

# Article Directed Path 3-Arc-Connectivity of Cartesian Product Digraphs

Xiaosha Wei

School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China; weixiaosha0226@163.com

**Abstract:** Let D = (V(D), A(D)) be a digraph of order n and let  $r \in S \subseteq V(D)$  with  $2 \leq |S| \leq n$ . A directed (S, r)-Steiner path (or an (S, r)-path for short) is a directed path P beginning at r such that  $S \subseteq V(P)$ . Arc-disjoint between two (S, r)-paths is characterized by the absence of common arcs. Let  $\lambda_{S,r}^p(D)$  be the maximum number of arc-disjoint (S, r)-paths in D. The directed path k-arc-connectivity of D is defined as  $\lambda_k^p(D) = \min\{\lambda_{S,r}^p(D) \mid S \subseteq V(D), |S| = k, r \in S\}$ . In this paper, we shall investigate the directed path 3-arc-connectivity of Cartesian product  $\lambda_3^p(G\Box H)$  and prove that if G and H are two digraphs such that  $\delta^0(G) \geq 4$ ,  $\delta^0(H) \geq 4$ , and  $\kappa(G) \geq 2$ ,  $\kappa(H) \geq 2$ , then  $\lambda_3^p(G\Box H) \geq \min\{2\kappa(G), 2\kappa(H)\}$ ; moreover, this bound is sharp. We also obtain exact values for  $\lambda_3^p(G\Box H)$  for some digraph classes G and H, and most of these digraphs are symmetric.

**Keywords:** connectivity; directed path *k*-connectivity; Cartesian product

# 1. Introduction

For a detailed explanation of graph theoretical notation and terminology not provided here, readers are directed to reference [1]. It should be noted that all digraphs discussed in this paper do not contain parallel arcs or loops. The set of all natural numbers from 1 to *n* is denoted by [*n*]. If a directed graph *D* can be obtained from its underlying graph *G* by replacing each edge in *G* with corresponding arcs in both directions, then *D* is said to be symmetric, denoted as  $D = \overleftarrow{G}$ . The notation  $\overleftarrow{T}_n$  is used for a symmetric digraph whose underlying graph forms a tree of order *n*. The notation  $\overleftarrow{C}_n$  is used for a symmetric digraph whose underlying graph forms a cycle of order *n*. The cycle digraph of order *n* is denoted by  $\overrightarrow{C}_n$ . We denote the complete digraph of order *n* as  $\overleftarrow{K}_n$ .

The well-known Steiner tree packing problem is characterized as follows. Given a graph *G* and a set of terminal vertices  $S \subseteq V(G)$ , the goal is to identify as many edgedisjoint S-Steiner trees (i.e., trees *T* in *G* with  $S \subseteq V(T)$ ) as feasible. This particular problem, along with its associated topics, garners significant interest from researchers due to its extensive applications in VLSI circuit design [2–4] and Internet Domain [5]. In practical applications, the construction of vertex-disjoint or arc-disjoint paths in graphs holds significance, as they play a crucial role in improving transmission reliability and boosting network transmission rates [6]. This paper will specifically delve into a variant of the directed Steiner tree packing problem, termed the directed Steiner path packing problem, closely interconnected with the Steiner path problem and the Steiner path cover problem [7,8].

We now consider two types of directed Steiner path packing problems and related parameters. Let D = (V(D), A(D)) be a digraph of order n and let  $r \in S \subseteq V(D)$  with  $2 \leq |S| \leq n$ . A directed (S, r)-Steiner path, or simply an (S, r)-path, refers to a directed path P originating from r such that S is a subset of the vertices in P. Arc-disjoint between two (S, r)-paths implies that they share no common arcs, while two arc-disjoint (S, r)-paths are internally disjoint when their common vertex set is precisely S. Let  $\lambda_{S,r}^p(D)$  (and  $\kappa_{S,r}^p(D)$ ) represent the maximum number of arc-disjoint (and internally disjoint) (S, r)-paths in D, respectively. The Arc-disjoint (or Internally disjoint) Directed Steiner Path Packing problem is formulated as follows. Given a digraph D and letting  $r \in S \subseteq V(D)$ , the objective is



Citation: Wei, X. Directed Path 3-Arc-Connectivity of Cartesian Product Digraphs. *Symmetry* **2024**, *16*, 497. https://doi.org/10.3390/ sym16040497

Academic Editor: Calogero Vetro

Received: 13 March 2024 Revised: 6 April 2024 Accepted: 7 April 2024 Published: 19 April 2024



**Copyright:** © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). to maximize the count of arc-disjoint (or internally disjoint) (S, r)-paths. The notion of directed path connectivity, which is a derivative of path connectivity in undirected graphs, is intricately linked to the directed Steiner path packing problem and serves as a logical progression from path connectivity in directed graphs (refer to [5] for the initial presentation of path connectivity). The directed path *k*-connectivity [9] of *D* is defined as

$$\kappa_k^p(D) = \min\{\kappa_{S,r}^p(D) \mid S \subseteq V(D), |S| = k, r \in S\}$$

Similarly, the directed path *k*-arc-connectivity [9] of *D* is defined as

$$\lambda_k^p(D) = \min\{\lambda_{S,r}^p(D) \mid S \subseteq V(D), |S| = k, r \in S\}$$

The concepts of directed path *k*-connectivity and directed path *k*-arc-connectivity are synonymous with directed path connectivity. In the context of k = 2,  $\kappa_2^p(D)$  equates to  $\kappa(D)$  and  $\lambda_2^p(D)$  equates to  $\lambda(D)$ , where  $\kappa(D)$  and  $\lambda(D)$  denote vertex-strong connectivity and arc-strong connectivity of digraphs, respectively. Hence, these parameters can be viewed as extensions of the classical connectivity measures in a digraph. It is pertinent to emphasize the close relationship between strong subgraph connectivity and directed path connectivity; refer to [10–12] for further insights on this interconnected topic.

It is a widely recognized fact that Cartesian products of digraphs are of great interest in graph theory and its applications. For a comprehensive overview of various findings on Cartesian products of digraphs, one may refer to a recent survey chapter by Hammack [13]. In this paper, we continue research on directed path connectivity and focus on the directed path 3-arc-connectivity of Cartesian products of digraphs.

In Section 2, we introduce terminology and notation on Cartesian products of digraphs. In Section 3, we prove that if *G* and *H* are two digraphs such that  $\delta^0(G) \ge 4$ ,  $\delta^0(H) \ge 4$ , and  $\kappa(G) \ge 2$ ,  $\kappa(H) \ge 2$ , then

$$\lambda_3^p(G\Box H) \ge \min\{2\kappa(G), 2\kappa(H)\};$$

moreover, this bound is sharp. Finally, we obtain exact values of  $\lambda_3^p(G\Box H)$  for some digraph classes *G* and *H* in Section 4.

#### 2. Cartesian Product of Digraphs

Consider two digraphs *G* and *H* with vertex sets  $V(G) = \{u_i \mid i \in [n]\}$  and  $V(H) = \{v_j \mid j \in [m]\}$ . The Cartesian product of *G* and *H*, denoted by  $G \Box H$ , is a digraph with vertex set

$$V(G \Box H) = V(G) \times V(H) = \{(x, x') \mid x \in V(G), x' \in V(H)\}$$

The arc set of  $G\Box H$ , denoted by  $A(G\Box H)$ , is given by  $\{(x, x')(y, y') | xy \in A(G), x' = y', \text{ or } x = y, x'y' \in A(H)\}$ . It is worth noting that Cartesian product is an associative and commutative operation. Furthermore,  $G\Box H$  is strongly connected if and only if both *G* and *H* are strongly connected, as shown in a recent survey chapter by Hammack [13].

In the rest of the paper, we will use  $u_{i,j}$  to denote  $(u_i, v_j)$ . Additionally,  $G(v_j)$  will refer to the subgraph of  $G \Box H$  induced by the vertex set  $\{u_{i,j} \mid i \in [n]\}$  with  $j \in [m]$ , while  $H(u_i)$ will denote the subgraph of  $G \Box H$  induced by the vertex set  $\{u_{i,j} \mid j \in [m]\}$  with  $i \in [n]$ . It is evident that  $G(v_j)$  is isomorphic to G and  $H(u_i)$  is isomorphic to H. To illustrate this, refer to Figure 1 (this figure comes from [14]), where it can be observed that  $G(v_j)$  is isomorphic to G for  $1 \le j \le 4$ , and  $H(u_i)$  is isomorphic to H for  $1 \le i \le 3$ .

For distinct indices  $j_1$  and  $j_2$  with  $1 \le j_1 \ne j_2 \le m$ , the vertices  $u_{i,j_1}$  and  $u_{i,j_2}$  belong to the same digraph  $H(u_i)$ , where  $u_i$  is an element of V(G).  $u_{i,j_2}$  is referred to as the vertex corresponding to  $u_{i,j_1}$  in  $G(v_{j_2})$ . Similarly, for distinct indices  $i_1$  and  $i_2$  with  $1 \le i_1 \ne i_2 \le n$ ,  $u_{i_2,j_2}$  is the vertex corresponding to  $u_{i_1,j_1}$  in  $H(u_{i_2})$ . Analogously, the subgraph corresponding to a given subgraph can also be defined. For instance, in the digraph (c) depicted in Figure 1,

if we label the path 1 as  $P_1$  (and the path 2 as  $P_2$ ) in  $H(u_1)$  ( $H(u_2)$ ), then  $P_2$  is identified as the path that corresponds to  $P_1$  in  $H(u_2)$ .



**Figure 1.** *G*, *H* and their Cartesian product [14] (1 denotes arc  $u_{1,1}u_{1,2}$ ,  $u_{1,2}u_{1,3}$  and arc  $u_{1,3}u_{1,4}$ ; 2 denotes arc  $u_{2,1}u_{2,2}$ ,  $u_{2,2}u_{2,3}$  and arc  $u_{2,3}u_{2,4}$ ).

Sun and Zhang proved some results of directed path connectivity, that is, the following lemma.

**Lemma 1** ([9]). Let *D* be a digraph of order *n*, and let *k* be an integer satisfying  $2 \le k \le n$ . The following statements are valid:

(1): 
$$\lambda_{k+1}^p(D) \le \lambda_k^p(D)$$
 when  $k \le n-1$ .  
(2):  $\kappa_k^p(D) \le \lambda_k^p(D) \le \delta^0(D) = \min\{\delta^+(D), \delta^-(D)\}$ 

Lemma 2 ([15]).  $\kappa(\overleftarrow{K}_n) = n - 1$ .

#### 3. A General Lower Bound

Now we will provide a lower bound for  $\lambda_3^p(G\Box H)$ .

**Theorem 1.** Let G and H be two digraphs such that  $\delta^0(G) \ge 4$ ,  $\delta^0(H) \ge 4$ , and  $\kappa(G) \ge 2$ ,  $\kappa(H) \ge 2$ . We have

$$\lambda_3^p(G\Box H) \ge \min\{2\kappa(G), 2\kappa(H)\}.$$

*Furthermore, this bound is sharp.* 

**Proof.** It suffices to show that there are at least  $2\kappa(G)$  or  $2\kappa(H)$  arc-disjoint (S, r)-paths for any  $S \subseteq V(G \Box H)$  with |S| = 3,  $r \in S$ . Let  $S = \{x, y, z\}$  and let r = x. Without loss of generality, we may assume  $\kappa(G) \leq \kappa(H)$  and consider the following six cases.

**Case 1.** Let *x*, *y* and *z* be in the same  $H(u_i)$  or  $G(v_j)$  for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we may assume that  $x = u_{1,1}$ ,  $y = u_{2,1}$ ,  $z = u_{3,1}$ . In this case, our overall goal is that we will use arc-disjoint paths between *x* and *y* in  $G(v_1)$ , *y* and *z* in  $G(v_1)$ , *x* and its out-neighbors in  $H(u_1)$ , *y* and its in-neighbors in  $H(u_2)$ , *z* and its in-neighbors in  $H(u_3)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 2. The vertices and paths contained in Figure 2 are explained below.

Let  $S_1 = \{x, y\}$ ,  $r_1 = x$ . It is known that there are at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $G(v_1)$ , denoted as  $\widetilde{P}_{1i}$   $(i \in [\kappa(G)])$ . Considering  $S'_1 = \{y, z\}$ ,  $r'_1 = y$ , there are at least  $\kappa(G)$  internally disjoint  $(S'_1, r'_1)$ -paths in  $G(v_1)$ , denoted as  $\overline{P}_{2j}$   $(j \in [\kappa(G)])$ . For each  $j \in [\kappa(G)]$ , let  $u_{s_j,1}$  be the out-neighbor of y in  $\overline{P}_{2j}$ ; clearly these out-neighbors are distinct. Similarly, an in-neighbor  $u_{k_j,1}$   $(j \in [\kappa(G)])$  of z in  $\overline{P}_{2j}$  can be chosen such that these in-neighbors are distinct. In  $H(u_1)$ , if there is a vertex that is not an out-neighbor of x, then choose such a vertex as  $u_{1,a}$ , where  $a \neq 1$ . If there is no such vertex, that is, all vertices are out-neighbours of x, then choose any vertex as  $u_{1,a}$ , where  $a \neq 1$ . In  $H(u_1)$ , let  $S'_2 = \{x, u_{1,a}\}$ ,  $r'_2 = x$ , and it is established that there exist at least  $\kappa(G)$  internally disjoint  $(S'_2, r'_2)$ -paths, say  $\widetilde{P}_{2j}$   $(j \in [\kappa(G)])$ . In  $G(v_a)$ , let  $S'_3 = \{u_{1,a}, u_{2,a}\}$ ,  $r'_3 = u_{1,a}$ ,

and it is established that there exist at least  $\kappa(G)$  internally disjoint  $(S'_3, r'_3)$ -paths, say  $\widehat{P}_{2j}$   $(j \in [\kappa(G)])$ . In  $H(u_2)$ , let  $S'_4 = \{y, u_{2,a}\}, r'_4 = u_{2,a}$ , and it is established that there exist at least  $\kappa(G)$  internally disjoint  $(S'_4, r'_4)$ -paths, say  $\widehat{P}_{2j}$   $(j \in [\kappa(G)])$ .



Figure 2. Depiction of the arc-disjoint paths found in Case 1 of the proof of Theorem 1.

In  $H(u_1)$ , if there is a vertex that is not an out-neighbor of x in  $\overline{P}_{2j}$ , then choose such a vertex as  $u_{1,d}$ , with  $d \notin \{1, a\}$ . If there is no such vertex, then choose any vertex as  $u_{1,d}$ , with  $d \notin \{1, a\}$ . In  $H(u_2)$ , with  $S_2 = \{y, u_{2,d}\}$  and  $r_2 = y$ , it is known that there are at least  $\kappa(G)$  internally disjoint  $(S_2, r_2)$ -paths, denoted as  $\overline{P}_{1i}$  ( $i \in [\kappa(G)]$ ). For each  $i \in [\kappa(G)]$ , let  $u_{2,f_i}$  be the out-neighbor of y in  $\overline{P}_{1i}$ ; clearly these out-neighbors are distinct. For each  $i \in [\kappa(G)]$ , since  $\delta^0(G) \ge 4$ , an out-neighbor of  $u_{2,f_i}$  in  $G(v_{f_i})$ , denoted by  $u_{b,f_i}$  ( $b \in [n]$ ), can be chosen, with  $b \notin \{1,3\}$ . If there exists a vertex  $u_{s_j,1} \notin \{u_{1,1}, u_{3,1}\}$ , let  $b = s_j$ . If there is no such vertex, then let  $b \neq k_j$ . In  $H(u_b)$ ,  $\overline{P}'_{1i}$  is the  $(S_3, r_3)$ -path corresponding to  $\overline{P}_{1i}$ , where  $S_3 = \{u_{b,1}, u_{b,d}\}$ , and  $r_3 = u_{b,1}$ . In  $\overline{P}'_{1i}$ , the path from vertex  $u_{b,f_i}$  to  $u_{b,d}$  is denoted as  $\overline{P}''_{1i}$ . Let  $S_4 = \{u_{b,d}, u_{3,d}\}$ ,  $r_4 = u_{b,d}$ , and it is established that there exist at least  $\kappa(G)$ internally disjoint  $(S_4, r_4)$ -paths, say  $\widehat{P}_{1i}$  ( $i \in [\kappa(G)]$ ). If  $u_{2,f_i} = u_{2,d}$  ( $t \in [\kappa(G)]$ ), then let  $u_{2,d} \notin \widehat{P}_{1t}$  in  $\widehat{P}_{1t}$ . In  $H(u_3)$ , let  $S_5 = \{u_{3,d}, z\}$ ,  $r_5 = u_{3,d}$ , and it is established that there exist at least  $\kappa(G)$  internally disjoint  $(S_5, r_5)$ -paths, say  $\widehat{P}_{1i}$  ( $i \in [\kappa(G)]$ ).

In  $H(u_1)$ , if there is an out-neighbor of x that is not an out-neighbor of x in  $\widetilde{P}_{2j}$ , then choose such a vertex as  $u_{1,c}$ , with  $c \notin \{a, d\}$ . If there is no such vertex, then choose any out-neighbor of x as  $u_{1,c}$ , with  $c \notin \{a, d\}$ . And  $u_{s_j,c}$  is an out-neighbor of  $u_{s_j,1}$  in  $H(u_{s_j})$ . In  $G(v_c)$ ,  $\overline{P}'_{2j}$  is the  $(S'_5, r'_5)$ -path corresponding to  $\overline{P}_{2j}$ , where  $S'_5 = \{u_{2,c}, u_{3,c}\}$  and  $r'_5 = u_{2,c}$ . In  $\overline{P}'_{2j}$ , the path from vertex  $u_{s_j,c}$  to  $u_{k_j,c}$  is denoted as  $\overline{P}''_{2j}$ . If  $u_{s_t,1} = u_{k_t,1}$  ( $t \in [\kappa(G)]$ ), then  $\overline{P}''_{2t} = \{yu_{s_t,1}, u_{s_t,1}z\}$ . If  $u_{s_t,1} = z$  ( $l \in [\kappa(G)]$ ), then  $\overline{P}''_{2l} = \{yz\}$ . If  $u_{1,c} \in \overline{P}''_{2h}$  ( $h \in [\kappa(G)]$ ), then  $u_{1,c} \notin \widetilde{P}_{2h}$ . In  $H(u_{k_j})$ , with  $S'_{6_j} = \{u_{k_j,c}, u_{k_j,1}\}$ , and  $r'_{6_j} = u_{k_j,c}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_{6j}, r'_{6j})$ -paths. Then in these paths, one of the paths  $\check{P}_{2j}$   $(j \in [\kappa(G)])$  is chosen, with  $u_{k_{j},a} \notin \check{P}_{2j}$ .

**Subcase 1.1.** In the set  $\{u_{s_j,1}, u_{k_j,1}\}$ , there is no vertex such that  $u_{s_j,1} = x$  or  $u_{k_j,1} = x$ , and the vertex *z* is not in path  $\tilde{P}_{1i}$ . We now construct the arc-disjoint (S, r)-paths by letting

$$P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1i}'' \cup \widehat{P}_{1i} \cup \widehat{P}_{1i} \cup \{yu_{2,f_i}, u_{2,f_i}u_{b,f_i}\}, i \in [\kappa(G)],$$

$$P_{2j} = \widetilde{P}_{2j} \cup \widehat{P}_{2j} \cup \overline{P}_{2j} \cup \overline{P}_{2j}' \cup \overline{P}_{2j} \cup \{yu_{s_j,1}, u_{s_j,1}u_{s_j,c}, u_{k_j,1}z\}, j \in [\kappa(G)] \setminus \{t, l\},$$

$$P_{2t} = \widetilde{P}_{2t} \cup \widehat{P}_{2t} \cup \overline{P}_{2t}' \cup \widehat{P}_{2t},$$

$$P_{2l} = \widetilde{P}_{2l} \cup \widehat{P}_{2l} \cup \overline{P}_{2l}' \cup \widehat{P}_{2l}.$$
Then we obtain  $2\kappa(G)$  arc-disjoint  $(S, r)$ -paths.

**Subcase 1.2.** In the set  $\{u_{s_j,1}, u_{k_j,1}\}$ , there is no vertex such that  $u_{s_j,1} = x$  or  $u_{k_j,1} = x$ , and there exist  $z \in \tilde{P}_{1h}$  ( $h \in [\kappa(G)]$ ), but there is no arc  $u_{k_j,1}z$  in path  $\tilde{P}_{1h}$ . Let  $P_{1h} = \tilde{P}_{1h}$ . The other paths are the same as Subcase 1.1.

**Subcase 1.3.** There is an arc  $u_{k_r,1}z$  in path  $\widetilde{P}_{1h}(\{r,h\} \subseteq [\kappa(G)])$ . In the set  $\{u_{s_j,1}, u_{k_j,1}\}(j \neq r)$ , there is no vertex x. We can find a path  $\widehat{P}_{2r}$  such that  $u_{2,f_h} \notin \widehat{P}_{2r}$ . If  $u_{b,a} \in \overline{P}_{1h}''$ , then let  $u_{b,a} \notin \widehat{P}_{2r}$ . If  $u_{1,d} \in \widehat{P}_{1h}$ , then let  $u_{1,d} \notin \widetilde{P}_{2r}$ . In  $\widehat{P}_{1h}$  and  $\widehat{P}_{1h}$ , let  $u_{2,d} \notin \widehat{P}_{1h}$  and  $u_{3,a} \notin \widehat{P}_{1h}$ . Let  $P_{1h} = \widetilde{P}_{1h}$ ,  $P_{2r} = \widetilde{P}_{2r} \cup \widehat{P}_{2r} \cup \overline{P}_{1h}' \cup \widehat{P}_{1h} \cup \widehat{P}_{1h} \cup \{yu_{2,f_h}, u_{2,f_h}u_{b,f_h}\}$ . The other paths are the same as Subcase 1.1.

**Subcase 1.4.** The set  $\{u_{s_j,1}, u_{k_j,1}\}$  contains the vertex  $u_{s_q,1} = x$  and  $u_{k_j,1} \neq x$ . There is no arc  $u_{k_q,1}z$  in  $\widetilde{P}_{1q}$ . In  $\overline{P}_{2q}$ , there is an arc  $xu_{g_1,1}$  ( $q \in [\kappa(G)], g_1 \in [n]$ ). In  $\widetilde{P}_{2j}$ , there exists an out-neighbor  $u_{1,g_2}$  of x, where  $g_2 \in [\kappa(G)] \setminus \{a, c, d\}$ , and this path is denoted by  $\widetilde{P}_{2q}$ .

**Subcase 1.4.1.** There is no arc  $xu_{g_{1},1}$  in  $\tilde{P}_{1i}$ .

In  $\overline{P}_{2q}''$ , the path from vertex  $u_{g_1,c}$  to  $u_{k_q,c}$  is denoted as  $\overline{P}_{2q}''$ . In  $G(v_{g_2})$ , with  $S'_7 = \{u_{3,g_2}, u_{1,g_2}\}$  and  $r'_7 = u_{3,g_2}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_7, r'_7)$ -paths. Then in these paths, one of the paths  $\widetilde{P}_q$  is chosen, with  $u_{k_q,g_2} \notin \widetilde{P}_q$ . If  $u_{2,g_2} \in \widetilde{P}_q$ , then let  $u_{2,g_2} \notin \widetilde{P}_{2q}$ . In  $\widetilde{P}_{2q}$ , the path from vertex  $u_{1,g_2}$  to  $u_{1,q}$  is denoted as  $\widetilde{P}_{2q}'$ . Let

 $P_{2q} = \overline{P}_{2q}^{\prime\prime\prime} \cup \breve{P}_{2q} \cup \widetilde{P}_q \cup \widetilde{P}_{2q} \cup \widehat{P}_{2q} \cup \widehat{P}_{2q} \cup \{xu_{g_1,1}, u_{g_1,2}, u_{g_1,c}, u_{k_q,1}z, zu_{3,g_2}\}.$ 

If  $u_{g_1,1} = u_{k_q,1}$ , then  $P_{2q} = \widetilde{P}_q \cup \widetilde{P}'_{2q} \cup \widehat{P}_{2q} \cup \widetilde{P}_{2q} \cup \{xu_{g_1,1}, u_{k_q,1}z, zu_{3,g_2}\}$ . The other paths are the same as Subcases 1.1–1.3.

**Subcase 1.4.2.** If there exists an arc  $xu_{g_1,1}$  in  $\tilde{P}_{1g}$   $(g \in [\kappa(G)])$ , then in  $H(u_{g_1})$ , with  $S_6 = \{u_{g_1,1}, u_{g_1,g_2}\}$  and  $r_6 = u_{g_1,g_2}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_6, r_6)$ -paths. Then in these paths, one of the paths  $\tilde{P}_g$  is chosen, with  $u_{g_1,d} \notin \tilde{P}_g$ . In  $\tilde{P}_{1g}$ , the path from vertex  $u_{g_1,1}$  to y is denoted as  $\tilde{P}'_{1g}$ . Let  $P_{2g}$  be the same as in Subcase 1.4.1. Let

$$P_{1g} = P_g \cup P'_{1g} \cup \overline{P}'_{1g} \cup P_{1g} \cup P_{1g} \cup \{xu_{1,g_2}, u_{1,g_2}, u_{g_1,g_2}, yu_{2,f_g}, u_{2,f_g}, u_{b,f_g}\}.$$
  
The other paths are the same as Subcases 1.1–1.3.

**Subcase 1.5.** In the set  $\{u_{s_j,1}, u_{k_j,1}\}$ , there exists vertex  $u_{k_p,1} = x$ . And there is no arc  $u_{k_p,1}z$  in  $\tilde{P}_{1p}$ .

In  $\widetilde{P}_{2j}$ , there is an out-neighbor  $u_{1,g}$  of x such that  $g \in [\kappa(G)] \setminus \{a, c, d\}$ , and this path is denoted by  $\widetilde{P}_{2p}$ . In  $G(v_g)$ , let  $S'_8 = \{u_{3,g}, u_{1,g}\}$ ,  $r'_8 = u_{3,g}$ , and we know there exist at least  $\kappa(G)$  internally disjoint  $(S'_8, r'_8)$ -paths. Then in these paths, we choose one of the paths  $\widetilde{P}_p$ , and let  $u_{2,g} \notin \widetilde{P}_p$ . In  $\widetilde{P}_{2p}$ , we denote the path from vertex  $u_{1,g}$  to  $u_{1,a}$  as  $\widetilde{P}'_{2p}$ . Let

$$P_{2p} = \widetilde{P}_p \cup \widetilde{P}'_{2p} \cup \widehat{P}_{2p} \cup \widehat{P}_{2p} \cup \{xz, zu_{3,g}\}.$$

The other paths are the same as Subcases 1.1–1.3.

**Case 2.** Let *x* and *y* be in the same  $G(v_j)$ . Let *x* and *z* be in the same  $H(u_i)$  for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we may assume that  $x = u_{1,1}$ ,  $y = u_{2,1}$ ,  $z = u_{1,2}$ . In this case, our overall goal is that we will use arc-disjoint paths between *x* and *y* in  $G(v_1)$ , *y* and its out-neighbors in  $H(u_2)$ , *z* and its in-neighbors in  $G(v_2)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 3. The vertices and paths contained in Figure 3 are explained below.



Figure 3. Depiction of the arc-disjoint paths found in Case 2 of the proof of Theorem 1.

Considering  $S_1 = \{x, y\}$ ,  $r_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $G(v_1)$ , denoted as  $\tilde{P}_{1i}$   $(i \in [\kappa(G)])$ . Let  $S_2 = \{y, u_{2,2}\}$ ,  $r_2 = y$ , and there exist at least  $\kappa(G)$  internally disjoint  $(S_2, r_2)$ -paths in  $H(u_2)$ , denoted as  $\overline{P}_{1i}$   $(i \in [\kappa(G)])$ . For each  $i \in [\kappa(G)]$ , let  $u_{2,f_i}$  be the out-neighbor of y in  $\overline{P}_{1i}$ ; clearly these out-neighbors are distinct. For each  $i \in [\kappa(G)]$ , an out-neighbor  $u_{b,f_i}$  of  $u_{2,f_i}$  in  $G(v_{f_i})$  can be chosen, with  $b \neq 1$ . In  $H(u_b)$ , with  $S_3 = \{u_{b,1}, u_{b,2}\}$  and  $r_3 = u_{b,1}$ .  $\overline{P}'_{1i}$  is the  $(S_3, r_3)$ -path corresponding to  $\overline{P}_{1i}$ . In  $\overline{P}'_{1i}$ , the path from vertex  $u_{b,f_i}$  to  $u_{b,2}$  is denoted  $\overline{P}''_{1i}$ . With  $S_4 = \{u_{b,2}, z\}$  and  $r_4 = u_{b,2}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_4, r_4)$ -paths in  $G(v_2)$ , denoted as  $\hat{P}_{1i}$   $(i \in [\kappa(G)])$ . If  $u_{2,f_k} = u_{2,2}$ , then  $u_{2,2} \notin \hat{P}_{1k}$ . The arc-disjoint (S, r)-paths can be constructed as

 $P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1i}^{\prime\prime} \cup \widehat{P}_{1i} \cup \{yu_{2,f_i}, u_{2,f_i}u_{b,f_i}\}, i \in [\kappa(G)].$ 

Likewise, we can identify  $\kappa(G)$  arc-disjoint (S, r)-paths from x to z and subsequently to y. Consequently, we can derive  $2\kappa(G)$  arc-disjoint (S, r)-paths.

**Case 3.** Let *x*, *y* and *z* be in different  $H(u_i)$  and  $G(v_j)$  for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we can assume that  $x = u_{1,1}$ ,  $y = u_{2,2}$ ,  $z = u_{3,3}$ . In this case, our overall goal is that, we will use arc-disjoint paths between *x* and its out-neighbors in  $H(u_1)$ , *y* and its out-neighbors in  $H(u_2)$ , *z* and its in-neighbors in  $G(v_3)$ , *x* and its out-neighbors in  $G(v_1)$ , *y* and its out-neighbors in  $G(v_2)$ , *z* and its in-neighbors in  $H(u_3)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 4. The vertices and paths contained in Figure 4 are explained below.

Considering  $S_1 = \{x, u_{2,1}\}$ ,  $r_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $G(v_1)$ , denoted as  $\widetilde{P}_{1i}$  ( $i \in [\kappa(G)]$ ). Let  $S_2 = \{u_{2,1}, y\}$ ,  $r_2 = u_{2,1}$ ,

and there exist at least  $\kappa(G)$  internally disjoint  $(S_2, r_2)$ -paths in  $H(u_2)$ , denoted as  $\widehat{P}_{1i}$  ( $i \in [\kappa(G)]$ ). Considering  $S'_1 = \{x, u_{1,2}\}, r'_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_1, r'_1)$ -paths in  $H(u_1)$ , denoted as  $\widetilde{P}_{2j}$  ( $j \in [\kappa(G)]$ ). Let  $S'_2 = \{u_{1,2}, y\}, r'_2 = u_{1,2}$ , and there exist at least  $\kappa(G)$  internally disjoint  $(S'_2, r'_2)$ -paths in  $G(v_2)$ , denoted as  $\widehat{P}_{2j}$  ( $j \in [\kappa(G)]$ ). In  $H(u_2)$ , with  $S'_3 = \{y, u_{2,3}\}, r'_3 = y$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_3, r'_3)$ -paths, denoted as  $\overline{P}_{2j}$ . For each  $j \in [\kappa(G)]$ , let  $u_{2,f_j}$  be the out-neighbor of y in  $\overline{P}_{2j}$ , clearly these out-neighbors are distinct.



Figure 4. Depiction of the arc-disjoint paths found in Case 3 of the proof of Theorem 1.

In  $G(v_2)$ , with  $S_3 = \{y, u_{3,2}\}$ ,  $r_3 = y$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_3, r_3)$ -paths in  $G(v_2)$ , denoted as  $\overline{P}_{1i}$ . For each  $i \in [\kappa(G)]$ , let  $u_{s_i,2}$  be the outneighbor of y in  $\overline{P}_{1i}$ , clearly these out-neighbors are distinct. For each  $i \in [\kappa(G)]$ , an out-neighbor of  $u_{s_i,2}$  in  $H(u_{s_i})$  can be chosen, denoted by  $u_{s_i,c}$  ( $c \in [m]$ ), with  $c \notin \{1,3\}$ . Similarly, an out-neighbor of  $u_{2,f_j}$  in  $G(v_{f_j})$  can be chosen, denoted by  $u_{b,f_j}$  ( $b \in [n]$ ), with  $b \notin \{1,3\}$ .

In  $G(v_c)$ , with  $S_4 = \{u_{2,c}, u_{3,c}\}$ ,  $r_4 = u_{2,c}$ .  $\overline{P}'_{1i}$  is the  $(S_4, r_4)$ -path corresponding to  $\overline{P}_{1i}$ . In  $\overline{P}'_{1i}$ , the path from vertex  $u_{s_i,c}$  to  $u_{3,c}$  is denoted as  $\overline{P}''_{1i}$ . In  $H(u_3)$ , with  $S_5 = \{u_{3,c}, z\}$ ,  $r_5 = u_{3,c}$ , and it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_5, r_5)$ -paths, say  $\check{P}_{1i}$ . In  $H(v_b)$ , with  $S'_4 = \{u_{b,2}, u_{b,3}\}$ ,  $r'_4 = u_{b,2}$ ,  $\overline{P}'_{2j}$  is the  $(S'_4, r'_4)$ -path corresponding to  $\overline{P}_{2j}$ . In path  $\overline{P}'_{2j}$ , the path from vertex  $u_{b,f_j}$  to  $u_{b,3}$  is denoted as  $\overline{P}''_{2j}$ . In  $G(v_3)$ , with  $S'_5 = \{u_{b,3}, z\}$ ,  $r'_5 = u_{b,3}$ , and it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_5, r'_5)$ -paths in  $G(v_3)$ , say  $\check{P}_{2j}$ . If  $u_{s_k,2} = u_{3,2}$ , then  $u_{3,2} \notin \check{P}_{1k}$  ( $k \in [\kappa(G)]$ ). If  $u_{3,1} \in \tilde{P}_{1i}$ , then  $u_{3,1} \notin \check{P}_{1t}$  ( $t \in [\kappa(G)]$ ). Similarly, if  $u_{2,f_r} = u_{2,3}$ , then  $u_{2,3} \notin \check{P}_{2r}$  ( $r \in [\kappa(G)]$ ). If  $u_{1,3} \in \tilde{P}_{2h}$ , then  $u_{1,3} \notin \check{P}_{2h}$  ( $h \in [\kappa(G)]$ ). The arc-disjoint (S, r)-paths can be constructed as  $P_{1i} = \tilde{P}_{1i} \cup \hat{P}_{1i} \cup \bar{P}''_{1i} \cup \check{P}_{1i} \cup \{yu_{s_i,2}, u_{s_i,2}u_{s_i,c}\}$ ,  $P_{2j} = \tilde{P}_{2j} \cup \hat{P}_{2j} \cup \bar{P}''_{2j} \cup [yu_{2,f_i}, u_{2,f_i}u_{b,f_i}]$ .

Then we obtain  $2\kappa(G)$  arc-disjoint (S, r)-paths.

**Case 4.** Let *x* and *y* be in the same  $H(u_i)$ . Let *z*, *x*, and *y* be in different  $G(v_j)$  and let *z*, *x* be in different  $H(u_i)$ , for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we can assume

that  $x = u_{2,1}$ ,  $y = u_{2,2}$ ,  $z = u_{3,3}$ . In this case, our overall goal is that we will use arc-disjoint paths between x and y in  $H(u_2)$ , y and its out-neighbors in  $G(v_2)$ , z and its in-neighbors in  $H(u_3)$ , x and its out-neighbors in  $G(v_2)$ , y and its out-neighbors in  $H(u_2)$ , z and its in-neighbors in  $G(v_3)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 5. The vertices and paths contained in Figure 5 are explained below.



Figure 5. Depiction of the arc-disjoint paths found in Case 4 of the proof of Theorem 1.

Considering  $S_1 = \{x, y\}$ ,  $r_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $H(u_2)$ , denoted as  $\tilde{P}_{1i}$  ( $i \in [\kappa(G)]$ ). In  $G(v_1)$ , with  $S'_1 = \{x, u_{1,1}\}$ , and  $r'_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_1, r'_1)$ -paths, denoted as  $\tilde{P}_{2j}$ . In  $H(u_1)$ , with  $S'_2 = \{u_{1,1}, u_{1,2}\}$ , and  $r'_2 = u_{1,1}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_1, r'_1)$ -paths, denoted as  $\tilde{P}_{2j}$ . In  $H(u_1)$ , with  $S'_2 = \{u_{1,1}, u_{1,2}\}$ , and  $r'_2 = u_{1,1}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_2, r'_2)$ -paths, denoted as  $\tilde{P}_{2j}$ . In  $G(v_2)$ , with  $S'_3 = \{u_{1,2}, y\}$ , and  $r'_3 = u_{1,2}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_3, r'_3)$ -paths, denoted as  $\tilde{P}_{2j}$ . Let  $u_{s_i,2}$ ,  $u_{s_i,c}$ ,  $u_{2,f_j}$ ,  $u_{b,f_j}$ ,  $\tilde{P}'_{1i}$  and  $\tilde{P}''_{2j}$  be the same as in Case 3.

If  $u_{s_{k},2} = u_{3,2}$ , then  $u_{3,2} \notin \check{P}_{1k}$   $(k \in [\kappa(G)])$ . If  $u_{2,f_r} = u_{2,3}$ , then  $u_{2,3} \notin \check{P}_{2r}$   $(r \in [\kappa(G)])$ . If  $u_{1,3} \in \tilde{P}_{2h}$ , then  $u_{1,3} \notin \check{P}_{2h}$   $(h \in [\kappa(G)])$ . If  $u_{b,1} \in \overline{P}''_{2t}$ , then  $u_{b,1} \notin \hat{P}_{2t}$   $(t \in [\kappa(G)])$ . If  $u_{1,3} \in \check{P}_{2l}$ , then  $u_{1,3} \notin \tilde{P}_{2l}$   $(l \in [\kappa(G)])$ .

**Subcase 4.1.** If there exists no vertex  $u_{2,f_i} = x$ . Let

 $P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1i}^{\prime\prime} \cup \breve{P}_{1i} \cup \{yu_{s_i,2}, u_{s_i,2}, u_{s_i,c}\},$  $P_{2j} = \widetilde{P}_{2j} \cup \overline{P}_{2j}^{\prime\prime} \cup \widehat{P}_{2j} \cup \breve{P}_{2j} \cup \widetilde{P}_{2j} \cup \{yu_{2,f_i}, u_{2,f_i}u_{b,f_j}\}.$ 

**Subcase 4.2.** If there exists a vertex  $u_{2,f_g} = x$  ( $g \in [\kappa(G)]$ ), then in  $G(v_1)$ , there exists an out-neighbor  $u_{b,1}$  of x. If  $u_{b,1} \in \widehat{P}_{2j}$ , this path is denoted by  $\widehat{P}_{2g}$ .

In  $H(u_3)$ , there exists an out-neighbor  $u_{3,g_1}$  of z such that  $g_1 \in [m] \setminus \{c, 2, 1\}$ . In  $G(v_2)$ , there exists an in-neighbor  $u_{g_2,2}$  of y such that  $g_2 \in [n] \setminus \{1, b, 3\}$ . If  $u_{g_2,2} \in \widehat{P}_{2j}$ , this path is denoted by  $\widehat{P}_{2g}$ . Then in  $H(u_{g_2})$ , with  $S'_4 = \{u_{g_2,g_1}, u_{g_2,2}\}$ , and  $r'_4 = u_{g_2,g_1}$ , it is known that there are at least  $\kappa(G)$  internally disjoint  $(S'_4, r'_4)$ -paths. One such  $(S'_4, r'_4)$ -path is chosen, denoted as  $\widehat{P}_g$ , with  $u_{g_2,3} \notin \widehat{P}_g$ . In  $G(v_{g_1})$ , with  $S'_5 = \{u_{3,g_1}, u_{g_2,g_1}\}$ , and  $r'_5 = u_{3,g_1}$ , it is known that there are at least  $\kappa(G)$  internally disjoint  $(S'_5, r'_5)$ -paths. One such  $(S'_5, r'_5)$ -path is chosen, denoted as  $\overline{P}_g$ , with  $u_{b,g_1} \notin \overline{P}_g$ . Then,  $P_{2g}$  is constructed as

 $P_{2g} = \overline{P}_{2g}^{\prime\prime} \cup \check{P}_{2g} \cup \overline{P}_g \cup \widehat{P}_g \cup \{xu_{b,1}, zu_{3,g_1}, u_{g_2,2}y\}.$ 

The other paths are the same as Subcase 4.1. Then we obtain  $2\kappa(G)$  arc-disjoint (S, r)-paths.

**Case 5.** Let *x* and *y* be in the same  $H(u_i)$ . Let *y* and *z* be in the same  $G(v_i)$ , for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we can assume that  $x = u_{1,1}, y = u_{1,2}, z = u_{2,2}$ . In this case, our overall goal is that we will use arc-disjoint paths between x and y in  $H(u_1)$ , y and z in  $G(v_2)$ , x and its out-neighbors in  $G(v_1)$ , x and its out-neighbors in  $G(v_1)$ , z and y in  $G(v_2)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 6. The vertices and paths contained in Figure 6 are explained below.



Figure 6. Depiction of the arc-disjoint paths found in Case 5 of the proof of Theorem 1.

It is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $H(u_1)$ , denoted as  $P_{1i}$  ( $i \in [\kappa(G)]$ ), where  $S_1 = \{x, y\}$  and  $r_1 = x$ . In  $G(v_2)$ , there exist at least  $\kappa(G)$  internally disjoint  $(S_2, r_2)$ -paths, denoted as  $\overline{P}_{1i}$   $(i \in [\kappa(G)])$ , where  $S_2 = \{y, z\}$ and  $r_2 = y$ . Similarly, in  $G(v_1)$ , there exist at least  $\kappa(G)$  internally disjoint  $(S'_1, r'_1)$ paths, denoted as  $\widetilde{P}_{2j}$   $(j \in [\kappa(G)])$ , where  $S'_1 = \{x, u_{2,1}\}$  and  $r'_1 = x$ . In  $H(u_2)$ , there exist at least  $\kappa(G)$  internally disjoint  $(S'_2, r'_2)$ -paths, denoted as  $\widehat{P}_{2j}$   $(j \in [\kappa(G)])$ , where  $S'_2 = \{u_{2,1}, z\}$  and  $r_2 = u_{2,1}$ . In  $G(v_2)$ , there exist at least  $\kappa(G)$  internally disjoint  $(S'_3, r'_3)$ paths, denoted as  $\overline{P}_{2i}$   $(j \in [\kappa(G)])$ , where  $S'_3 = \{z, y\}$  and  $r'_3 = z$ . For each  $j \in [\kappa(G)]$ , let  $u_{s_i,2}$  be the in-neighbor of y in  $\overline{P}_{2j}$ , and clearly these in-neighbors are distinct. Similarly, let  $u_{k_i,2}$   $(j \in [\kappa(G)])$  be the out-neighbor of z in  $\overline{P}_{2j}$ . For each  $j \in [\kappa(G)]$ , an out-neighbor  $u_{k_i,b}$ of  $u_{k_i,2}$  is chosen in  $H(u_{k_i})$ , where  $b \neq 1$ .

In  $G(v_b)$ , with  $S'_4 = \{u_{2,b}, u_{1,b}\}$  and  $r'_4 = u_{2,b}$ .  $\overline{P}'_{2i}$  is the  $(S'_4, r'_4)$ -path corresponding to  $\overline{P}_{2j}$ . In  $\overline{P}'_{2j}$ , the path from vertex  $u_{k_j,b}$  to  $u_{s_j,b}$  is denoted as  $\overline{P}''_{2j}$ . Then, in  $H(u_{s_j})$ , with  $S'_{5_j} = \{u_{s_j,b}, u_{s_j,2}\}$  and  $r'_{5_j} = u_{s_j,b}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_{5_j}, r'_{5_j})$ -paths. One such  $(S'_{5_j}, r'_{5_j})$ -path, denoted as  $\check{P}_{2j}$   $(j \in [\kappa(G)])$ , is chosen, with  $u_{s_{i},1} \notin \check{P}_{2i}$ . The arc-disjoint (S, r)-paths can be constructed as

 $P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1i},$   $P_{2j} = \widetilde{P}_{2j} \cup \widehat{P}_{2j} \cup \overline{P}_{2j}' \cup \widecheck{P}_{2j} \cup \{zu_{k_j,2}, u_{s_j,2}y, u_{k_j,2}u_{k_j,b}\}.$ 

If  $u_{s_t,2} = u_{k_t,2}$   $(t \in [\kappa(G)])$ , then  $P_{2t} = \widetilde{P}_{2t} \cup \widehat{P}_{2t} \cup \{zu_{k_t,2}, u_{s_t,2}y\}$ . And if  $u_{k_t,2} = y$   $(l \in \mathbb{R})$  $[\kappa(G)]$ , then  $P_{2l} = \widetilde{P}_{2l} \cup \widehat{P}_{2l} \cup \{zy\}$ . This results in obtaining  $2\kappa(G)$  arc-disjoint (S, r)-paths.

**Case 6.** Let y and z be in the same  $G(v_i)$ . Let x, y be in different  $G(v_i)$  and x, y, z be in different  $H(u_i)$ , for some  $i \in [n]$ ,  $j \in [m]$ . Without loss of generality, we can assume that  $x = u_{3,1}, y = u_{1,2}, z = u_{2,2}$ . Let  $u_{s_j,2}$   $(j \in [\kappa(G)]), u_{k_j,2}, P_{1i}, P_{2j}, P_{2j}$  be the same as in Case 5. In  $G(v_1)$ , with  $S'_1 = \{x, u_{2,1}\}$  and  $r'_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally

disjoint  $(S'_1, r'_1)$ -paths in  $G(v_1)$ , denoted as  $\widetilde{P}_{2j}$ . In this case, our overall goal is that we will use arc-disjoint paths between x and its out-neighbors in  $H(u_3)$ , y and its in-neighbors in  $H(u_1)$ , y and z in  $G(v_2)$ , x and its out-neighbors in  $G(v_1)$ , z and its in-neighbors in  $H(u_2)$ , z and y in  $G(v_2)$ , and combine them together to form the required arc-disjoint paths. The general idea of the proof process is briefly described in Figure 7. The vertices and paths contained in Figure 7 are explained below.



Figure 7. Depiction of the arc-disjoint paths found in Case 6 of the proof of Theorem 1.

**Subcase 6.1.** In the set  $\{u_{s_j,2}, u_{k_j,2}\}$ , there does not exist  $u_{3,2} \in \{u_{s_j,2}, u_{k_j,2}\}$ . Thus,  $u_{s_j,b}, u_{k_j,b}, \tilde{P}_{2j}, \overline{P}_{2j}''$  remain the same as in Case 5.

In  $H(u_3)$ , with  $S_1 = \{x, u_{3,c}\}$  ( $c \in [m] \setminus \{1, 2, b\}$ ) and  $r_1 = x$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_1, r_1)$ -paths in  $H(u_3)$ , denoted as  $\tilde{P}_{1i}$ . In  $G(v_c)$ , with  $S_2 = \{u_{3,c}, u_{1,c}\}$  and  $r_2 = u_{3,c}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_2, r_2)$ -paths in  $G(v_c)$ , denoted as  $\tilde{P}_{1i}$ . In  $H(u_1)$ , with  $S_3 = \{u_{1,c}, y\}$  and  $r_3 = u_{1,c}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S_3, r_3)$ -paths in  $H(u_1)$ , denoted as

 $P_{1i}. \text{ If } u_{3,2} \in \widetilde{P}_{1r}, \text{ then } u_{3,2} \notin \overline{P}_{1r}. \text{ Let} \\P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1i} \cup \widehat{P}_{1i} \cup \widehat{P}_{1i}, \\P_{2j} = \widetilde{P}_{2j} \cup \overline{P}_{2j}^{\prime\prime} \cup \widehat{P}_{2j} \cup \overline{P}_{2j} \cup \{zu_{k_j,2}, u_{k_j,2}u_{k_j,b}, u_{s_j,2}y\}.$ 

If  $u_{s_t,2} = u_{k_t,2}$   $(t \in [\kappa(G)])$ , then  $P_{2t} = \widetilde{P}_{2t} \cup \widehat{P}_{2t} \cup \{zu_{k_t,2}, u_{s_t,2}y\}$ . And if  $u_{k_l,2} = y$   $(l \in [\kappa(G)])$ , then  $P_{2l} = \widetilde{P}_{2l} \cup \widehat{P}_{2l} \cup \{zy\}$ . Now we obtain  $2\kappa(G)$  arc-disjoint (S, r)-paths.

**Subcase 6.2.** In the set  $\{u_{s_j,2}, u_{k_j,2}\}$ , only one vertex  $u_{k_r,2} = u_{3,2}$   $(r \in [\kappa(G)])$  exists. Thus,  $u_{s_j,b}, u_{k_j,b}, \breve{P}_{2j}, \overline{P}_{2j}''$  remain the same as in Case 5.

If  $u_{k_r,2}u_{k_r,b} \notin \tilde{P}_{1i}$  in  $\tilde{P}_{1i}$ , then  $P_{1i}$ ,  $P_{2j}$  remain the same as in Subcase 6.1. If an arc  $u_{k_r,2}u_{k_r,b}$  is in path  $\tilde{P}_{1i}$ , since  $\delta(G) \ge 4$ , then an out-neighbor  $u_{k_r,a}$  of  $u_{k_r,2}$  can be found in  $H(u_3)$  such that  $u_{k_r,2}u_{k_r,a} \notin \tilde{P}_{1i}$  and  $a \in [m] \setminus \{c,1\}$ . In  $G(v_a)$ ,  $\overline{P}_{2r}''$  is the  $(S'_3, r'_3)$ -path corresponding to  $\overline{P}_{2r}''$ , where  $S'_3 = \{u_{k_r,a}, u_{s_r,a}\}$ ,  $r'_3 = u_{k_r,a}$ . In  $H(u_{s_r})$ , with  $S'_4 = \{u_{s_r,a}, u_{s_r,2}\}$  and  $r'_4 = u_{s_r,a}$ , it is known that there exist at least  $\kappa(G)$  internally disjoint  $(S'_4, r'_4)$ -paths. Then in these paths, one of the paths  $\tilde{P}'_{2r}$  is chosen, with  $u_{s_r,1} \notin \tilde{P}'_{2r}$ .  $P_{2j}(j \neq r)$  and  $P_{1i}$  remain the same as in Subcase 6.1.  $P_{2r}$  is constructed as

 $P_{2r} = \widetilde{P}_{2r} \cup \overline{P}_{2r}^{\prime\prime\prime} \cup \widehat{P}_{2r} \cup \breve{P}_{2r}^{\prime} \cup \{zu_{k_r,2}, u_{k_r,2}u_{k_r,a}, u_{s_r,2}y\}.$ 

**Subcase 6.3.** In the set  $\{u_{s_{j},2}, u_{k_{j},2}\}$ , there is only one vertex  $u_{s_{g},2} = u_{3,2}$  ( $g \in [\kappa(G)]$ ).

For each  $j \in [\kappa(G)]$ , an in-neighbor of  $u_{s_j,1}$  in  $H(u_{s_j})$  can be chosen, denoted by  $u_{s_j,d}$   $(d \in [m])$ , where  $d \neq c, 1$ . In  $G(v_d)$ , let  $\overline{P}'_{2j}$  be the  $(S'_5, r'_5)$ -path corresponding to  $\overline{P}_{2j}$ , where  $S'_5 = \{u_{2,d}, u_{1,d}\}$ ,  $r'_5 = u_{2,d}$ . The path from vertex  $u_{k_j,d}$  to  $u_{s_j,d}$  in path  $\overline{P}'_{2j}$  is denoted as  $\overline{P}''_{2j}$ . In  $H(u_{k_j})$ , let  $S'_{6_j} = \{u_{k_j,2}, u_{k_j,d}\}$ ,  $r'_{6_j} = u_{k_j,2}$ , and at least  $\kappa(G)$  internally disjoint  $(S'_{6_j}, r'_{6_j})$ -paths are known to exist. Then, one of the paths  $\check{P}_{2j}$   $(j \in [\kappa(G)])$  is chosen, where  $u_{k_j,1} \notin \check{P}_{2j}$ . If  $u_{s_t,2} = u_{k_t,2}$   $(t \in [\kappa(G)])$ ,  $P_{2t} = \widetilde{P}_{2t} \cup \widehat{P}_{2t} \cup \{zu_{k_t,2}, u_{s_t,2}y\}$ . And if  $u_{k_l,2} = y$   $(l \in [\kappa(G)])$ ,  $P_{2l} = \widetilde{P}_{2l} \cup \widehat{P}_{2l} \cup \{zy\}$ . If  $u_{s_g,d}u_{s_g,2} \notin \widetilde{P}_{1i}$  in the path  $\widetilde{P}_{1i}$ . Let

 $\begin{array}{l} P_{1i} = \widetilde{P}_{1i} \cup \overline{P}_{1j} \cup \widehat{P}_{1i} \cup \overbrace{P}_{1i}, \\ P_{2j} = \widetilde{P}_{2j} \cup \overline{P}_{2j}' \cup \widehat{P}_{2j} \cup \widecheck{P}_{2j} \cup [zu_{k_j,2}, u_{s_j,d}u_{s_j,2}, u_{s_j,2}y]. \end{array}$ 

If an arc  $u_{s_g,d}u_{s_g,2}$  is in path  $\widetilde{P}_{1i}$ , an in-neighbor  $u_{s_g,f}$  of  $u_{s_g,2}$  can be found in  $H(u_3)$  such that  $u_{s_g,f}u_{s_g,2} \notin \widetilde{P}_{1i}$  and  $f \in [m] \setminus \{c, 1\}$ . In  $G(v_f)$ , let  $\overline{P}_{2g}'''$  be the  $(S'_7, r'_7)$ -path corresponding to  $\overline{P}_{2g}''$ , where  $S'_7 = \{u_{k_g,f}, u_{s_g,f}\}$ ,  $r'_7 = u_{k_g,f}$ . In  $H(u_{k_g})$ , let  $S'_8 = \{u_{k_g,2}, u_{k_g,f}\}$ ,  $r'_8 = u_{k_g,2}$ , and at least  $\kappa(G)$  internally disjoint  $(S'_7, r'_7)$ -paths are known to exist. Then, one of the paths  $\check{P}'_{2g}$  is chosen, and let  $u_{k_g,1} \notin \check{P}'_{2g}$ . Let

$$P_{2g} = \widetilde{P}_{2g} \cup \overline{P}_{2g}^{\prime\prime\prime} \cup \widehat{P}_{2g} \cup \breve{P}_{2g}^{\prime} \cup \{zu_{k_g,2}, u_{s_g,f}u_{s_g,2}, u_{s_g,2}y\}.$$
  
Hence, we obtain  $2\kappa(G)$  arc-disjoint  $(S, r)$ -paths.

Now we prove that this bound is sharp. By Proposition 1,  $\lambda_3^p(\overleftarrow{K}_n \Box \overleftarrow{K}_m) = n + m - 2$ . By Lemma 2,  $\kappa(\overleftarrow{K}_n) = n - 1$ . So we have  $\lambda_3^p(\overleftarrow{K}_n \Box \overleftarrow{K}_n) = 2\kappa(\overleftarrow{K}_n) = 2n - 2$ , with  $n \ge 5$ . Therefore, the lower bound holds and is sharp.  $\Box$ 

## 4. Exact Values for Digraph Classes

In this section, we aim to determine precise values for the directed path 3-arc-connectivity of the Cartesian product of two digraphs within specific digraph classes.

**Proposition 1.** We have  $\lambda_3^p(\overleftrightarrow{K}_n \Box \overleftrightarrow{K}_m) = n + m - 2.$ 

**Proof.** Consider  $S = \{x, y, z\}$  and r = x. We will focus solely on scenarios where x, y, and z do not all belong to the same  $\overleftarrow{K}_m(u_i)$  or the same  $\overleftarrow{K}_n(v_j)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . It is feasible to derive n + m - 2 arc-disjoint (S, r)-paths in  $\overleftarrow{K}_n \Box \overleftarrow{K}_m$ , say  $P_1$ ,  $P_2$ , ...,  $P_a$   $(a = \min\{i + 1, 3 < i \le n\})$ ,  $P_{i+1}$   $(4 < i \le n), \ldots, P_b$   $(b = \min\{n + j - 2, 3 < j \le n\})$ ,  $P_{n+j-2}$   $(4 < j \le m)$  (as shown in Figure 8) such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{1,3}zu_{3,2}y,$ 

 $P_4: xu_{3,1}zu_{2,3}y, P_a: xu_{4,1}u_{4,3}zu_{1,3}u_{1,2}u_{4,2}y, P_b: xu_{1,4}u_{3,4}zu_{3,1}u_{2,1}u_{2,4}y,$ 

 $P_{i+1}: xu_{i,1}u_{i,3}zu_{i-1,3}u_{i-1,2}u_{i,2}y, P_{n+j-2}: xu_{1,j}u_{3,j}zu_{3,j-1}u_{2,j-1}u_{2,j}y.$ 

Now, we add two cases to prove that the proposition holds, so as to show that the proposition has no constraint conditions.

First, let n = m = 4. We can assume that  $x = u_{1,1}$ ,  $y = u_{2,2}$ ,  $z = u_{3,3}$ . Let

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{3,1}u_{3,2}yu_{4,2}u_{4,3}z,$ 

 $P_4: xu_{4,1}u_{4,2}yu_{1,2}u_{1,3}z, P_5: xu_{1,3}u_{2,3}yu_{2,4}u_{3,4}z, P_6: xu_{1,4}u_{2,4}yu_{2,1}u_{3,1}z.$ 

Furthermore, let n = 2, m = 4. We can assume that  $x = u_{1,1}$ ,  $y = u_{1,2}$ ,  $z = u_{1,3}$ . Let  $P_{1,2}$ ,  $y = u_{1,2}$ ,  $z = u_{1,3}$ . Let

 $P_1: xyz, P_2: xzy, P_3: xu_{1,4}zu_{2,3}u_{2,2}y, P_4: xu_{2,1}u_{2,3}zu_{1,4}y.$ 

Then we have  $n + m - 2 = \min \{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overleftarrow{K}_n \Box \overleftarrow{K}_m) \ge n + m - 2$ . This concludes the proof.  $\Box$ 



**Figure 8.**  $\overleftarrow{K}_n \Box \overleftarrow{K}_m$ .

**Proposition 2.** We have  $\lambda_3^p(\overleftarrow{C}_n \Box \overleftarrow{K}_m) = m + 1$ , with  $n \ge 3$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where x, y, and z are not all within the same  $C_n(u_i)$  or the same  $K_m(v_j)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain m + 1 arc-disjoint (S, r)-paths in  $C_n \Box K_m$ , say  $P_1, P_2, \ldots, P_{i+1}$  ( $4 < i \leq m$ ),  $P_{m-1}, P_m$  (as shown in Figure 9) such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{1,n}u_{3,n}u_{3,1}u_{3,2}yu_{1,2}u_{1,3}z,$ 

 $P_4: xu_{3,1}u_{3,n}...u_{3,j}...zu_{2,3}y, P_5: xu_{4,1}u_{4,n}...u_{4,j}...u_{4,3}zu_{3,2}u_{4,2}y,$ 

 $P_{i+1}: xu_{i,1}u_{i,n}\ldots u_{i,j}\ldots u_{i,3}zu_{i-1,3}u_{i-1,2}u_{i,2}y.$ 

Now, we add two cases to prove that the proposition holds, so as to show that the proposition has no constraint conditions.

First, let n = 3, m = 4. We can assume that  $x = u_{1,1}$ ,  $y = u_{2,1}$ ,  $z = u_{3,1}$ . Let

 $P_1: xyz, P_2: xzy, P_3: xu_{4,1}zu_{3,2}u_{2,2}y, P_4: xu_{1,3}u_{2,3}yu_{2,2}u_{3,2}u_{3,3}z.$ 

Furthermore, let n = 3, m = 2. We can assume that  $x = u_{1,1}$ ,  $y = u_{1,2}$ ,  $z = u_{1,3}$ . Let  $P_1 : xyz$ ,  $P_2 : xzu_{2,3}u_{2,2}y$ ,  $P_3 : xu_{2,1}u_{2,3}zy$ .

Then we have  $m + 1 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overleftarrow{C}_n \Box \overleftarrow{K}_m) \ge m + 1$ . This concludes the proof.  $\Box$ 



**Figure 9.**  $\overleftrightarrow{C_n} \Box \overleftrightarrow{K}_m$ .

**Proposition 3.** We have  $\lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{K}_m) = m$ .

**Proof.** Let  $S = \{x, y, z\}$ , r = x, and we only examine the case where x, y, and z are not all within the same  $\overrightarrow{C}_n(u_i)$  or the same  $\overleftarrow{K}_m(v_j)$  for any  $i \in [n]$ ,  $j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}$ ,  $y = u_{2,2}$ ,  $z = u_{3,3}$ . We can obtain m arc-disjoint (S, r)-paths in  $\overrightarrow{C}_n \Box \overleftarrow{K}_m$ .

First assume that m is even number, let

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{3,1}u_{3,2}yu_{2,3}z,$ 

 $P_4: xu_{4,1}u_{4,2}yu_{1,2}u_{1,3}z, P_{i-1}: xu_{i-1,1}u_{i-1,2}yu_{i,2}u_{i,3}z,$ 

 $P_i : xu_{i,1}u_{i,2}yu_{i-1,2}u_{i-1,3}z, 4 < i \le m$ , and *i* is an even number.

Conversely assume that *m* is odd number, let

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{3,1}u_{3,2}yu_{1,2}u_{1,3}z,$ 

 $P_{i-1}: xu_{i-1,1}u_{i-1,2}yu_{i,2}u_{i,3}z,$ 

 $P_i: xu_{i,1}u_{i,2}yu_{i-1,2}u_{i-1,3}z, 3 < i \leq m$ , and *i* is an odd number. Then we have  $m = \min\{\delta^+(D), \delta^-(D)\} \geq \lambda_3^p(\overrightarrow{C}_n \Box \overrightarrow{K}_m) \geq m$ . This completes the proof.  $\Box$ 

**Proposition 4.** We have  $\lambda_3^p(\overleftarrow{T}_n \Box \overleftrightarrow{K}_m) = m$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where x, y, and z are not all within the same  $\overleftarrow{T}_n(u_i)$  or the same  $\overleftarrow{K}_m(v_j)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain m arc-disjoint (S, r)-paths in  $\overleftarrow{T}_n \Box \overleftarrow{K}_m$ , say  $P_1, P_2, \ldots, P_i$  ( $4 < i \le m$ ),  $P_{m-1}$ ,  $P_m$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{1,3}u_{2,3}yu_{2,1}u_{3,1}z,$ 

 $P_4: xu_{1,4}u_{2,4}u_{3,4}zu_{3,2}y, P_i: xu_{1,i}u_{2,i}u_{3,i}zu_{3,i-1}u_{2,i-1}y.$ 

Then we have  $m = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overleftarrow{T}_n \Box \overleftarrow{K}_m) \ge m$ . This completes the proof.  $\Box$ 

**Proposition 5.** We have  $\lambda_3^p(\overrightarrow{C}_n \Box \overrightarrow{C}_m) = 2$ .

**Proof.** Let  $S = \{x, y, z\}$ , r = x, and we only examine the case where x, y, and z are not all within the same  $\overrightarrow{C}_n(u_i)$  or the same  $\overrightarrow{C}_m(v_j)$  for any  $i \in [n]$ ,  $j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}$ ,  $y = u_{2,2}$ ,  $z = u_{3,3}$ . We can obtain two arc-disjoint (S, r)-paths in  $\overrightarrow{C}_n \Box \overrightarrow{C}_m$ , say  $P_1$  and  $P_2$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z.$ 

Then we have  $2 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{C}_n \Box \overrightarrow{C}_m) \ge 2$ . This completes the proof.  $\Box$ 

**Proposition 6.** We have  $\lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{C}_m) = 3$ , with  $m \ge 3$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where x, y, and z are not all within the same  $\overrightarrow{C}_n(u_i)$  or the same  $\overleftarrow{C}_m(v_j)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain three arc-disjoint (S, r)-paths in  $\overrightarrow{C}_n \Box \overleftarrow{C}_m$ , say  $P_1, P_2, P_3$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z,$ 

 $P_3: xu_{m,1}u_{m,2}u_{m-1,2}\ldots u_{3,2}yu_{1,2}u_{1,3}u_{m,3}u_{m-1,3}\ldots z.$ 

Then we have  $3 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{C}_m) \ge 3$ . This completes the proof.  $\Box$ 

**Proposition 7.** We have  $\lambda_3^p(\overleftarrow{C}_n \Box \overleftarrow{C}_m) = 4$ , with  $n \ge 3$ ,  $m \ge 3$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where *x*, *y*, and *z* are not all within the same  $\overleftarrow{C}_n(u_i)$  or the same  $\overleftarrow{C}_m(v_i)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain four arc-disjoint (S, r)-paths in  $\overleftarrow{C}_n \Box \overleftarrow{C}_m$ , say  $P_1$ ,  $P_2$ ,  $P_3$ ,  $P_4$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z,$ 

 $P_3: xu_{m,1}u_{m,2}u_{m,3}u_{m-1,3}\dots zu_{3,2}y, P_4: xu_{1,n}u_{2,n}u_{3,n}zu_{2,3}y.$ 

Then we have  $4 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{C}_m) \ge 4$ . This completes the proof.

**Proposition 8.** We have  $\lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{T}_m) = 2$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where *x*, *y*, and *z* are not all within the same  $\overrightarrow{C}_n(u_i)$  or the same  $\overleftarrow{T}_m(v_i)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain three arc-disjoint (S, r)-paths in  $\overrightarrow{C}_n \Box \overleftrightarrow{T}_m$ , say  $P_1$  and  $P_2$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z.$ 

Then we have  $2 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{C}_n \Box \overleftarrow{T}_m) \ge 2$ . This completes the proof.

**Proposition 9.** We have  $\lambda_3^p(\overleftarrow{C}_n \Box \overleftarrow{T}_m) = 3$ , with  $n \ge 3$ .

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where *x*, *y*, and *z* are not all within the same  $\overleftarrow{C}_n(u_i)$  or the same  $\overleftarrow{T}_m(v_i)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain three arc-disjoint (S, r)-paths in  $\overleftarrow{C}_n \Box \overleftarrow{T}_m$ , say  $P_1$ ,  $P_2$ ,  $P_3$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z, P_3: xu_{m,1}u_{m,2}u_{m,3}u_{m-1,3}...zu_{3,2}y.$ Then we have  $3 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{C}_n \Box \overrightarrow{T}_m) \ge 3$ . This completes the proof.

**Proposition 10.** We have  $\lambda_3^p(\overleftarrow{T}_n \Box \overleftarrow{T}_m) = 2.$ 

**Proof.** Let  $S = \{x, y, z\}, r = x$ , and we only examine the case where *x*, *y*, and *z* are not all within the same  $T_n(u_i)$  or the same  $T_m(v_j)$  for any  $i \in [n], j \in [m]$ . The rationale for the remaining cases follows a similar line of argument. Without loss of generality, let us assume  $x = u_{1,1}, y = u_{2,2}, z = u_{3,3}$ . We can obtain three arc-disjoint (S, r)-paths in  $T_n \Box T_m$ , say  $P_1$  and  $P_2$  such that

 $P_1: xu_{2,1}yu_{3,2}z, P_2: xu_{1,2}yu_{2,3}z.$ 

Then we have  $2 = \min\{\delta^+(D), \delta^-(D)\} \ge \lambda_3^p(\overrightarrow{T}_n \Box \overleftarrow{T}_m) \ge 2$ . This completes the proof.

According to Propositions 1–9, we find that the directed path 3-arc-connectivity of some Cartesian products of digraphs is equal to the minimum semi-degrees. Based on this discovery, we can consider under what conditions the directed path 3-arc-connectivity of Cartesian products of digraphs can be equal to the minimum semi-degrees, which is a problem we can consider next.

## 5. Conclusions

In this paper, we prove that if *G* and *H* are two digraphs such that  $\delta(G) \ge 4$ ,  $\delta(H) \ge 4$ , and  $\kappa(G) \geq 2$ ,  $\kappa(H) \geq 2$ , then  $\lambda_3^p(G \Box H) \geq \min\{2\kappa(G), 2\kappa(H)\}$ , and moreover, this bound

Funding: This research received no external funding.

**Data Availability Statement:** Data sharing not applicable to this work as no datasets were generated or analysed during the current study.

paths play a significant role in improving transmission reliability and boosting network

**Conflicts of Interest:** The author declares no conflict of interest.

# References

- 1. Bang-Jensen, J.; Gutin, G. Digraphs: Theory, Algorithms and Applications, 2nd ed.; Springer: London, UK, 2009.
- Grotschel, M.; Martin, A.; Weismantel, R. The Steiner tree packing problem in VLSI design. *Math. Program.* 1997, 78, 265–281. [CrossRef]
- 3. Huang, C.; Lee, C.; Gao, H.; Hsieh, S. The internal Steiner tree problem: Hardness and approximations. *J. Complex.* **2013**, *29*, 27–43. [CrossRef]
- 4. Sherwani, N. Algorithms for VLSI Physical Design Automation, 3rd ed.; Kluwer Acad. Pub.: London, UK, 1999.
- 5. Li, X.; Mao, Y. Generalized Connectivity of Graphs; Springer: Cham, Switzerland, 2016.

transmission speeds.

- 6. Liptak, L.; Cheng, E.; J. Kim, J.S.; Kim, S.W. One-to-many node-disjoint paths of hyper-star networks. *Discret. Appl. Math.* 2012, 160, 2006–2014. [CrossRef]
- Abu-Affash, A.K.; Carmi, P.; Katz, M.J.; Segal, M. The Euclidean bottleneck Steiner path problem and other applications of (*α*, *β*)-pair decomposition. *Discret. Comput. Geom.* 2014, *51*, 1–23. [CrossRef]
- 8. Gurski, F.; Komander, D.; Rehs, C.; Rethmann, J.; Wanke, E. Computing directed Steiner path covers. *J. Comb. Optim.* **2022**, *43*, 402–431. [CrossRef]
- 9. Sun, Y.; Zhang, X. Directed Steiner path packing and directed path connectivity. *arXiv* **2022**, arXiv:2211.04025.
- 10. Sun, Y.; Gutin, G. Strong subgraph connectivity of digraphs. Graphs Comb. 2021, 37, 951–970. [CrossRef]
- 11. Sun, Y.; Gutin, G.; Yeo, A.; Zhang, X. Strong subgraph k-connectivity. J. Graph Theory 2019, 92, 5–18. [CrossRef]
- 12. Sun, Y.; Gutin, G.; Zhang, X. Packing strong subgraph in digraphs. Discret. Optim. 2022, 46, 100745. [CrossRef]
- 13. Hammack, R.H. Digraphs Products. In *Classes of Directed Graphs*; Bang-Jensen, J., Gutin, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2018.
- 14. Dong, Y.; Gutin, G.; Sun, Y. Strong subgraph 2-arc-connectivity and arc-strong connectivity of Cartesian product of digraphs. *Discuss. Math. Graph Theory* **2022**. [CrossRef]
- 15. Sun, Y.; Yeo, A. Directed Steiner tree packing and directed tree connectivity. J. Graph Theory 2023, 102, 86–106. [CrossRef]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.