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Abstract: Spatialization of biomass and carbon stocks is essential for a good understanding of the for-
est stand and its characteristics, especially in degraded Mediterranean cork oak forests. Furthermore,
the analysis of biomass and carbon stock changes and dynamics is essential for understanding the
carbon cycle, in particular carbon emissions and stocks, in order to make projections, especially in
the context of climate change. In this research, we use a multidimensional framework integrating
forest survey data, LiDAR UAV data, and extracted vegetation indices from Landsat imagery (NDVI,
ARVI, CIG, etc.) to model and spatialize cork oak biomass and carbon stocks on a large scale. For this
purpose, we explore the use of univariate and multivariate regression modeling and examine several
types of regression, namely, multiple linear regression, stepwise linear regression, random forest
regression, simple linear regression, logarithmic regression, and quadratic and cubic regression. The
results show that for multivariate regression, stepwise regression gives good results, with R2 equal to
80% and 65% and RMSE equal to 2.59 and 1.52 Mg/ha for biomass and carbon stock, respectively.
Random forest regression, chosen as the ML algorithm, gives acceptable results, explaining 80% and
60% of the variation in biomass and carbon stock, respectively, and an RMSE of 2.74 and 1.72 Mg/ha
for biomass and carbon stock, respectively. For the univariate regression, the simple linear regression
is chosen because it gives satisfactory results, close to those of the quadratic and cubic regressions,
but with a simpler equation. The vegetation index chosen is ARVI, which shows good performance
indices, close to those of the NDVI and CIG. The assessment of biomass and carbon stock changes
in the study area over 35 years (1985–2020) showed a slight increase of less than 10 Mg/ha and a
decrease in biomass and carbon stock over a large area.

Keywords: biomass; carbon stock; dynamics; modeling regression; spatialization; random forest;
LiDAR UAV; Landsat images; cork oak; Maamora forest

1. Introduction

Deforestation, desertification and climate change are among the major challenges
facing humanity in the 21st century. Forest ecosystems, which cover about 31% of the
world’s land area [1], play a crucial role in the global carbon cycle, storing 56% of the
world’s carbon [2] and thus helping to mitigate climate change. In fact, they contribute
significantly to this process, accounting for about 80% of aboveground carbon and 40% of
belowground terrestrial carbon [3]. Unfortunately, terrestrial ecosystems are vulnerable to
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carbon losses due to land degradation, forest fires, storms and pest outbreaks [4]. These
losses are expected to contribute to a decline in the terrestrial carbon sink [5]. In fact, about
5-10 Gt CO2 per year are lost through deforestation and forest degradation [6].

Usually, biomass and carbon stock estimation is based exclusively on field surveys
and allometric equations developed in the same forest. However, this approach is time
consuming, laborious and cannot be applied to large areas. Remote sensing overcomes
these drawbacks by being more efficient, time-saving and applicable to large areas. In
fact, remote sensing with its various techniques (satellite imagery, LiDAR, UAV, SAR,
aerial photography..., etc.) is widely used for biomass and carbon stock estimation and
mapping all over the world [7–9]. Satellite imagery allows large scale biomass and carbon
stock analysis, but does not provide sufficient information on stand structure as it does
not penetrate the canopy, unlike LiDAR (Light Detection And Ranging). This technology
provides high quality information on forest stands, but over a limited area [7,10–14]. It
has revolutionized biomass estimation from satellites [15,16]. Large-scale LiDAR remote
sensing far exceeds the ability of radar and optical sensors to estimate carbon stocks for
all forest types [17]. It can be mounted on space, airborne, or ground platforms, each
platform serving specific forest inventory needs. In research studies, LiDAR data are
used in conjunction with satellite imagery [18], or alone on several dates, depending on
their availability. Unmanned aerial vehicles (UAVs) also have the potential to increase the
efficiency of forest data collection, as they have much higher spatial and temporal resolution
than other remote sensing techniques [19,20], especially with a LiDAR sensor [21]. Thus,
the UAV/satellite combination quickly proved its worth by providing solutions to various
scientific questions [20]. Different UAV/satellite synergies have been categorized (data
comparison, multiscale elucidation, model calibration and data fusion). The approach of
combining multi-sensor sources is more efficient if the uncertainties arising from the data
combination are controlled [20,22].

Forest degradation is a broad term that can be divided into several definitions de-
pending on the aspect it affects (biodiversity conservation, carbon sequestration, timber
production, soil conservation, cultural values or recreation) [23]. In this study, we examine
carbon stock degradation, which is defined by the Intergovernmental Panel on Climate
Change as a long-term direct loss (lasting X years or more) of at least Y% of forest carbon
stocks due to human activities over a time period T that does not qualify as deforestation or
an activity under Article 3.4 of the Kyoto Protocol [23]. The causes of this reduction can be
natural (stand ageing, forest fires, parasitic infestations, etc.) or anthropogenic (population
growth, illegal logging, overgrazing, pollarding and delimbing, acorn collection, etc.).

To assess this aspect of degradation, we examine biomass and carbon stocks. Biomass
is dynamic and therefore needs to be continuously monitored to provide information
on the carbon cycle of the forest ecosystem (sources and sinks) [15,16,24,25]. Regular
estimation and monitoring of biomass and carbon stocks (aboveground, belowground and
total) over space and time are essential to understand their development and changes.
In fact, a good understanding of biomass and carbon stock changes can improve forest
management decisions, especially in degraded areas [26]. Furthermore, different remote
sensing techniques are used to study biomass and carbon stock dynamics: Change detection
approaches can use bi-temporal imagery or temporal trajectory analysis. Multi-temporal
Landsat TM and machine learning algorithms are used in [27] to study aboveground
forest carbon stock according to the land cover change, between 1990 and 2010. Another
approach is used to map biomass changes between 1998 and 2018 in the mangrove forest in
the coastal area of Thai Binh, using regression models between field values of AGB and
some spectral indices (NDVI, SAVI, GNDVI) [28]. Landsat images (MSS (multispectral
scanner), ETM + (thematic mapper), and OLI (operational land imager)) are used to classify
the study area into different ecosystem units for the years 1975, 2000, and 2020, then to
investigate the ecosystem service values (ESVs) and analyze the dynamic pattern of carbon
sequestration using the InVEST model [29]. A dataset consisting of Landsat TM5, ETM+
multispectral imagery, HJ-1 multispectral imagery, and China Environmental Disaster
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Reduction Satellite (HJ-1) multispectral images are used in Zoigê alpine grassland to assess
the carbon stocks, for three periods from 2000 to 2020, using the InVEST model [30]. Aerial
photography is also used to assess biomass and carbon stock dynamics. Based on multi-
temporal photogrammetric measurements, dendrometric parameters, in particular crown
height and diameter, are estimated and integrated into corresponding allometric equations
to estimate the biomass value [31]. Another approach based on a regression between
parameters from the canopy height model (CHM) derived from aerial photographs and the
AGB from field measurements to estimate biomass [32] is tested in a seasonal tropical forest.
Synthetic Aperture Radar (SAR) or Interferometric Synthetic Aperture Radar (InSAR),
has a high sensitivity to the forest vertical structure, and thus it is widely used in the
estimation and dynamic monitoring of canopy heights [33]. Indeed, changes in biomass
and carbon stocks can be recovered directly from height changes. In this study [24], SAR
data ALOS PALSAR (Advanced Land Observing Satellite’s Phased Array-type L-band
Synthetic Aperture Radar), and ALOS-2 PALSAR-2 polarizations and Sentinel-1(C-band)
data, are used to build AGB models for 2007, 2009 and 2016, and then validated by field
data combined with LiDAR data. A change analysis is performed, comparing the three
biomass maps. In order to overcome the weaknesses of SAR technology, some researchers
have used interferometric SAR (InSAR), which can provide 3D data [34]. LiDAR data
are also used in biomass and carbon stock dynamics studies. Indeed, multi-temporal
airborne LiDAR data are used for the estimation of AGB changes [10], in comparing direct
and indirect methods. Other studies used multi-temporal airborne LiDAR to estimate
AGB changes in Panama [35], and in Borneo [36]. Multitemporal airborne LiDAR (ALS)
data combined with field inventory, are used to estimate carbon stock change between
2002 and 2012 at the Landscape forest, Scotland, United Kingdom [37]. A combination
of satellite imagery and LiDAR data are exploited to estimate carbon stock changes in
Auckland, New Zealand [38]. In this research, plot-level AGC stocks were linked with
vegetation spectral/structural features derived from Landsat images and LiDAR data.
Another study exploited a method based on the combination of annual Landsat image time
series and high-density airborne LiDAR data to characterize carbon stock variability [39].
RapidEye imageries, Chronological LANDSAT imageries, and LiDAR data are used for the
classification of types of tree species and estimation of carbon stock changes [40].

Recently, Machine learning regression has become extremely important in biomass
and carbon stock estimation and has proved its efficiency in modeling trees and soil carbon
stock and its spatialization [41,42]. These techniques can be used to assess and analyze the
contribution of various factors (Climatic, Edaphic, Topographical. . ., etc) acting in a complex
manner and consequently, evaluating complex nonlinear relationships between satellite
sensor reflectance and ecosystem [41,43]. We distinguish several ML algorithms such as
support vector machine (SVM), k-nearest neighbors (KNN), and Random Forest (RF). For
biomass modeling and prediction, Random Forest regression has been tested widely these
recent years in different ecological conditions. Effectively, it was superior to the traditional
regression model in AGB modeling in the grassland of Xilin Gol League [44], it is used
to construct the estimation model of grassland AGB in eastern Inner Mongolia based on
field data, MODIS (MOD13Q1) data and environmental data (climate and topography) [45]
and is used to predict forest volume and biomass in two regional study areas (Spain and
Norway) based on remotely sensed auxiliary data obtained from multiple sensors. Random
forest regression is also used to assess aboveground forest biomass (AGB) changes in a
Mediterranean forest context, using ALOS-PALSAR, Sentinel 1, and Landsat 8 data [46].

As mentioned above, several research methodologies have been developed to assess
temporal changes in the biomass and carbon stock of a forest stand. Furthermore, the choice
of the appropriate methodology depends on the availability of LiDAR data, old satellite
images and the specific characteristics of the forest stand under study. In this research,
the species studied is cork oak. Quercus species have a very wide distribution, from
Mediterranean semi-desert woodlands to subtropical rainforests in Europe, North America
and Southeast Asia [47] and cork oak (Quercus suber) is endemic to the Mediterranean
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basin [48]. Few studies have focused on the biomass and carbon stock of this species,
despite its major contribution to carbon sequestration, through all the components of the
tree but also through the cork that is specific to it [48]. Therefore, the study of biomass
and carbon stocks of Mediterranean cork oak in a degraded Mediterranean forest using
traditional methods is not feasible. For these reasons, in this research work, we explored an
integrated approach using LiDAR-UAV data, extracted vegetation indices Landsat imagery
and field survey data to spatialize and map biomass and carbon stock at the landscape
scale and then assess their dynamics over 35 years.

The general objective is to spatialize biomass and carbon stocks on a large scale and
to analyze their dynamics using an innovative methodological approach, and the specific
objectives are: (i) to explore the potential of vegetation indices from Landsat imagery in
biomass and carbon stock modelling, (ii) to analyze and compare different regression types
including ML techniques (Random Forest Regression), (iii) to assess biomass and carbon
stock changes in Mediterranean cork oak forest stands.

2. Materials and Methods

The methodology of this research work is organized in three phases: in the first phase,
using forest survey and extracted LiDAR UAV metrics, a LiDAR UAV-based biomass
and carbon stock model is developed (Model 1), the details of which are presented in the
paper “Modeling and spatialization of biomass and carbon stock using unmanned aerial
vehicle LiDAR (LiDAR UAV) metrics in cork oak forest of Maamora.” In the second phase,
another model (Model 2) is developed using biomass and carbon stock maps of LiDAR
UAV surveys and vegetation indices of Landsat 8 images. In the third phase, a biomass and
carbon stock distribution mapping of 1985 and 2020 will be carried out, then the changes
between these two years assessed (Figure 1).

2.1. Study Area

The Maamora forest is a Moroccan cork oak forest of approximately 134,000 ha [49],
with cork oak as the main species, covering 60,000 ha. This area is characterized by a
subhumid bioclimate in its western part and semiarid one in its central and eastern parts.
It plays many environmental, social, and economic roles, including carbon sequestration
through its biomass. Our study was carried out in central canton C, group III, parcels 10
and 6, inside a pure adult cork oak stand (Figure 2).

2.2. LiDAR UAV-Based Biomass and Carbon Stock Models (Model 1)

In this section, a model (Model 1) is developed to spatialize biomass and carbon
stock in the LiDAR UAV surveys. LiDAR UAV data are collected using unmanned aerial
vehicle DJI Matrice 600 pro equipped with Velodyne VLP-16 LiDAR sensor in three survey
areas (ALS1, 2, and 3), covering approximately 30 ha at different locations in Canton C.
The LiDAR UAV point cloud data were collected at a range accuracy of 3 cm, and a data
rate of 300,000 points per second. Field survey data (circumference 1.3 m, tree height,
and plot center coordinates) are also collected in 31 plots randomly distributed across the
three LiDAR UAV surveys. Then, the total tree biomass and carbon stock are estimated
using allometric equations described in [7,48] and LiDAR UAV data are preprocessed and
processed to obtain metrics. Finally, modeling biomass and carbon stock using LiDAR
UAV data is performed using different regression types. The best model is selected and
applied to spatialize biomass and carbon stock in the three LiDAR UAV surveys. Using
the biomass and carbon stock maps resulting from this stage, we can conclude the biomass
and carbon stock of each pixel on the three ALS UAV surveys (Bpixel and Cpixel). The
detailed methodology of this part is presented in the article “Modeling and spatialization
of biomass and carbon stock using unmanned aerial vehicle LiDAR (LiDAR UAV) metrics
in cork oak forest of Maamora” and in Figure 1, Phase 1.
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2.3. Landsat Image Acquisition and Preprocessing

To study biomass and carbon stock changes in the long term, we chose the years
1985 and 2020. Landsat 4 and 8 images with a high spatial resolution of 30 m are used
for 1985 and 2020, respectively, for the same time of the year (October). This month is
chosen to avoid the effect of abundant herbaceous vegetation. The chosen cloud cover
is minimal to nonexistent. The choice of Landsat sensor is related to the availability of
older images needed for our study. Landsat 4 and 8 data were retrieved from the United
States Geological Survey (USGS) Earth Explorer website (https://earthexplorer.usgs.gov/),
accessed 29 January 2024, from Landsat 4-5 Thematic Mapper Collection 2 Level-1 data
and Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)
Collection 2 Level-1. The Landsat image is pre-processed with atmospheric correction and
radiometric calibration.

2.4. Multidimensional Image Composite of Biomass and Carbon Stocks

Different vegetation indices exist in the literature (about 150) [41]. In this study,
we selected nine (Table 1), due to their performance in estimating biomass and carbon
stock in previous studies. A composite image is produced by superimposing the images
corresponding to the selected vegetation indices and the LiDAR UAV-based biomass and
carbon stock maps. A pixel sample is selected in the image dataset by removing all
outlier values.

https://earthexplorer.usgs.gov/


Land 2024, 13, 688 7 of 21

Table 1. List of vegetation indices derived from Landsat 8 image and their formulae.

Vegetation
Indice Description Formula Reference

ARVI Atmospheric Resistant Vegetation Index RNIR − (2 RRed − RBlue)/RNIR + (2 RRed − RBlue) [50]

TVI Triangular Vegetation Index 0.5 × [120 × (RNIR − RGreen) – 200 × (RRed − RGreen)] [51]

CIG Chlorophyll Index Green (RNIR/RRed) – 1 [52]

DVI Difference Vegetation Index RNIR/RRed [53]

EVI Enhanced Vegetation Index (2.5 × (RNIR − R))/(RNIR + 6 × RRed −7.5 × RBlue + 1) [54]

NDVI Normalized Difference Vegetation Index (RNIR − RRed)/(RNIR + RRed) [55]

GNDVI Green Normalized Difference Vegetation Index (RNIR − RGreen)/(RNIR + RGreen) [56]

OSAVI Optimized Soil Adjusted Vegetation Index (RNIR − RRed)/(RNIR + RRed + 0.16) [57]

SAVI Soil Adjusted Vegetation Index 1.5 (RNIR − RRed)/(RNIR + RRed + 0.5) [58]

2.5. Spatial Modeling of Cork Oak Biomass and Carbon Stock

Before performing modeling regression, it is interesting to study the correlation be-
tween the biomass and carbon stock and the vegetation indices to examine the relationship
between them and to select the most correlated. In this study, the Pearson correlation
coefficient is used. Many researchers have studied the correlation between vegetation in-
dices and biomass and carbon stock [8,12,14]. Regression analysis assessed the relationship
between biomass and carbon stock and vegetation indices (VIs). Based on the correlation
result, a multivariate regression is first performed between the Bpixel and Cpixel and
the nine vegetation indices using multiple and stepwise linear regression and random
forest, which is a machine learning regression, then a univariate regression is performed
with a single vegetation index (the most correlated) through different functions: linear,
logarithmic, quadratic, and cubic regression.

In the above analysis, the Bpixels and Cpixels are the dependent variables and the
VIs are the independent or explanatory variables. To assess the accuracy of the models,
we calculated three commonly used indicators [41]: coefficient of determination (R2), root
mean square error (RMSE) and mean square error (MSE). The best-fitting model has the
highest R2 and the lowest RMSE and MSE. These indicators are as follows:

r =
√

R2 =

√
1 − ∑n

i=1 (y − y)²
∑n

i=1 (ŷ − y)²
(1)

RMSE =

√
∑n

i=1 (ŷ − y)²
n

(2)

rRMSE =
RMSE

y
(3)

MAE =
1
n

n

∑
i=1

|ŷ − y| (4)

where y is the field-based biomass and carbon stock estimates (observed), ӯ is the mean of
y, ŷ is the estimated biomass and carbon stock, and the number of testing datasets utilized
for the evaluation is denoted by n.

Multicollinearity between independent variables presents an issue in model develop-
ment [41]. The variance inflation factor (VIF), is then used to evaluate multicollinearities,
which quantifies the degree and correlation between explanatory variables.

The ML regression method used in this study is random forest regression. For this
analysis, data are divided into training data (70%) and testing data (30%), with a default
number of trees equal to 500 (ntree = 500), and we will also check if this default number
was sufficient, visualizing the error rates or MSE of a random forest object [59]. In order to
understand the contribution of the different vegetation indices in the random forest model



Land 2024, 13, 688 8 of 21

for biomass and carbon stock, we then present their importance graphically. Two measures
of variable importance are reported. The first is based on the average decrease in prediction
accuracy on the out-of-bag samples when a given variable is excluded from the model
(% IncMSE). The second is a measure of the total decrease in node impurity resulting from
splitting over that variable, averaged over all trees (IncNodePurity) [60].

2.6. Spatialization of Cork Oak Biomass and Carbon Stock

Before applying the model, we restricted the map space using a vegetation mask [25].
Two classes are identified in the study area—ground and vegetation (cork oak stand). The
selected regression model based on R2, RMSE, and MSE is used to make predictions for all
cork oak 30 m pixels across the study area.

3. Results
3.1. Correlation between Biomass/Carbon Stock and VIs

The Pearson correlation coefficient of all vegetation indices (VIs) examined in this study
is almost equal. All vegetation indices (VIs) showed a strong correlation with biomass and
carbon stock at pixel level (Table 2). In fact, the most highly correlated VI is ARVI, followed
by NDVI, DVI and CIG, then OSAVI, EVI and finally SAVI, TVI and GNDVI. Several studies
have shown a strong correlation between vegetation indices and biomass/carbon stocks,
whether extracted from Sentinel imagery [61], Landsat, or other sources.

Table 2. Coefficient correlation between biomass/carbon stock and vegetation indices.

Dependent Variables

Vegetation Indices
ARVI TVI CIG DVI EVI GNDVI NDVI OSAVI SAVI

Btree−Total 0.897 0.813 0.894 0.894 0.853 0.812 0.894 0.873 0.812
Cst−total 0.808 0.672 0.799 0.799 0.722 0.677 0.791 0.749 0.670

3.2. Biomass and Carbon Stock Model Development

Biomass and carbon stock modeling was carried out using multivariate and univari-
ate regression.

3.2.1. Biomass and Carbon Stock Multivariate Regression Modeling

The multivariate regression of biomass and carbon stock is investigated using three
types of regression: multiple linear regression, stepwise linear regression, and machine
learning random forest regression.

The results of the biomass and carbon stock regressions show that R2 is almost the
same for the three regression types. For biomass, the values are 0.81 for multiple linear
regression and 0.80 for stepwise linear and random forest regression, which means that
multiple linear, stepwise linear and random forest regression explain 80% to 81% of the
variation in biomass in the study area (Tables 3 and 4). For carbon stock, the values are
0.69, 0.65 and 0.60 for multiple linear regression, stepwise linear regression and random
forest regression respectively, which means that multiple linear regression, stepwise linear
regression and random forest regression explain 60% to 69% of the variation in carbon stock
in the study area.
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Table 3. Model development table with performance indices.

Model
Regression Model Equation R2 Adjusted

R2
RMSE

(Mg/ha)
MSE

(Mg/ha)

Btree−Total

Multiple linear
regression

Btree−Total = 28.338 + 228.21ARVI − 4384CIG −
662.785EVI − 59.463GNDVI − 600.377OSAVI +
1210.754SAVI (5)

0.81 * 0.79 2.55 6.50

Stepwise
regression Btree−Total = −0.274 + 66.411 × ARVI (6) 0.80 * 0.80 2.59 6.70

Simple linear
regression

Btree−Total = −0.274 + 66.411 × ARVI (7) 0.80 * 0.80 2.59 6.70

Btree−Total = 2.051 + 5.723 × NDVI (8) 0.80 * 0.79 2.63 6.90

Btree−Total = −9.716 + 20.615 × CIG (9) 0.80 * 0.79 2.62 6.91

Logarithmic

Btree−Total = 32.532 + 11.448 ln (ARVI) (10) 0.78 * 0.77 2.77 7.69

Btree−Total = 48.873 + 33.867 ln (NDVI) (11) 0.79 * 0.78 2.68 7.18

Btree−Total = 11.456 + 22.219 ln (CIG) (12) 0.79 * 0.79 2.65 7.00

Quadratic

Btree−Total = 0.582 + 56.154 ARVI + 25.787ARVI2 (13) 0.80 * 0.80 2.58 6.68

Btree−Total = −12.075 + 42.403 NDVI +
80.949NDVI2 (14) 0.80 * 0.79 2.62 6.86

Btree−Total = −13.848 + 28.365 CIG − 3.448CIG2 (15) 0.80 * 0.79 2.62 6.86

Cubic

Btree−Total = −2664 + 114.779ARVI – 281.301ARVI2 +
488.904 ARVI3 (16) 0.80 * 0.79 2.59 6.65

Btree−Total = −7.256 + 203.413NDVI2 −
116.219NDVI3 (17) 0.80 * 0.79 2.62 6.86

Btree−Total = −12.59 + 24.687CIG − 1.039CIG3 (18) 0.80 * 0.79 2.62 6.86

Cst−total

Multiple linear
regression

Cst−total = 26.298 + 102.979ARVI + 11.546CIG −
342.602EVI1 − 37.787GNDVI1 − 408.949OSAVI +
634.477SAVI1 (19)

0.69 * 0.66 1.43 2.05

Stepwise
regression Cst−total = −0.378 + 26.232 ARVI (20) 0.65 * 0.65 1.52 2.30

Simple linear
regression

Cst−total = −0.378 + 26.232 ARVI (21) 0.65 * 0.64 1.52 2.30

Cst−total = −8.605 + 38.395 NDVI (22) 0.62 * 0.62 1.58 2.49

Cst−total = −4.035 + 8.078 CIG (23) 0.63 * 0.63 1.55 2.40

Logarithmic

Cst−total = 12.400 + 4415 ln(ARVI) (24) 0.60 * 0.59 1.63 2.65

Cst−total = 18.672 + 13.031 ln(NDVI) (25) 0.60 * 0.60 1.61 2.59

Cst−total = 4.271 + 8.588 ln(CIG) (26) 0.61 * 0.61 1.59 2.53

Quadratic

Cst−total = 1800 + 0.152 ARVI + 65.570 ARVI2 (27) 0.67 * 0.66 1.47 2.17

Cst−total = 7.06 − 53.356NDVI + 131.227NDVI2 (28) 0.64 * 0.63 1.54 2.37

Cst−total = −0.325 + 1.119CIG + 3.096CIG2 (29) 0.64 * 0.63 1.54 2.36

Cubic

Cst−total = −1018 + 51.048ARVI – 201.032ARVI2 +
424.447ARVI3 (30) 0.67 * 0.66 1.46 2.14

Cst−total = 1.140 − 26.506 NDVI2 + 153.042
NDVI3 (31) 0.64 * 0.63 1.54 2.36

Cst−total = −0.325 + 1.119CIG + 3.096CIG2 (32) 0.64 * 0.63 1.54 2.36

* p-values are less than 0.001.
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Table 4. Random forest regression with performance indices.

Model
Regression

Number of Variables
Tried at Each Split (mtry) ntree R2 RMSE

(Mg/ha) MSE (Mg/ha)

Btree−Total Random Forest 2 500 80.35 2.74 7.53
Cst−total Random Forest 2 500 60.04 1.72 2.97

In addition, to better analyze the results, the RMSE and MSE are used, which provide
information on the error between the values predicted by the model and the real values.
For the biomass regression, the RMSE values indicate that the multiple linear regression
is the best option, followed by the stepwise linear regression and then the random forest
regression with 2.55, 2.59, and 2.74 Mg/ha respectively (Tables 3 and 4). Furthermore, for
carbon stock regression, the RMSE values indicate that multiple linear regression is the best
option, followed by stepwise linear regression and then random forest regression with 1.43,
1.52, and 1.72 Mg/ha respectively. However, the study of multicollinearity between the
independent variables (VIs) using the variance inflation factor (VIF) shows that there is
high multicollinearity, and consequently the multiple linear regression model is rejected.
The details of the VIF results are presented in Tables 5 and 6. Consequently, the stepwise
regression model of biomass and carbon stock presents interesting results, and we selected
a vegetation index: the atmosphere resistant vegetation index (ARVI).

Table 5. Stepwise linear regression variance inflation factor.

Coefficients

Model

Non-Standardized
Coefficients

Standardized
Coefficients

t Sig.
Correlations Collinearity

Statistics

B Standard
Error Beta Simple

Correlation Partial Partial Tolerance VIF

Cst−total
(Constant) −0.378 0.485 −0.779 0.438

ARVI 26.232 2.207 0.808 11.884 0.000 0.808 0.808 0.808 1 1

Btree−total
(Constant) −0.274 0.829 −0.331 0.742

ARVI 66.411 3.768 0.897 17.624 0.000 0.897 0.897 0.897 1 1

Table 6. Multiple linear regression variance inflation factor.

Coefficients

VIs

Non-Standardized
Coefficients

Standardized
Coefficients

t Sig.
Correlations Collinearity

Statistics

B Standard
Error Beta Simple

Correlation Partial Partial Tolerance VIF

Btree−Total

(Constant) 28.338 27.093 1.046 0.299

ARVI 228.210 185.184 3.084 1.232 0.222 0.897 0.146 0.064 0.000 2324.498

CIG −4.384 18.959 −0.190 −0.231 0.818 0.894 −0.028 −0.012 0.004 250.990

EVI −662.785 652.588 −2.693 −1.016 0.313 0.853 −0.121 −0.053 0.000 2608.499

GNDVI −59.463 71.023 −0.324 −0.837 0.405 0.812 −0.100 −0.043 0.018 55.603

OSAVI −600.377 743.128 −2.830 −0.808 0.422 0.873 −0.096 −0.042 0.000 4552.620

SAVI 1210.754 1135.977 3.994 1.066 0.290 0.812 0.126 0.055 0.000 5212.643
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Table 6. Cont.

Coefficients

VIs

Non-Standardized
Coefficients

Standardized
Coefficients

t Sig.
Correlations Collinearity

Statistics

B Standard
Error Beta Simple

Correlation Partial Partial Tolerance VIF

Cst−total

(Constant) 26,298 15,216 1728 0.088

ARVI 102,979 104,003 3173 0.990 0.326 0.808 0.118 0.066 0.000 2324.498

CIG 10,546 10,648 1043 0.990 0.325 0.799 0.118 0.066 0.004 250.990

EVI −342,602 366,507 −3173 −0.935 0.353 0.722 −0.111 −0.062 0.000 2608.499

GNDVI −37,787 39,888 −0.469 −0.947 0.347 0.677 −0.113 −0.063 0.018 55.603

OSAVI −408,949 417,356 −4394 −0.980 0.331 0.749 −0.116 −0.065 0.000 4552.620

SAVI 634,477 637,988 4772 0.994 0.323 0.670 0.118 0.066 0.000 5212.643

We can conclude that the random forest regression, chosen as the ML technique, also
presents good results, explaining 80% and 60% of the variation of biomass and carbon stock,
respectively, and the lowest RMSE of 2.74 and 1.72 Mg/ha for biomass and carbon stock,
respectively. The importance of the contribution of vegetation indices in random forest
models is presented in Figure 3. This visualization shows that VIs contributes differently in
these models. In the biomass model, the most influential variables are ARVI, DVI, NDVI
and OSAVI. The vegetation indices CIG, EVI and SAVI contribute moderately, and the other
variables (TVI and GNDVI) show low significance.

Land 2024, 13, x FOR PEER REVIEW 11 of 21 
 

ARVI 102,979 104,003 3173 0.990 0.326 0.808 0.118 0.066 0.000 2324.498 

CIG 10,546 10,648 1043 0.990 0.325 0.799 0.118 0.066 0.004 250.990 

EVI −342,602 366,507 −3173 −0.935 0.353 0.722 −0.111 −0.062 0.000 2608.499 

GNDVI −37,787 39,888 −0.469 −0.947 0.347 0.677 −0.113 −0.063 0.018 55.603 

OSAVI −408,949 417,356 −4394 −0.980 0.331 0.749 −0.116 −0.065 0.000 4552.620 

SAVI 634,477 637,988 4772 0.994 0.323 0.670 0.118 0.066 0.000 5212.643 

We can conclude that the random forest regression, chosen as the ML technique, also 

presents good results, explaining 80% and 60% of the variation of biomass and carbon 

stock, respectively, and the lowest RMSE of 2.74 and 1.72 Mg/ha for biomass and carbon 

stock, respectively. The importance of the contribution of vegetation indices in random 

forest models is presented in Figure 3. This visualization shows that VIs contributes dif-

ferently in these models. In the biomass model, the most influential variables are ARVI, 

DVI, NDVI and OSAVI. The vegetation indices CIG, EVI and SAVI contribute moderately, 

and the other variables (TVI and GNDVI) show low significance. 

  

(a) (b) 

Figure 3. Model predicted variable importance: (a) biomass random forest model (b) carbon stock 

random forest model. 

In the carbon stock model, the most influential variables are ARVI, DVI, NDVI, and 

CIG. The vegetation indices OSAVI and GNDVI contribute moderately, and the other var-

iables (EVI, TVI, and SAVI) show low significance. The visualization of the error rates or 

MSE (Figure 4) shows that the number of trees used in this study is sufficient. 

  

(a) (b) 

Figure 4. Plot of the error rates or MSE: (a) biomass random forest model (b) carbon stock random 

forest model. 

3.2.2. Biomass and Carbon Stock Univariate Regression Modeling 

Modeling regression between biomass/carbon stock and a single vegetation index 

(the most correlated: ARVI, NDVI, or CIG) is conducted using different functions: simple 

linear regression, logarithmic regression, quadratic and cubic regression (Figures 5 and 

6). 

Figure 3. Model predicted variable importance: (a) biomass random forest model (b) carbon stock
random forest model.

In the carbon stock model, the most influential variables are ARVI, DVI, NDVI, and
CIG. The vegetation indices OSAVI and GNDVI contribute moderately, and the other
variables (EVI, TVI, and SAVI) show low significance. The visualization of the error rates
or MSE (Figure 4) shows that the number of trees used in this study is sufficient.
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3.2.2. Biomass and Carbon Stock Univariate Regression Modeling

Modeling regression between biomass/carbon stock and a single vegetation index
(the most correlated: ARVI, NDVI, or CIG) is conducted using different functions: simple
linear regression, logarithmic regression, quadratic and cubic regression (Figures 5 and 6).
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Figure 6. Carbon stock models fits of different vegetation indices with various regression
types: (a) ARVI, (b) NDVI, CIG (c).

First, we compare these regression types for biomass and carbon stock, and then we
compare the tree vegetation indices studied for the chosen regression type. For the same
vegetation index, the results show that model performance indices (R2, RMSE, and MSE)
are close to each other for the four regression types (Figures 5 and 6). For the biomass model,
R2 for the four regression types presents high values of between 0.78 and 0.80. In addition,
comparing the other indices’ performance (RMSE and MSE), the simple linear regression
and cubic and quadratic regression present the lowest values, followed by logarithmic
regression. This indicates that the simple linear model of ARVI, NDVI, and CIG can explain
approximately 80% of the variation in biomass, while the remaining 20% was explained by
other variables that were not included in the model. Details are presented in Table 3.

Regarding the carbon stock model, R2 is slightly higher for cubic and quadratic
regression, with R2 between 0.64 and 0.67, followed by simple linear regression, with R2

between 0.62 and 0.65 and logarithmic regression, with R2 between 0.60 and 0.61. The other
performance indices (RMSE and MSE) are relatively low for cubic and quadratic regression,
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with RMSE between 1.46 and 1.54 Mg/ha, MSE between 2.14 and 2. 37 Mg/ha, higher for
simple linear regression with RMSE between 1.52 and 1.58 Mg/ha, MSE between 2.30 and
2.49 Mg/ha, logarithmic regression with RMSE between 1.61 and 1.63 Mg/ha and MSE
between 2.53 and 2.65 Mg/ha (Table 3). The results indicate that cubic regression, quadratic
and simple linear regression models of ARVI, NDVI and CIG can explain approximately
between 60% and 67% of the variation in carbon stock in the study area. The model chosen
in this section is the simple linear regression model because its performance indices are
better than logarithmic regression and close to those of cubic and quadratic regression,
except that it is simpler. This result is similar to that obtained in Section 3.2.1, where
stepwise regression was chosen.

3.3. Biomass and Carbon Stock Spatialization

The spatialization of biomass model was carried out using Equation (6) (Table 3) in the
cork oak stand of C canton, group III. Figure 7 illustrates the biomass cork oak distribution
in the study area in 2020 and 1985, respectively.
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In 2020, cork oak biomass ranged between 0–10 Mg/ha and 30–40 Mg/ha. The study
area was dominated by very low biomass (0–10 Mg/ha), followed by an equally large area
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of low biomass (10–20 Mg/ha). Moreover, the area with medium biomass (20–40 Mg/ha)
was very small. In 1985, a very low biomass (0–10 Mg/ha) covered most of the surface
area, followed by a low biomass (10–20 Mg/ha) and a medium biomass (20–30 Mg/ha)
covering only 1% of the surface area. Biomass changes in the study area between 1985 and
2020 are illustrated in Figure 8. This figure shows that biomass has declined with (−10 to
0 Mg/ha) in approximately half the area study and increased in equal areas with less than
10 Mg/ha. Thus, biomass growth (0–30 Mg/ha) is only recorded in limited small areas,
barely exceeding 5% of the territory.
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The spatialization of the carbon stock model is performed using Equation (20) (Table 3).
Figure 9 shows the carbon stock distribution of cork oak in the study area in 2020 and 1985.
The carbon stock distribution follows the same trend as the biomass (Figure 7). In 2020,
very little carbon stock (less than 6 Mg/ha) covered most of the study area (about 80%),
low carbon stock between 6 and 18 Mg/ha covered the rest, and in 1985, very little carbon
stock covered a larger area, more than 90% of the study area. The changes in carbon stock
in the study area between 1985 and 2020 are shown in Figure 8. This figure shows that the
carbon stock decreased in some zones and increased slowly by less than 10 Mg/ha.
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4. Discussion

Recent research has demonstrated the use of multisource data frameworks world-
wide [18,62]. However, none of them has studied the cork oak species in the Mediterranean
context or proposed a hierarchical three-phase methodology linked to three scales (plot,
LiDAR UAV survey and landscape). In this sense, this study proposes a multidimensional
framework, integrating field survey and new technologies such as UAV and LiDAR, and
satellite imagery (Landsat images).

The Maamora forest was the largest cork oak forest in the world, covering more than
134,000 ha, including 60,000 ha of cork oak [49]. Unfortunately, this forest cover has shown
decline in 1975, 1990, and 2022 [63]. Our results confirm the degraded condition of this
forest. The main degradation factors are natural and anthropogenic. Indeed, the population
of the Maamora forest is characterized by high human density, 50 inhabitants per km2,
with a user population of 27,255 households spread over 15 rural communities [64]. The
forest rangelands of this forest suffer from overexploitation with a demand of three to five
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times that of forage potential and constitute an exclusive forage resource for extensive
livestock, cattle, and sheep. The regional energy balance is largely dependent on wood
energy from forests, which accounts for 67% of the wood energy consumed annually [64].
The strategic location of this forest has made it vulnerable to uncontrolled urbanization,
particularly as a result of excessive use for recreational purposes and land clearing for
major development projects such as motorways. Since the early 20th century (1918), the
Maamora forest has been the subject of several forest management plans, which have
recommended the introduction of exotic species, the involvement of the local population
and the regeneration of cork oaks by seeding or planting, but the objective of conserving
and perpetuating this forest has still not been achieved. Natural factors are also partly to
blame, such as fires, insect pests, aging of the stands, and recurrent droughts [65], climate
change, and decrease in stand tree density (<100 trees/ha) [48], etc. Thus, the combination
of all these factors has led to the degradation of the Maamora forest, which is reflected in
its range [66], biodiversity, stand structure, and tree density.

Few studies have dealt with the quantification of biomass and carbon stocks in the
Maamora forest using traditional or new technology methods [7,48]. In this forest, the
study of forest land use and land cover change between 1987 and 2020 showed that there
was an increase in bare land, agricultural land, and built areas to the detriment of the
forest area [67]. However, no study has investigated the likely changes in biomass and
carbon stock, despite their importance in understanding the carbon sequestration process.
Cork oak habitat distribution maps are related to current and future climate conditions
in different scenarios [68]. In this context, the present research allows a spatialization of
biomass and carbon stock, which is crucial for the identification of priority areas requiring
intervention by local managers, and a better knowledge of biomass and carbon stock
dynamics, thus informing us about past rate changes and allowing us to predict the rate of
future changes.

The results of vegetation index comparison (ARVI, NDVI, and CIG) using simple and
stepwise linear regression shows that the ARVI is the best, with a slight difference from
NDVI and CIG. Indeed, the most common vegetation index used in canopy monitoring
and biomass assessment is the NDVI [69], However, because the NDVI is susceptible to
various outside influences such as atmospheric disturbance, other vegetation indices were
developed, in particular the ARVI, which is most useful in regions of high atmospheric
aerosol content. It uses blue light reflectance measurements to correct for the atmospheric
scattering effects that also influence the reflectance of red light [70]. The use of this vegeta-
tion index in biomass modeling in different landscapes and various forest stands is proven
by other research [71–73].

5. Conclusions

In this study, the general objective was to spatialize biomass and carbon stocks on a
large scale and to analyze their dynamics using an innovative methodological approach,
and the specific objectives were (i) to explore the potential of vegetation indices from
Landsat images in biomass and carbon stock modeling, (ii) to analyze and compare different
regression types, including ML techniques (random forest regression), and (iii) to assess
biomass and carbon stock changes in a Mediterranean cork oak forest stand. For this
purpose, a new approach combining forest survey data, LiDAR UAV data and extracted
Landsat 8 images vegetation indices (NDVI, ARVI, CIG, etc.) was used. Different regression
types (univariate and multivariate) were used, such as multiple linear regression, stepwise
linear regression, random forest regression, simple linear regression, logarithmic regression,
and quadratic and cubic regression.

The results show that stepwise regression and random forest regression give good
results, explaining a good part of the variation in biomass and carbon stock. Univariate re-
gression using simple linear regression gives satisfactory results, close to those of quadratic
and cubic regression, but with a simpler equation. The vegetation index chosen is the
ARVI, which shows good performance indices, close to those of the NDVI and CIG. The
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assessment of biomass and carbon stock changes in the study area over 35 years (1985–2020)
showed a slight increase of less than 10 Mg/ha and a large decrease in biomass and carbon
stock over a wide area.
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