
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\vec{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{T}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain three arc-disjoint (S, r)-paths in $\vec{C}_{n} \square \overleftrightarrow{T}_{m}$, say P_{1} and P_{2} such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z$.
Then we have $2=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\vec{C}_{n} \square \overleftrightarrow{T}_{m}\right) \geq 2$. This completes the proof.

Proposition 9. We have $\lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{T}_{m}\right)=3$, with $n \geq 3$.
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\overleftrightarrow{C}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{T}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain three arc-disjoint (S, r)-paths in $\overleftrightarrow{C}_{n} \square \overleftrightarrow{T}_{m}$, say P_{1}, P_{2}, P_{3} such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z, P_{3}: x u_{m, 1} u_{m, 2} u_{m, 3} u_{m-1,3} \ldots z u_{3,2} y$.
Then we have $3=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{C}_{n} \square \overleftrightarrow{T}_{m}\right) \geq 3$. This completes the proof.

Proposition 10. We have $\lambda_{3}^{p}\left(\overleftrightarrow{T}_{n} \square \overleftrightarrow{T}_{m}\right)=2$
Proof. Let $S=\{x, y, z\}, r=x$, and we only examine the case where x, y, and z are not all within the same $\overleftrightarrow{T}_{n}\left(u_{i}\right)$ or the same $\overleftrightarrow{T}_{m}\left(v_{j}\right)$ for any $i \in[n], j \in[m]$. The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume $x=u_{1,1}, y=u_{2,2}, z=u_{3,3}$. We can obtain three arc-disjoint (S, r)-paths in $\overleftrightarrow{T}_{n} \square \overleftrightarrow{T}_{m}$, say P_{1} and P_{2} such that
$P_{1}: x u_{2,1} y u_{3,2} z, P_{2}: x u_{1,2} y u_{2,3} z$.
Then we have $2=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq \lambda_{3}^{p}\left(\overleftrightarrow{T}_{n} \square \overleftrightarrow{T}_{m}\right) \geq 2$. This completes the proof.

According to Propositions 1-9, we find that the directed path 3-arc-connectivity of some Cartesian products of digraphs is equal to the minimum semi-degrees. Based on this discovery, we can consider under what conditions the directed path 3-arc-connectivity of Cartesian products of digraphs can be equal to the minimum semi-degrees, which is a problem we can consider next.

5. Conclusions

In this paper, we prove that if G and H are two digraphs such that $\delta(G) \geq 4, \delta(H) \geq 4$, and $\kappa(G) \geq 2, \kappa(H) \geq 2$, then $\lambda_{3}^{p}(G \square H) \geq \min \{2 \kappa(G), 2 \kappa(H)\}$, and moreover, this bound
is sharp. Finally, we obtain exact values of $\lambda_{3}^{p}(G \square H)$ for some digraph classes G and H. In practical terms, constructing vertex-disjoint or arc-disjoint paths in graphs is crucial. These paths play a significant role in improving transmission reliability and boosting network transmission speeds.

Funding: This research received no external funding.
Data Availability Statement: Data sharing not applicable to this work as no datasets were generated or analysed during the current study.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Bang-Jensen, J.; Gutin, G. Digraphs: Theory, Algorithms and Applications, 2nd ed.; Springer: London, UK, 2009.
2. Grotschel, M.; Martin, A.; Weismantel, R. The Steiner tree packing problem in VLSI design. Math. Program. 1997, 78, 265-281. [CrossRef]
3. Huang, C.; Lee, C.; Gao, H.; Hsieh, S. The internal Steiner tree problem: Hardness and approximations. J. Complex. 2013, 29, 27-43. [CrossRef]
4. Sherwani, N. Algorithms for VLSI Physical Design Automation, 3rd ed.; Kluwer Acad. Pub.: London, UK, 1999.
5. Li, X.; Mao, Y. Generalized Connectivity of Graphs; Springer: Cham, Switzerland, 2016.
6. Liptak, L.; Cheng, E.; J. Kim, J.S.; Kim, S.W. One-to-many node-disjoint paths of hyper-star networks. Discret. Appl. Math. 2012, 160, 2006-2014. [CrossRef]
7. Abu-Affash, A.K.; Carmi, P.; Katz, M.J.; Segal, M. The Euclidean bottleneck Steiner path problem and other applications of (α, β)-pair decomposition. Discret. Comput. Geom. 2014, 51, 1-23. [CrossRef]
8. Gurski, F.; Komander, D.; Rehs, C.; Rethmann, J.; Wanke, E. Computing directed Steiner path covers. J. Comb. Optim. 2022, 43, 402-431. [CrossRef]
9. Sun, Y.; Zhang, X. Directed Steiner path packing and directed path connectivity. arXiv 2022, arXiv:2211.04025.
10. Sun, Y.; Gutin, G. Strong subgraph connectivity of digraphs. Graphs Comb. 2021, 37, 951-970. [CrossRef]
11. Sun, Y.; Gutin, G.; Yeo, A.; Zhang, X. Strong subgraph k-connectivity. J. Graph Theory 2019, 92, 5-18. [CrossRef]
12. Sun, Y.; Gutin, G.; Zhang, X. Packing strong subgraph in digraphs. Discret. Optim. 2022, 46, 100745. [CrossRef]
13. Hammack, R.H. Digraphs Products. In Classes of Directed Graphs; Bang-Jensen, J., Gutin, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2018.
14. Dong, Y.; Gutin, G.; Sun, Y. Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs. Discuss. Math. Graph Theory 2022 . [CrossRef]
15. Sun, Y.; Yeo, A. Directed Steiner tree packing and directed tree connectivity. J. Graph Theory 2023, 102, 86-106. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

