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Abstract: Let D = (V(D), A(D)) be a digraph of order n and let r ∈ S ⊆ V(D) with 2 ≤ |S| ≤ n.
A directed (S, r)-Steiner path (or an (S, r)-path for short) is a directed path P beginning at r such
that S ⊆ V(P). Arc-disjoint between two (S, r)-paths is characterized by the absence of common
arcs. Let λ

p
S,r(D) be the maximum number of arc-disjoint (S, r)-paths in D. The directed path k-arc-

connectivity of D is defined as λ
p
k (D) = min{λp

S,r(D) | S ⊆ V(D), |S| = k, r ∈ S}. In this paper,
we shall investigate the directed path 3-arc-connectivity of Cartesian product λ

p
3 (G□H) and prove

that if G and H are two digraphs such that δ0(G) ≥ 4, δ0(H) ≥ 4, and κ(G) ≥ 2, κ(H) ≥ 2, then
λ

p
3 (G□H) ≥ min{2κ(G), 2κ(H)}; moreover, this bound is sharp. We also obtain exact values for

λ
p
3 (G□H) for some digraph classes G and H, and most of these digraphs are symmetric.

Keywords: connectivity; directed path k-connectivity; Cartesian product

1. Introduction

For a detailed explanation of graph theoretical notation and terminology not provided
here, readers are directed to reference [1]. It should be noted that all digraphs discussed
in this paper do not contain parallel arcs or loops. The set of all natural numbers from 1
to n is denoted by [n]. If a directed graph D can be obtained from its underlying graph
G by replacing each edge in G with corresponding arcs in both directions, then D is said
to be symmetric, denoted as D =

←→
G . The notation

←→
T n is used for a symmetric digraph

whose underlying graph forms a tree of order n. The notation
←→
C n is used for a symmetric

digraph whose underlying graph forms a cycle of order n. The cycle digraph of order n is
denoted by

−→
C n. We denote the complete digraph of order n as

←→
K n.

The well-known Steiner tree packing problem is characterized as follows. Given a
graph G and a set of terminal vertices S ⊆ V(G), the goal is to identify as many edge-
disjoint S-Steiner trees (i.e., trees T in G with S ⊆ V(T)) as feasible. This particular
problem, along with its associated topics, garners significant interest from researchers
due to its extensive applications in VLSI circuit design [2–4] and Internet Domain [5]. In
practical applications, the construction of vertex-disjoint or arc-disjoint paths in graphs
holds significance, as they play a crucial role in improving transmission reliability and
boosting network transmission rates [6]. This paper will specifically delve into a variant
of the directed Steiner tree packing problem, termed the directed Steiner path packing
problem, closely interconnected with the Steiner path problem and the Steiner path cover
problem [7,8].

We now consider two types of directed Steiner path packing problems and related
parameters. Let D = (V(D), A(D)) be a digraph of order n and let r ∈ S ⊆ V(D) with
2 ≤ |S| ≤ n. A directed (S, r)-Steiner path, or simply an (S, r)-path, refers to a directed path
P originating from r such that S is a subset of the vertices in P. Arc-disjoint between two
(S, r)-paths implies that they share no common arcs, while two arc-disjoint (S, r)-paths are
internally disjoint when their common vertex set is precisely S. Let λ

p
S,r(D) (and κ

p
S,r(D))

represent the maximum number of arc-disjoint (and internally disjoint) (S, r)-paths in D,
respectively. The Arc-disjoint (or Internally disjoint) Directed Steiner Path Packing problem
is formulated as follows. Given a digraph D and letting r ∈ S ⊆ V(D), the objective is
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to maximize the count of arc-disjoint (or internally disjoint) (S, r)-paths. The notion of
directed path connectivity, which is a derivative of path connectivity in undirected graphs,
is intricately linked to the directed Steiner path packing problem and serves as a logical
progression from path connectivity in directed graphs (refer to [5] for the initial presentation
of path connectivity). The directed path k-connectivity [9] of D is defined as

κ
p
k (D) = min{κp

S,r(D) | S ⊆ V(D), |S| = k, r ∈ S}

Similarly, the directed path k-arc-connectivity [9] of D is defined as

λ
p
k (D) = min{λp

S,r(D) | S ⊆ V(D), |S| = k, r ∈ S}

The concepts of directed path k-connectivity and directed path k-arc-connectivity are
synonymous with directed path connectivity. In the context of k = 2, κ

p
2 (D) equates to κ(D)

and λ
p
2 (D) equates to λ(D), where κ(D) and λ(D) denote vertex-strong connectivity and

arc-strong connectivity of digraphs, respectively. Hence, these parameters can be viewed as
extensions of the classical connectivity measures in a digraph. It is pertinent to emphasize
the close relationship between strong subgraph connectivity and directed path connectivity;
refer to [10–12] for further insights on this interconnected topic.

It is a widely recognized fact that Cartesian products of digraphs are of great interest
in graph theory and its applications. For a comprehensive overview of various findings on
Cartesian products of digraphs, one may refer to a recent survey chapter by Hammack [13].
In this paper, we continue research on directed path connectivity and focus on the directed
path 3-arc-connectivity of Cartesian products of digraphs.

In Section 2, we introduce terminology and notation on Cartesian products of digraphs.
In Section 3, we prove that if G and H are two digraphs such that δ0(G) ≥ 4, δ0(H) ≥ 4,
and κ(G) ≥ 2, κ(H) ≥ 2, then

λ
p
3 (G□H) ≥ min{2κ(G), 2κ(H)};

moreover, this bound is sharp. Finally, we obtain exact values of λ
p
3 (G□H) for some

digraph classes G and H in Section 4.

2. Cartesian Product of Digraphs

Consider two digraphs G and H with vertex sets V(G) = {ui | i ∈ [n]} and
V(H) = {vj | j ∈ [m]}. The Cartesian product of G and H, denoted by G□H, is a
digraph with vertex set

V(G□H) = V(G)×V(H) = {(x, x′) | x ∈ V(G), x′ ∈ V(H)}.

The arc set of G□H, denoted by A(G□H), is given by {(x, x′)(y, y′) | xy ∈ A(G),
x′ = y′, or x = y, x′y′ ∈ A(H)}. It is worth noting that Cartesian product is an associative
and commutative operation. Furthermore, G□H is strongly connected if and only if both
G and H are strongly connected, as shown in a recent survey chapter by Hammack [13].

In the rest of the paper, we will use ui,j to denote (ui, vj). Additionally, G(vj) will refer
to the subgraph of G□H induced by the vertex set {ui,j | i ∈ [n]} with j ∈ [m], while H(ui)
will denote the subgraph of G□H induced by the vertex set {ui,j | j ∈ [m]}with i ∈ [n]. It is
evident that G(vj) is isomorphic to G and H(ui) is isomorphic to H. To illustrate this, refer
to Figure 1 (this figure comes from [14]), where it can be observed that G(vj) is isomorphic
to G for 1 ≤ j ≤ 4, and H(ui) is isomorphic to H for 1 ≤ i ≤ 3.

For distinct indices j1 and j2 with 1 ≤ j1 ̸= j2 ≤ m, the vertices ui,j1 and ui,j2 belong to
the same digraph H(ui), where ui is an element of V(G). ui,j2 is referred to as the vertex
corresponding to ui,j1 in G(vj2). Similarly, for distinct indices i1 and i2 with 1 ≤ i1 ̸= i2 ≤ n,
ui2,j is the vertex corresponding to ui1,j in H(ui2). Analogously, the subgraph corresponding
to a given subgraph can also be defined. For instance, in the digraph (c) depicted in Figure 1,
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if we label the path 1 as P1 (and the path 2 as P2) in H(u1) (H(u2)), then P2 is identified as
the path that corresponds to P1 in H(u2).

u1

u2

u3

G

(a)

v1

v3

v2 v4

H

(b)

H(u1)
G(v1) G(v2) G(v3) G(v4)

H(u2)

H(u3)

(c)

1 1 1

2 2 2

Figure 1. G, H and their Cartesian product [14] (1 denotes arc u1,1u1,2, u1,2u1,3 and arc u1,3u1,4;
2 denotes arc u2,1u2,2, u2,2u2,3 and arc u2,3u2,4).

Sun and Zhang proved some results of directed path connectivity, that is, the following
lemma.

Lemma 1 ([9]). Let D be a digraph of order n, and let k be an integer satisfying 2 ≤ k ≤ n. The
following statements are valid:

(1): λ
p
k+1(D) ≤ λ

p
k (D) when k ≤ n− 1.

(2): κ
p
k (D) ≤ λ

p
k (D) ≤ δ0(D) = min{δ+(D), δ−(D)}.

Lemma 2 ([15]). κ(
←→
K n) = n− 1.

3. A General Lower Bound

Now we will provide a lower bound for λ
p
3 (G□H).

Theorem 1. Let G and H be two digraphs such that δ0(G) ≥ 4, δ0(H) ≥ 4, and κ(G) ≥ 2,
κ(H) ≥ 2. We have

λ
p
3 (G□H) ≥ min{2κ(G), 2κ(H)}.

Furthermore, this bound is sharp.

Proof. It suffices to show that there are at least 2κ(G) or 2κ(H) arc-disjoint (S, r)-paths for
any S ⊆ V(G□H) with |S| = 3, r ∈ S. Let S = {x, y, z} and let r = x. Without loss of
generality, we may assume κ(G) ≤ κ(H) and consider the following six cases.

Case 1. Let x, y and z be in the same H(ui) or G(vj) for some i ∈ [n], j ∈ [m]. Without loss
of generality, we may assume that x = u1,1, y = u2,1, z = u3,1. In this case, our overall goal
is that we will use arc-disjoint paths between x and y in G(v1), y and z in G(v1), x and its
out-neighbors in H(u1), y and its in-neighbors in H(u2), z and its in-neighbors in H(u3),
and combine them together to form the required arc-disjoint paths. The general idea of the
proof process is briefly described in Figure 2. The vertices and paths contained in Figure 2
are explained below.

Let S1 = {x, y}, r1 = x. It is known that there are at least κ(G) internally disjoint
(S1, r1)-paths in G(v1), denoted as P̃1i (i ∈ [κ(G)]). Considering S′1 = {y, z}, r′1 = y, there
are at least κ(G) internally disjoint (S′1, r′1)-paths in G(v1), denoted as P2j (j ∈ [κ(G)]). For
each j ∈ [κ(G)], let usj ,1 be the out-neighbor of y in P2j; clearly these out-neighbors are
distinct. Similarly, an in-neighbor ukj ,1 (j ∈ [κ(G)]) of z in P2j can be chosen such that
these in-neighbors are distinct. In H(u1), if there is a vertex that is not an out-neighbor
of x, then choose such a vertex as u1,a, where a ̸= 1. If there is no such vertex, that is, all
vertices are out-neighbours of x, then choose any vertex as u1,a, where a ̸= 1. In H(u1),
let S′2 = {x, u1,a}, r′2 = x, and it is established that there exist at least κ(G) internally
disjoint (S′2, r′2)-paths, say P̃2j (j ∈ [κ(G)]). In G(va), let S′3 = {u1,a, u2,a}, r′3 = u1,a,
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and it is established that there exist at least κ(G) internally disjoint (S′3, r′3)-paths, say P̂2j
(j ∈ [κ(G)]). In H(u2), let S′4 = {y, u2,a}, r′4 = u2,a, and it is established that there exist at

least κ(G) internally disjoint (S′4, r′4)-paths, say
⌢
P2j (j ∈ [κ(G)]).

y
u2,a

x u1,a

ub,dub, fi

u2, fi

usj ,1

ukj ,1 ukj ,c

usj ,c

z
u3,d

P̃2j

P̂2j
⌢
P2j

P̃1i

P′′1i

P̂1i

⌢
P1i

P′′2j

P̆2j

Figure 2. Depiction of the arc-disjoint paths found in Case 1 of the proof of Theorem 1.

In H(u1), if there is a vertex that is not an out-neighbor of x in P̃2j, then choose such
a vertex as u1,d, with d /∈ {1, a}. If there is no such vertex, then choose any vertex as u1,d,
with d /∈ {1, a}. In H(u2), with S2 = {y, u2,d} and r2 = y, it is known that there are at least
κ(G) internally disjoint (S2, r2)-paths, denoted as P1i (i ∈ [κ(G)]). For each i ∈ [κ(G)],
let u2, fi

be the out-neighbor of y in P1i; clearly these out-neighbors are distinct. For each
i ∈ [κ(G)], since δ0(G) ≥ 4, an out-neighbor of u2, fi

in G(v fi
), denoted by ub, fi

(b ∈ [n]),
can be chosen, with b /∈ {1, 3}. If there exists a vertex usj ,1 /∈ {u1,1, u3,1}, let b = sj. If there

is no such vertex, then let b ̸= k j. In H(ub), P′1i is the (S3, r3)-path corresponding to P1i,

where S3 = {ub,1, ub,d}, and r3 = ub,1. In P′1i, the path from vertex ub, fi
to ub,d is denoted

as P′′1i. Let S4 = {ub,d, u3,d}, r4 = ub,d, and it is established that there exist at least κ(G)

internally disjoint (S4, r4)-paths, say P̂1i (i ∈ [κ(G)]). If u2, ft = u2,d (t ∈ [κ(G)]), then let
u2,d /∈ P̂1t in P̂1t. In H(u3), let S5 = {u3,d, z}, r5 = u3,d, and it is established that there exist

at least κ(G) internally disjoint (S5, r5)-paths, say
⌢
P1i (i ∈ [κ(G)]).

In H(u1), if there is an out-neighbor of x that is not an out-neighbor of x in P̃2j, then
choose such a vertex as u1,c, with c /∈ {a, d}. If there is no such vertex, then choose any
out-neighbor of x as u1,c, with c /∈ {a, d}. And usj ,c is an out-neighbor of usj ,1 in H(usj). In

G(vc), P′2j is the (S′5, r′5)-path corresponding to P2j, where S′5 = {u2,c, u3,c} and r′5 = u2,c.

In P′2j, the path from vertex usj ,c to ukj ,c is denoted as P′′2j. If ust ,1 = ukt ,1 (t ∈ [κ(G)]), then

P′′2t = {yust ,1, ust ,1z}. If usl ,1 = z (l ∈ [κ(G)]), then P′′2l = {yz}. If u1,c ∈ P′′2h (h ∈ [κ(G)]),
then u1,c /∈ P̃2h. In H(ukj

), with S′6j
= {ukj ,c, ukj ,1}, and r′6j

= ukj ,c, it is known that there
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exist at least κ(G) internally disjoint (S′6j
, r′6j

)-paths. Then in these paths, one of the paths

P̆2j (j ∈ [κ(G)]) is chosen, with ukj ,a /∈ P̆2j.

Subcase 1.1. In the set {usj ,1, ukj ,1}, there is no vertex such that usj ,1 = x or ukj ,1 = x, and

the vertex z is not in path P̃1i. We now construct the arc-disjoint (S, r)-paths by letting

P1i = P̃1i ∪ P′′1i ∪ P̂1i∪
⌢
P1i ∪{yu2, fi

, u2, fi
ub, fi
}, i ∈ [κ(G)],

P2j = P̃2j ∪ P̂2j∪
⌢
P2j ∪P′′2j ∪ P̆2j ∪ {yusj ,1, usj ,1usj ,c, ukj ,1z}, j ∈ [κ(G)] \ {t, l},

P2t = P̃2t ∪ P̂2t ∪ P′′2t∪
⌢
P2t,

P2l = P̃2l ∪ P̂2l ∪ P′′2l∪
⌢
P2l .

Then we obtain 2κ(G) arc-disjoint (S, r)-paths.

Subcase 1.2. In the set {usj ,1, ukj ,1}, there is no vertex such that usj ,1 = x or ukj ,1 = x, and

there exist z ∈ P̃1h (h ∈ [κ(G)]), but there is no arc ukj ,1z in path P̃1h. Let P1h = P̃1h. The
other paths are the same as Subcase 1.1.

Subcase 1.3. There is an arc ukr ,1z in path P̃1h ({r, h} ⊆ [κ(G)]). In the set {usj ,1, ukj ,1}(j ̸=

r), there is no vertex x. We can find a path
⌢
P2r such that u2, fh

/∈
⌢
P2r. If ub,a ∈ P′′1h, then let

ub,a /∈ P̂2r. If u1,d ∈ P̂1h, then let u1,d /∈ P̃2r. In P̂1h and
⌢
P1h, let u2,d /∈ P̂1h and u3,a /∈

⌢
P1h. Let

P1h = P̃1h,
P2r = P̃2r ∪ P̂2r∪

⌢
P2r ∪P′′1h ∪ P̂1h∪

⌢
P1h ∪{yu2, fh

, u2, fh
ub, fh
}.

The other paths are the same as Subcase 1.1.

Subcase 1.4. The set {usj ,1, ukj ,1} contains the vertex usq ,1 = x and ukj ,1 ̸= x. There is no

arc ukq ,1z in P̃1q. In P2q, there is an arc xug1,1 (q ∈ [κ(G)], g1 ∈ [n]). In P̃2j, there exists an

out-neighbor u1,g2 of x, where g2 ∈ [κ(G)] \ {a, c, d}, and this path is denoted by P̃2q.

Subcase 1.4.1. There is no arc xug1,1 in P̃1i.

In P′′2q, the path from vertex ug1,c to ukq ,c is denoted as P′′′2q. In G(vg2), with
S′7 = {u3,g2 , u1,g2} and r′7 = u3,g2 , it is known that there exist at least κ(G) internally
disjoint (S′7, r′7)-paths. Then in these paths, one of the paths P̃q is chosen, with ukq ,g2 /∈ P̃q.

If u2,g2 ∈ P̃q, then let u2,g2 /∈
⌢
P2q. In P̃2q, the path from vertex u1,g2 to u1,a is denoted as P̃′2q.

Let
P2q = P′′′2q ∪ P̆2q ∪ P̃q ∪ P̃′2q ∪ P̂2q∪

⌢
P2q ∪{xug1,1, ug1,1ug1,c, ukq ,1z, zu3,g2}.

If ug1,1 = ukq ,1, then P2q = P̃q ∪ P̃′2q ∪ P̂2q∪
⌢
P2q ∪{xug1,1, ukq ,1z, zu3,g2}. The other

paths are the same as Subcases 1.1–1.3.

Subcase 1.4.2. If there exists an arc xug1,1 in P̃1g (g ∈ [κ(G)]), then in H(ug1), with
S6 = {ug1,1, ug1,g2} and r6 = ug1,g2 , it is known that there exist at least κ(G) internally
disjoint (S6, r6)-paths. Then in these paths, one of the paths P̃g is chosen, with ug1,d /∈ P̃g. In
P̃1g, the path from vertex ug1,1 to y is denoted as P̃′1g. Let P2q be the same as in Subcase 1.4.1.
Let

P1g = P̃g ∪ P̃′1g ∪ P′′1g ∪ P̂1g∪
⌢
P1g ∪{xu1,g2 , u1,g2 ug1,g2 , yu2, fg , u2, fg ub, fg}.

The other paths are the same as Subcases 1.1–1.3.

Subcase 1.5. In the set {usj ,1, ukj ,1}, there exists vertex ukp ,1 = x. And there is no arc ukp ,1z

in P̃1p.
In P̃2j, there is an out-neighbor u1,g of x such that g ∈ [κ(G)] \ {a, c, d}, and this path

is denoted by P̃2p. In G(vg), let S′8 = {u3,g, u1,g}, r′8 = u3,g, and we know there exist at least
κ(G) internally disjoint (S′8, r′8)-paths. Then in these paths, we choose one of the paths P̃p,
and let u2,g /∈ P̃p. In P̃2p, we denote the path from vertex u1,g to u1,a as P̃′2p. Let

P2p = P̃p ∪ P̃′2p ∪ P̂2p∪
⌢
P2p ∪{xz, zu3,g}.
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The other paths are the same as Subcases 1.1–1.3.

Case 2. Let x and y be in the same G(vj). Let x and z be in the same H(ui) for some i ∈ [n],
j ∈ [m]. Without loss of generality, we may assume that x = u1,1, y = u2,1, z = u1,2. In
this case, our overall goal is that we will use arc-disjoint paths between x and y in G(v1), y
and its out-neighbors in H(u2), z and its in-neighbors in G(v2), and combine them together
to form the required arc-disjoint paths. The general idea of the proof process is briefly
described in Figure 3. The vertices and paths contained in Figure 3 are explained below.

y
u2,c

x z

ukj ,2
ukj ,c

ub,2ub, fi

u2, fi

P̃2j

P̃1i

P′′2j P̂1i

P̂2j

P′′1i

Figure 3. Depiction of the arc-disjoint paths found in Case 2 of the proof of Theorem 1.

Considering S1 = {x, y}, r1 = x, it is known that there exist at least κ(G) inter-
nally disjoint (S1, r1)-paths in G(v1), denoted as P̃1i (i ∈ [κ(G)]). Let S2 = {y, u2,2},
r2 = y, and there exist at least κ(G) internally disjoint (S2, r2)-paths in H(u2), denoted as
P1i (i ∈ [κ(G)]). For each i ∈ [κ(G)], let u2, fi

be the out-neighbor of y in P1i; clearly these
out-neighbors are distinct. For each i ∈ [κ(G)], an out-neighbor ub, fi

of u2, fi
in G(v fi

) can

be chosen, with b ̸= 1. In H(ub), with S3 = {ub,1, ub,2} and r3 = ub,1. P′1i is the (S3, r3)-
path corresponding to P1i. In P′1i, the path from vertex ub, fi

to ub,2 is denoted P′′1i. With
S4 = {ub,2, z} and r4 = ub,2, it is known that there exist at least κ(G) internally disjoint
(S4, r4)-paths in G(v2), denoted as P̂1i (i ∈ [κ(G)]). If u2, fk

= u2,2, then u2,2 /∈ P̂1k. The
arc-disjoint (S, r)-paths can be constructed as

P1i = P̃1i ∪ P′′1i ∪ P̂1i ∪ {yu2, fi
, u2, fi

ub, fi
}, i ∈ [κ(G)].

Likewise, we can identify κ(G) arc-disjoint (S, r)-paths from x to z and subsequently
to y. Consequently, we can derive 2κ(G) arc-disjoint (S, r)-paths.

Case 3. Let x, y and z be in different H(ui) and G(vj) for some i ∈ [n], j ∈ [m]. Without loss
of generality, we can assume that x = u1,1, y = u2,2, z = u3,3. In this case, our overall goal
is that, we will use arc-disjoint paths between x and its out-neighbors in H(u1), y and its
out-neighbors in H(u2), z and its in-neighbors in G(v3), x and its out-neighbors in G(v1), y
and its out-neighbors in G(v2), z and its in-neighbors in H(u3), and combine them together
to form the required arc-disjoint paths. The general idea of the proof process is briefly
described in Figure 4. The vertices and paths contained in Figure 4 are explained below.

Considering S1 = {x, u2,1}, r1 = x, it is known that there exist at least κ(G) internally
disjoint (S1, r1)-paths in G(v1), denoted as P̃1i (i ∈ [κ(G)]). Let S2 = {u2,1, y}, r2 = u2,1,
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and there exist at least κ(G) internally disjoint (S2, r2)-paths in H(u2), denoted as P̂1i (i ∈
[κ(G)]). Considering S′1 = {x, u1,2}, r′1 = x, it is known that there exist at least κ(G)

internally disjoint (S′1, r′1)-paths in H(u1), denoted as P̃2j (j ∈ [κ(G)]). Let S′2 = {u1,2, y},
r′2 = u1,2, and there exist at least κ(G) internally disjoint (S′2, r′2)-paths in G(v2), denoted as
P̂2j (j ∈ [κ(G)]). In H(u2), with S′3 = {y, u2,3}, r′3 = y, it is known that there exist at least
κ(G) internally disjoint (S′3, r′3)-paths, denoted as P2j. For each j ∈ [κ(G)], let u2, f j

be the
out-neighbor of y in P2j, clearly these out-neighbors are distinct.

y
u2,1

x u1,2

z

u2, f j

ub,3

usi ,2 usi ,c

ub, f j

u3,c

P̃2j

P̃1i

P′′2j

P̂1i

P̂2j

P′′1i

P̆1i

P̆2j

Figure 4. Depiction of the arc-disjoint paths found in Case 3 of the proof of Theorem 1.

In G(v2), with S3 = {y, u3,2}, r3 = y, it is known that there exist at least κ(G) internally
disjoint (S3, r3)-paths in G(v2), denoted as P1i. For each i ∈ [κ(G)], let usi ,2 be the out-
neighbor of y in P1i, clearly these out-neighbors are distinct. For each i ∈ [κ(G)], an
out-neighbor of usi ,2 in H(usi ) can be chosen, denoted by usi ,c (c ∈ [m]), with c /∈ {1, 3}.
Similarly, an out-neighbor of u2, f j

in G(v f j
) can be chosen, denoted by ub, f j

(b ∈ [n]), with
b /∈ {1, 3}.

In G(vc), with S4 = {u2,c, u3,c}, r4 = u2,c. P′1i is the (S4, r4)-path corresponding to P1i.
In P′1i, the path from vertex usi ,c to u3,c is denoted as P′′1i. In H(u3), with S5 = {u3,c, z},
r5 = u3,c, and it is known that there exist at least κ(G) internally disjoint (S5, r5)-paths,
say P̆1i. In H(vb), with S′4 = {ub,2, ub,3}, r′4 = ub,2, P′2j is the (S′4, r′4)-path corresponding

to P2j. In path P′2j, the path from vertex ub, f j
to ub,3 is denoted as P′′2j. In G(v3), with

S′5 = {ub,3, z}, r′5 = ub,3, and it is known that there exist at least κ(G) internally disjoint
(S′5, r′5)-paths in G(v3), say P̆2j. If usk ,2 = u3,2, then u3,2 /∈ P̆1k (k ∈ [κ(G)]). If u3,1 ∈ P̃1t,
then u3,1 /∈ P̆1t (t ∈ [κ(G)]). Similarly, if u2, fr = u2,3, then u2,3 /∈ P̆2r (r ∈ [κ(G)]). If
u1,3 ∈ P̃2h, then u1,3 /∈ P̆2h (h ∈ [κ(G)]). The arc-disjoint (S, r)-paths can be constructed as

P1i = P̃1i ∪ P̂1i ∪ P′′1i ∪ P̆1i ∪ {yusi ,2, usi ,2usi ,c},
P2j = P̃2j ∪ P̂2j ∪ P′′2j ∪ P̆2j ∪ {yu2, f j

, u2, f j
ub, f j
}.

Then we obtain 2κ(G) arc-disjoint (S, r)-paths.

Case 4. Let x and y be in the same H(ui). Let z, x, and y be in different G(vj) and let z, x
be in different H(ui), for some i ∈ [n], j ∈ [m]. Without loss of generality, we can assume
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that x = u2,1, y = u2,2, z = u3,3. In this case, our overall goal is that we will use arc-disjoint
paths between x and y in H(u2), y and its out-neighbors in G(v2), z and its in-neighbors
in H(u3), x and its out-neighbors in G(v2), y and its out-neighbors in H(u2), z and its
in-neighbors in G(v3), and combine them together to form the required arc-disjoint paths.
The general idea of the proof process is briefly described in Figure 5. The vertices and
paths contained in Figure 5 are explained below.

y

u1,1

x

u1,2

z

u2, f j

ub,3
usi ,2 usi ,c

ub, f j

u3,c

P̂2j

P̃1i

P′′2j

P̃2j

P′′1i

P̆1i

P̆2j

⌢
P2j

Figure 5. Depiction of the arc-disjoint paths found in Case 4 of the proof of Theorem 1.

Considering S1 = {x, y}, r1 = x, it is known that there exist at least κ(G) internally
disjoint (S1, r1)-paths in H(u2), denoted as P̃1i (i ∈ [κ(G)]). In G(v1), with S′1 = {x, u1,1},
and r′1 = x, it is known that there exist at least κ(G) internally disjoint (S′1, r′1)-paths,
denoted as P̂2j. In H(u1), with S′2 = {u1,1, u1,2}, and r′2 = u1,1, it is known that there exist
at least κ(G) internally disjoint (S′2, r′2)-paths, denoted as P̃2j. In G(v2), with S′3 = {u1,2, y},
and r′3 = u1,2, it is known that there exist at least κ(G) internally disjoint (S′3, r′3)-paths,

denoted as
⌢
P2j. Let usi ,2, usi ,c, u2, f j

, ub, f j
,P̆1i, P̆2j, P′′1i and P′′2j be the same as in Case 3.

If usk ,2 = u3,2, then u3,2 /∈ P̆1k (k ∈ [κ(G)]). If u2, fr = u2,3, then u2,3 /∈ P̆2r (r ∈ [κ(G)]).

If u1,3 ∈ P̃2h, then u1,3 /∈ P̆2h (h ∈ [κ(G)]). If ub,1 ∈ P′′2t, then ub,1 /∈ P̂2t (t ∈ [κ(G)]). If
u1,3 ∈ P̆2l , then u1,3 /∈ P̃2l (l ∈ [κ(G)]).

Subcase 4.1. If there exists no vertex u2, f j
= x. Let

P1i = P̃1i ∪ P′′1i ∪ P̆1i ∪ {yusi ,2, usi ,2, usi ,c},
P2j = P̃2j ∪ P′′2j ∪ P̂2j ∪ P̆2j∪

⌢
P2j ∪{yu2, f j

, u2, f j
ub, f j
}.

Subcase 4.2. If there exists a vertex u2, fg = x (g ∈ [κ(G)]), then in G(v1), there exists an

out-neighbor ub,1 of x. If ub,1 ∈ P̂2j, this path is denoted by P̂2g.
In H(u3), there exists an out-neighbor u3,g1 of z such that g1 ∈ [m] \ {c, 2, 1}. In G(v2),

there exists an in-neighbor ug2,2 of y such that g2 ∈ [n] \ {1, b, 3}. If ug2,2 ∈
⌢
P2j, this path is

denoted by
⌢
P2g. Then in H(ug2), with S′4 = {ug2,g1 , ug2,2}, and r′4 = ug2,g1 , it is known that

there are at least κ(G) internally disjoint (S′4, r′4)-paths. One such (S′4, r′4)-path is chosen,
denoted as P̂g, with ug2,3 /∈ P̂g. In G(vg1), with S′5 = {u3,g1 , ug2,g1}, and r′5 = u3,g1 , it is
known that there are at least κ(G) internally disjoint (S′5, r′5)-paths. One such (S′5, r′5)-path
is chosen, denoted as Pg, with ub,g1 /∈ Pg. Then, P2g is constructed as

P2g = P′′2g ∪ P̆2g ∪ Pg ∪ P̂g ∪ {xub,1, zu3,g1 , ug2,2y}.
The other paths are the same as Subcase 4.1. Then we obtain 2κ(G) arc-disjoint

(S, r)-paths.
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Case 5. Let x and y be in the same H(ui). Let y and z be in the same G(vj), for some i ∈ [n],
j ∈ [m]. Without loss of generality, we can assume that x = u1,1, y = u1,2, z = u2,2. In this
case, our overall goal is that we will use arc-disjoint paths between x and y in H(u1), y and
z in G(v2), x and its out-neighbors in G(v1), x and its out-neighbors in G(v1), z and y in
G(v2), and combine them together to form the required arc-disjoint paths. The general idea
of the proof process is briefly described in Figure 6. The vertices and paths contained in
Figure 6 are explained below.

y

u2,1

x

z

usj ,2

ukj ,2

usj ,b

ukj ,b

P̂2j

P̃1i

P′′2jP1iP̃2j

P̆2j

Figure 6. Depiction of the arc-disjoint paths found in Case 5 of the proof of Theorem 1.

It is known that there exist at least κ(G) internally disjoint (S1, r1)-paths in H(u1),
denoted as P̃1i (i ∈ [κ(G)]), where S1 = {x, y} and r1 = x. In G(v2), there exist at least
κ(G) internally disjoint (S2, r2)-paths, denoted as P1i (i ∈ [κ(G)]), where S2 = {y, z}
and r2 = y. Similarly, in G(v1), there exist at least κ(G) internally disjoint (S′1, r′1)-
paths, denoted as P̃2j (j ∈ [κ(G)]), where S′1 = {x, u2,1} and r′1 = x. In H(u2), there
exist at least κ(G) internally disjoint (S′2, r′2)-paths, denoted as P̂2j (j ∈ [κ(G)]), where
S′2 = {u2,1, z} and r2 = u2,1. In G(v2), there exist at least κ(G) internally disjoint (S′3, r′3)-
paths, denoted as P2j (j ∈ [κ(G)]), where S′3 = {z, y} and r′3 = z. For each j ∈ [κ(G)], let
usj ,2 be the in-neighbor of y in P2j, and clearly these in-neighbors are distinct. Similarly, let
ukj ,2 (j ∈ [κ(G)]) be the out-neighbor of z in P2j. For each j ∈ [κ(G)], an out-neighbor ukj ,b

of ukj ,2 is chosen in H(ukj
), where b ̸= 1.

In G(vb), with S′4 = {u2,b, u1,b} and r′4 = u2,b. P′2j is the (S′4, r′4)-path corresponding

to P2j. In P′2j, the path from vertex ukj ,b to usj ,b is denoted as P′′2j. Then, in H(usj), with
S′5j

= {usj ,b, usj ,2} and r′5j
= usj ,b, it is known that there exist at least κ(G) internally

disjoint (S′5j
, r′5j

)-paths. One such (S′5j
, r′5j

)-path, denoted as P̆2j (j ∈ [κ(G)]), is chosen, with

usj ,1 /∈ P̆2j. The arc-disjoint (S, r)-paths can be constructed as

P1i = P̃1i ∪ P1i,
P2j = P̃2j ∪ P̂2j ∪ P′′2j ∪ P̆2j ∪ {zukj ,2, usj ,2y, ukj ,2ukj ,b}.
If ust ,2 = ukt ,2 (t ∈ [κ(G)]), then P2t = P̃2t ∪ P̂2t ∪ {zukt ,2, ust ,2y}. And if ukl ,2 = y (l ∈

[κ(G)]), then P2l = P̃2l ∪ P̂2l ∪ {zy}. This results in obtaining 2κ(G) arc-disjoint (S, r)-paths.

Case 6. Let y and z be in the same G(vj). Let x, y be in different G(vj) and x, y, z be in
different H(ui), for some i ∈ [n], j ∈ [m]. Without loss of generality, we can assume that
x = u3,1, y = u1,2, z = u2,2. Let usj ,2 (j ∈ [κ(G)]), ukj ,2, P1i, P2j, P̂2j be the same as in Case 5.
In G(v1), with S′1 = {x, u2,1} and r′1 = x, it is known that there exist at least κ(G) internally



Symmetry 2024, 16, 497 10 of 15

disjoint (S′1, r′1)-paths in G(v1), denoted as P̃2j. In this case, our overall goal is that we will
use arc-disjoint paths between x and its out-neighbors in H(u3), y and its in-neighbors in
H(u1), y and z in G(v2), x and its out-neighbors in G(v1), z and its in-neighbors in H(u2),
z and y in G(v2), and combine them together to form the required arc-disjoint paths. The
general idea of the proof process is briefly described in Figure 7. The vertices and paths
contained in Figure 7 are explained below.

y

x

u2,1
z

usj ,2

ukj ,2

usj ,b

ukj ,b

u3,c

u1,c

P̂2j

P̃1i

P′′2jP1i

P̂1i

P̆2j

⌢
P1i

P̃2j

Figure 7. Depiction of the arc-disjoint paths found in Case 6 of the proof of Theorem 1.

Subcase 6.1. In the set {usj ,2, ukj ,2}, there does not exist u3,2 ∈ {usj ,2, ukj ,2}. Thus, usj ,b, ukj ,b,

P̆2j, P′′2j remain the same as in Case 5.
In H(u3), with S1 = {x, u3,c} (c ∈ [m] \ {1, 2, b}) and r1 = x, it is known that there

exist at least κ(G) internally disjoint (S1, r1)-paths in H(u3), denoted as P̃1i. In G(vc), with
S2 = {u3,c, u1,c} and r2 = u3,c, it is known that there exist at least κ(G) internally disjoint
(S2, r2)-paths in G(vc), denoted as P̂1i. In H(u1), with S3 = {u1,c, y} and r3 = u1,c, it is
known that there exist at least κ(G) internally disjoint (S3, r3)-paths in H(u1), denoted as
⌢
P1i. If u3,2 ∈ P̃1r, then u3,2 /∈ P1r. Let

P1i = P̃1i ∪ P1i ∪ P̂1i∪
⌢
P1i,

P2j = P̃2j ∪ P′′2j ∪ P̂2j ∪ P̆2j ∪ {zukj ,2, ukj ,2ukj ,b, usj ,2y}.
If ust ,2 = ukt ,2 (t ∈ [κ(G)]), then P2t = P̃2t ∪ P̂2t ∪ {zukt ,2, ust ,2y}. And if ukl ,2 = y (l ∈

[κ(G)]), then P2l = P̃2l ∪ P̂2l ∪ {zy}. Now we obtain 2κ(G) arc-disjoint (S, r)-paths.

Subcase 6.2. In the set {usj ,2, ukj ,2}, only one vertex ukr ,2 = u3,2 (r ∈ [κ(G)]) exists. Thus,

usj ,b, ukj ,b, P̆2j, P′′2j remain the same as in Case 5.

If ukr ,2ukr ,b /∈ P̃1i in P̃1i, then P1i, P2j remain the same as in Subcase 6.1. If an arc
ukr ,2ukr ,b is in path P̃1i, since δ(G) ≥ 4, then an out-neighbor ukr ,a of ukr ,2 can be found
in H(u3) such that ukr ,2ukr ,a /∈ P̃1i and a ∈ [m] \ {c, 1}. In G(va), P′′′2r is the (S′3, r′3)-path
corresponding to P′′2r, where S′3 = {ukr ,a, usr ,a}, r′3 = ukr ,a. In H(usr ), with S′4 = {usr ,a, usr ,2}
and r′4 = usr ,a, it is known that there exist at least κ(G) internally disjoint (S′4, r′4)-paths.
Then in these paths, one of the paths P̆′2r is chosen, with usr ,1 /∈ P̆′2r. P2j(j ̸= r) and P1i
remain the same as in Subcase 6.1. P2r is constructed as

P2r = P̃2r ∪ P′′′2r ∪ P̂2r ∪ P̆′2r ∪ {zukr ,2, ukr ,2ukr ,a, usr ,2y}.
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Subcase 6.3. In the set {usj ,2, ukj ,2}, there is only one vertex usg ,2 = u3,2 (g ∈ [κ(G)]).
For each j ∈ [κ(G)], an in-neighbor of usj ,1 in H(usj) can be chosen, denoted by

usj ,d (d ∈ [m]), where d ̸= c, 1. In G(vd), let P′2j be the (S′5, r′5)-path corresponding to

P2j, where S′5 = {u2,d, u1,d}, r′5 = u2,d. The path from vertex ukj ,d to usj ,d in path P′2j is

denoted as P′′2j. In H(ukj
), let S′6j

= {ukj ,2, ukj ,d}, r′6j
= ukj ,2, and at least κ(G) internally

disjoint (S′6j
, r′6j

)-paths are known to exist. Then, one of the paths P̆2j (j ∈ [κ(G)]) is chosen,

where ukj ,1 /∈ P̆2j. If ust ,2 = ukt ,2 (t ∈ [κ(G)]), P2t = P̃2t ∪ P̂2t ∪ {zukt ,2, ust ,2y}. And if

ukl ,2 = y (l ∈ [κ(G)]), P2l = P̃2l ∪ P̂2l ∪ {zy}. If usg ,dusg ,2 /∈ P̃1i in the path P̃1i. Let

P1i = P̃1i ∪ P1i ∪ P̂1i∪
⌢
P1i,

P2j = P̃2j ∪ P′′2j ∪ P̂2j ∪ P̆2j ∪ {zukj ,2, usj ,dusj ,2, usj ,2y}.
If an arc usg ,dusg ,2 is in path P̃1i, an in-neighbor usg , f of usg ,2 can be found in H(u3) such

that usg , f usg ,2 /∈ P̃1i and f ∈ [m] \ {c, 1}. In G(v f ), let P′′′2g be the (S′7, r′7)-path corresponding

to P′′2g, where S′7 = {ukg , f , usg , f }, r′7 = ukg , f . In H(ukg), let S′8 = {ukg ,2, ukg , f }, r′8 = ukg ,2,
and at least κ(G) internally disjoint (S′7, r′7)-paths are known to exist. Then, one of the paths
P̆′2g is chosen, and let ukg ,1 /∈ P̆′2g. Let

P2g = P̃2g ∪ P′′′2g ∪ P̂2g ∪ P̆′2g ∪ {zukg ,2, usg , f usg ,2, usg ,2y}.
Hence, we obtain 2κ(G) arc-disjoint (S, r)-paths.

Now we prove that this bound is sharp. By Proposition 1, λ
p
3 (
←→
K n□

←→
K m) = n + m− 2.

By Lemma 2, κ(
←→
K n) = n− 1. So we have λ

p
3 (
←→
K n□

←→
K n) = 2κ(

←→
K n) = 2n− 2, with n ≥ 5.

Therefore, the lower bound holds and is sharp.

4. Exact Values for Digraph Classes

In this section, we aim to determine precise values for the directed path 3-arc-connectivity
of the Cartesian product of two digraphs within specific digraph classes.

Proposition 1. We have λ
p
3 (
←→
K n□

←→
K m) = n + m− 2.

Proof. Consider S = {x, y, z} and r = x. We will focus solely on scenarios where x, y,
and z do not all belong to the same

←→
K m(ui) or the same

←→
K n(vj) for any i ∈ [n], j ∈ [m].

The rationale for the remaining cases follows a similar line of argument. Without loss of
generality, let us assume x = u1,1, y = u2,2, z = u3,3. It is feasible to derive n + m − 2
arc-disjoint (S, r)-paths in

←→
K n□

←→
K m, say P1 ,P2, . . . , Pa (a = min{i + 1, 3 < i ≤ n}),

Pi+1 (4 < i ≤ n), . . . , Pb (b = min{n + j− 2, 3 < j ≤ n}), Pn+j−2 (4 < j ≤ m) (as shown in
Figure 8) such that

P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu1,3zu3,2y,
P4 : xu3,1zu2,3y, Pa : xu4,1u4,3zu1,3u1,2u4,2y, Pb : xu1,4u3,4zu3,1u2,1u2,4y,
Pi+1 : xui,1ui,3zui−1,3ui−1,2ui,2y, Pn+j−2 : xu1,ju3,jzu3,j−1u2,j−1u2,jy.
Now, we add two cases to prove that the proposition holds, so as to show that the

proposition has no constraint conditions.
First, let n = m = 4. We can assume that x = u1,1, y = u2,2, z = u3,3. Let
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu3,1u3,2yu4,2u4,3z,
P4 : xu4,1u4,2yu1,2u1,3z, P5 : xu1,3u2,3yu2,4u3,4z, P6 : xu1,4u2,4yu2,1u3,1z.
Furthermore, let n = 2, m = 4. We can assume that x = u1,1, y = u1,2, z = u1,3. Let
P1 : xyz, P2 : xzy, P3 : xu1,4zu2,3u2,2y, P4 : xu2,1u2,3zu1,4y.
Then we have n + m− 2 = min {δ+(D), δ−(D)} ≥ λ

p
3 (
←→
K n□

←→
K m) ≥ n + m− 2. This

concludes the proof.
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u1

u2

u3

u4

un

v1

v2

v3

v4

vm

←→
K m(u1)

←→
K m(u2)

←→
K m(u3)

←→
K m(u4)

←→
K m(un)

x

y

z

←→
K n

←→
K m

←→
K n(v1)

←→
K n(v2)

←→
K n(v3)

←→
K n(v4)

←→
K n(vm)

P1 P2 P3 P4 Pa Pb Pn+1 Pn+m−2

Figure 8.
←→
K n□

←→
K m.

Proposition 2. We have λ
p
3 (
←→
C n□

←→
K m) = m + 1, with n ≥ 3.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

←→
C n(ui) or the same

←→
K m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain m + 1 arc-disjoint (S, r)-paths in

←→
C n□

←→
K m, say

P1 , P2, . . . , Pi+1 (4 < i ≤ m), Pm−1, Pm (as shown in Figure 9) such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu1,nu3,nu3,1u3,2yu1,2u1,3z,
P4 : xu3,1u3,n...u3,j...zu2,3y, P5 : xu4,1u4,n . . . u4,j . . . u4,3zu3,2u4,2y,
Pi+1 : xui,1ui,n . . . ui,j . . . ui,3zui−1,3ui−1,2ui,2y.
Now, we add two cases to prove that the proposition holds, so as to show that the

proposition has no constraint conditions.
First, let n = 3, m = 4. We can assume that x = u1,1, y = u2,1, z = u3,1. Let
P1 : xyz, P2 : xzy, P3 : xu4,1zu3,2u2,2y, P4 : xu1,3u2,3yu2,2u3,2u3,3z.
Furthermore, let n = 3, m = 2. We can assume that x = u1,1, y = u1,2, z = u1,3. Let
P1 : xyz, P2 : xzu2,3u2,2y, P3 : xu2,1u2,3zy.
Then we have m + 1 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
←→
C n□

←→
K m) ≥ m + 1. This con-

cludes the proof.

u1

u2

u3

u4

um

v1

v2

v3

vj

vn

←→
C n(u1)

←→
C n(u2)

←→
C n(u3)

←→
C n(u4)

←→
C n(um)

x

y

z

←→
Km

←→
Cn

←→
Km(v1)

←→
Km(v2)

←→
Km(v3)

←→
Km(vj)

←→
Km(vn)

P1 P2 P3 P4 P5 Pi

Figure 9.
←→
Cn□
←→
K m.

Proposition 3. We have λ
p
3 (
−→
C n□

←→
K m) = m.
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Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not
all within the same

−→
C n(ui) or the same

←→
K m(vj) for any i ∈ [n], j ∈ [m]. The rationale for

the remaining cases follows a similar line of argument. Without loss of generality, let us
assume x = u1,1, y = u2,2, z = u3,3. We can obtain m arc-disjoint (S, r)-paths in

−→
C n□

←→
K m.

First assume that m is even number, let
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu3,1u3,2yu2,3z,
P4 : xu4,1u4,2yu1,2u1,3z, Pi−1 : xui−1,1ui−1,2yui,2ui,3z,
Pi : xui,1ui,2yui−1,2ui−1,3z, 4 < i ≤ m, and i is an even number.
Conversely assume that m is odd number, let
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu3,1u3,2yu1,2u1,3z,
Pi−1 : xui−1,1ui−1,2yui,2ui,3z,
Pi : xui,1ui,2yui−1,2ui−1,3z, 3 < i ≤ m, and i is an odd number. Then we have

m = min{δ+(D), δ−(D)} ≥ λ
p
3 (
−→
C n□

←→
K m) ≥ m. This completes the proof.

Proposition 4. We have λ
p
3 (
←→
T n□

←→
K m) = m.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

←→
T n(ui) or the same

←→
K m(vj) for any i ∈ [n], j ∈ [m]. The rationale for

the remaining cases follows a similar line of argument. Without loss of generality, let us
assume x = u1,1, y = u2,2, z = u3,3. We can obtain m arc-disjoint (S, r)-paths in

←→
T n□

←→
K m,

say P1, P2, . . . , Pi (4 < i ≤ m), Pm−1, Pm such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xu1,3u2,3yu2,1u3,1z,
P4 : xu1,4u2,4u3,4zu3,2y, Pi : xu1,iu2,iu3,izu3,i−1u2,i−1y.
Then we have m = min{δ+(D), δ−(D)} ≥ λ

p
3 (
←→
T n□

←→
K m) ≥ m. This completes the

proof.

Proposition 5. We have λ
p
3 (
−→
C n□

−→
C m) = 2.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not
all within the same

−→
C n(ui) or the same

−→
C m(vj) for any i ∈ [n], j ∈ [m]. The rationale for

the remaining cases follows a similar line of argument. Without loss of generality, let us
assume x = u1,1, y = u2,2, z = u3,3. We can obtain two arc-disjoint (S, r)-paths in

−→
C n□

−→
C m,

say P1 and P2 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z.
Then we have 2 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
−→
C n□

−→
C m) ≥ 2. This completes the

proof.

Proposition 6. We have λ
p
3 (
−→
C n□

←→
C m) = 3, with m ≥ 3.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

−→
C n(ui) or the same

←→
C m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain three arc-disjoint (S, r)-paths in

−→
C n□

←→
C m, say

P1, P2, P3 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z,
P3 : xum,1um,2um−1,2 . . . u3,2yu1,2u1,3um,3um−1,3 . . . z.
Then we have 3 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
−→
C n□

←→
C m) ≥ 3. This completes the

proof.

Proposition 7. We have λ
p
3 (
←→
C n□

←→
C m) = 4, with n ≥ 3, m ≥ 3.
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Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

←→
C n(ui) or the same

←→
C m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain four arc-disjoint (S, r)-paths in

←→
C n□

←→
C m, say

P1, P2, P3, P4 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z,
P3 : xum,1um,2um,3um−1,3 . . . zu3,2y, P4 : xu1,nu2,nu3,nzu2,3y.
Then we have 4 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
←→
C n□

←→
C m) ≥ 4. This completes the

proof.

Proposition 8. We have λ
p
3 (
−→
C n□

←→
T m) = 2.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

−→
C n(ui) or the same

←→
T m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain three arc-disjoint (S, r)-paths in

−→
C n□

←→
T m, say

P1 and P2 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z.
Then we have 2 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
−→
C n□

←→
T m) ≥ 2. This completes the

proof.

Proposition 9. We have λ
p
3 (
←→
C n□

←→
T m) = 3, with n ≥ 3.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

←→
C n(ui) or the same

←→
T m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain three arc-disjoint (S, r)-paths in

←→
C n□

←→
T m, say

P1, P2, P3 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z, P3 : xum,1um,2um,3um−1,3 . . . zu3,2y.
Then we have 3 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
←→
C n□

←→
T m) ≥ 3. This completes the

proof.

Proposition 10. We have λ
p
3 (
←→
T n□

←→
T m) = 2.

Proof. Let S = {x, y, z}, r = x, and we only examine the case where x, y, and z are not all
within the same

←→
T n(ui) or the same

←→
T m(vj) for any i ∈ [n], j ∈ [m]. The rationale for the

remaining cases follows a similar line of argument. Without loss of generality, let us assume
x = u1,1, y = u2,2, z = u3,3. We can obtain three arc-disjoint (S, r)-paths in

←→
T n□

←→
T m, say

P1 and P2 such that
P1 : xu2,1yu3,2z, P2 : xu1,2yu2,3z.
Then we have 2 = min{δ+(D), δ−(D)} ≥ λ

p
3 (
←→
T n□

←→
T m) ≥ 2. This completes the

proof.

According to Propositions 1–9, we find that the directed path 3-arc-connectivity of
some Cartesian products of digraphs is equal to the minimum semi-degrees. Based on
this discovery, we can consider under what conditions the directed path 3-arc-connectivity
of Cartesian products of digraphs can be equal to the minimum semi-degrees, which is a
problem we can consider next.

5. Conclusions

In this paper, we prove that if G and H are two digraphs such that δ(G) ≥ 4, δ(H) ≥ 4,
and κ(G) ≥ 2, κ(H) ≥ 2, then λ

p
3 (G□H) ≥ min{2κ(G), 2κ(H)}, and moreover, this bound
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is sharp. Finally, we obtain exact values of λ
p
3 (G□H) for some digraph classes G and H. In

practical terms, constructing vertex-disjoint or arc-disjoint paths in graphs is crucial. These
paths play a significant role in improving transmission reliability and boosting network
transmission speeds.
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