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Abstract: The urban ecological environment is crucial to the quality of life of residents and the sus-
tainable development of the region, and the assessment and prediction of the ecological environment
quality can provide a scientific guidance for ecological environment management and improvement.
We proposed a novel approach to assess and simulate the urban ecological environment quality using
the Geographic Information System Ecological Index (GISEI). First, we calculated the remote sensing
ecological index (RSEI) for Xi’an in 2020. Second, we selected land use data, mean annual tempera-
ture, and mean annual relative humidity as ecological indicators. We regressed these indicators on
the RSEI to obtain the GISEI of Xi’an in 2020. Finally, we simulated the GISEI of Xi’an in 2030 by
predicting the ecological indicators and analyzed the changes in the ecological environment quality.
The results of the study show that the ecological environment quality in Xi’an in 2020 is better overall.
By 2030, most of the ecological environment quality in Xi’an will be worse, and the proportion of the
excellent area will decrease from 42.8% to 3.8%. The more serious ecological degradation is mainly
located in the regions bordering the Qinling Mountains and the Guanzhong Plain, and the ecological
environment quality in most areas of the Qinling Mountains will deteriorate from excellent to good.

Keywords: ecological environment quality; RSEI; GIS; Xi’an

1. Introduction

The ecological environment is a complex system of nature, society, and economy, and
the degree of harmony between regional human activities and the ecological environment
can be effectively reflected in its quality status [1,2]. With rapid economic growth and
urbanization, some regions are facing a series of problems in the ecological environment
such as forest degradation, soil erosion, water and soil loss, and urban heat islands [3–5].
The urban ecological environment is critical to the quality of life of residents and the
long-term development of the region [6]. In addition, the assessment and prediction of the
ecological environment quality can provide scientific guidance for ecological environment
management and improvement.

At present, studies on ecological environment quality assessment can be categorized
into two types: calculating an RSEI based on remote sensing (RS) and calculating an
ecological index (EI) based on a geographic information system (GIS) [7]. Among them,
the RSEI is widely used due to the advantages of easy data acquisition, simple calculation
methods, and objective and reliable assessment results [8–10], especially in the dynamic
monitoring of ecological changes. Jing [11] used the RSEI to assess the ecological quality of
the Ebi Lake wetland in Xinjiang and used the results to investigate the factors influencing
the ecological quality, which provided an important basis for the ecological protection
of the wetland. Gao [12] studied the spatial and temporal aspects of ecological quality
in the Hami Oasis over the past 18 years using the RSEI. However, the disadvantages of
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this assessment method are also obvious. It requires high-quality remote sensing images,
but remote sensing images are susceptible to weather [13]. In addition, it is difficult
to assess large regions because there are large temporal differences between different
images, which leads to inconsistent RSEIs within a region [14]. Furthermore, the larger the
study area, the more remote sensing images need to be processed, which means that the
computation becomes huge [15]. Calculating EI based on GIS is a way to use ecological
indicators for comprehensive evaluation [16]. This assessment method has many sources of
indicators, is less disturbed, and can be used for larg areas. Marull [17] took the Barcelona
metropolitan area as a research case and constructed the assessment system of the ecological
environmental condition in urban areas with indicators such as vegetation sensitivity index
and ecological isolation index. Robati [18] considered the current ecological status of the
Tehran region and determined the assessment system of Tehran’s ecological quality with
10 aspects such as meteorology, natural hazards, and land use. However, the traditional
method of calculating EI based on GIS relies on the selection of ecological indicators and
the weights assigned to the indicators. Unfortunately, there are no standardized criteria
for the selection of ecological indicators, and researchers often have subjectivity in the
weights assigned to the indicators because the relationship between the indicators and the
ecological environment is not clear.

To fully utilize the respective advantages of RS and GIS in ecosystem assessment, we
propose a new ecosystem assessment method: GISEI. Specifically, the GISEI is a method to
calculate EI objectively based on the RSEI theory using GIS technology. The application of
regression analysis in ecological environment quality assessment can effectively combine
remote sensing and GIS. We continue to use the theory of RSEI integrated with greenness,
humidity, dryness, and temperature indices [19], where greenness and dryness can be
obtained by land use types, and the humidity and the temperature can be obtained by mete-
orological elements. In addition, recent studies have shown that land use types [20,21] and
climatic conditions [22] are themselves important factors influencing ecological conditions,
thus we can select meteorological data and land use types as ecological indicators. We can
then obtain the objective relationship between the ecological environment and ecological
indicators to calculate the GISEI objectively by utilizing regression analysis with RSEI as
the dependent variable and ecological indicators as the independent variables.

In the current research, much attention has been paid to the dynamic changes in
ecological environment quality over time [23,24]. On the contrary, there is a lack of research
on the prediction of future ecological environment quality. In addition, the prediction
of ecological environmental quality allows managers to know the future status of the
ecological environment quality and the trend of ecological environment quality change
in advance to propose scientific ecological protection measures, so it is an important
tool for ecological protection and environmental management. When we used the GISEI
to assess the ecological environment quality, the meteorological data and the land use
types were taken as ecological indicators as to whether we could simulate the future
ecological environment quality by predicting these ecological indicators. Coincidentally,
the prediction of land use has been widely studied, Liu [25] used the PLUS model to predict
the land use pattern in 2035 under different scenarios after analyzing changes in land use
in the Loess Plateau. Rong [26] calculated the carbon emission intensity per unit area of
six major land use types and predicted the carbon emissions of an ecological protection
scenario and natural development scenario using the PLUS model. Li [27] identified the
primary areas of built-up area increase in Sanmenxia, China, by predicting carbon emissions
and land use using the PLUS model. In addition, scientists have updated their climate
and weather simulations and forecasts [28–30]. Currently, the Working Group on Coupled
Modeling (WGCM) of the World Climate Research Program (WCRP) has released the sixth
generation of CMIP [31,32], which implies more sophisticated human predictions of future
weather. Ding and Peng [33] have made multi-scenario predictions of meteorology in
China. Therefore, we can obtain the future ecological environment quality by predicting
land use and meteorological data.
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The main purpose of this study was to assess and simulate the urban ecological
environment quality by the GISEI, taking Xi’an as an example. First, we assessed the
current ecological environment quality in Xi’an by the RSEI and the GISEI and analyzed the
current ecological environment quality status of Xi’an; then, we simulated the ecological
environment quality in Xi’an in 2030 by predicting ecological indicators, and analyzed the
ecological environment quality status of Xi’an in the future; and finally, we analyzed the
future changes in the ecological environment quality in Xi’an by comparing the two periods.

2. Materials and Methods
2.1. Study Area

Xi’an is one of the most important cities in western China, located in the middle of
the Guanzhong Plain, at 107◦40′–109◦49′E and 33◦42′–34◦45′N (Figure 1). The terrain
slopes from southwest to northeast and consists mainly of the Guanzhong Plain, the Loess
Plateau, and the Qinling Mountains. It is a temperate, semi-humid continental climate,
with an average annual temperature of 13.0–13.7◦C and an average annual precipitation of
522.4–719.5 mm. Meanwhile, Xi’an is a famous ancient capital and national central city of
China, a regional central city, and a new starting point of the Silk Road Economic Belt, with
a long history of urban development. Xi’an’s GDP reached CNY 1.15 billion in 2022, an
increase of 7.5 percent over the previous year based on comparable prices. According to
China’s seventh national census, the permanent population of Xi’an is 11.65 million. With
the population and economy growing, the local ecology is suffering with a tremendous
amount of pressure.
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Figure 1. Geographical location and elevation of Xi’an.

2.2. Data Sources

The data used in this study are remote sensing images, land use or land cover change
(LUCC), and meteorological data, all of which are publicly available, see Table 1. Ding and
Peng [33] predicted meteorological data of China to 2100 based on CMIP6 under different
scenarios. The data use the latest SSP scenarios released by IPCC (SSP119, SSP245, and
SSP585), and each scenario includes three GCMs (EC-Earth3, MRI-ESM2-0, and GFDL-
ESM4). We downloaded the temperature (monthly mean temperature) and the drought
dataset under the intermediate scenario SSP245, and the MRI-ESM2-0 model in 2030, which
is the dataset that is closer to the reality of Xi’an. The spatial resolution of this dataset
is 0.0083333◦ (~1 km). For the mean annual relative humidity, we used the reciprocal of
drought because relative humidity is inversely proportional to drought.
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Table 1. Data sources.

Category Name Source Explanation

Remote sensing Landsat-8 (2020) Geospatial data Cloud of CAS From June to September to
calculate the RSEI

LUCC 2010 and 2020

Geographic Data Sharing
Infrastructure, Resource and
Environment Science and
Data Center

Spatial resolution is 30 m × 30 m,
reclassified into
six land use types: plowland,
woodland, grassland, wave,
construction land, and unused
land

Driving Factor

DEM Geospatial data Cloud of CAS Spatial resolution is 30 m × 30 m

Slope Calculated based on DEM
data using GIS platform Spatial resolution is 30 m × 30 m

Distance to government

National Catalogue Service
for Geographic Information

Calculated by GIS spatial analysis
Distance to road

Distance to railway

Distance to water bodies

GDP

Geographic Data Sharing
Infrastructure, Resource and
Environment Science and
Data Center

Spatial resolution is 1000 m ×
1000 m

Population

Mean annual precipitation

Mean annual temperature

Soil types

Meteorological data

Mean annual temperature (2020)

Geographic Data Sharing
Infrastructure, Resource and
Environment Science and
Data Center

Spatial resolution is 1000 m ×
1000 m

Mean annual relative
humidity (2020)

Loess Plateau Science Data
Center, National Earth System
Science Data Sharing
Infrastructure, National
Science and Technology
Infrastructure of China

Spatial resolution is 1000 m ×
1000 m

Mean annual temperature (2030) Spatial resolution is 0.0083333◦

Mean annual relative
humidity (2030) Spatial resolution is 0.0083333◦

2.3. Research Framework

We proposed a novel approach to assess and simulate the urban ecological environ-
ment quality using the GISEI. Firstly, the RSEI for 2020 was calculated using remote sensing
images, land use type, temperature, and relative humidity that were selected as ecological
indicators. Second, we regressed these ecological indicators on the RSEI to calculate the
GISEI for 2020. Here we used four models: ridge regression, support vector machine
(SVM), random forest (RF), and BP neural network (BP) to perform the regression analysis.
Third, we selected the optimal regression model using the Taylor diagram as the evaluation
result. Fourth, we predicted the land use data in 2030 by the PLUS model and selected the
temperature and relative humidity data in 2030 predicted based on CMIP6. After obtaining
the ecological indicators for 2030, we predicted the GISEI in 2030 by an optimal regression
model. Finally, we analyzed the future changes in ecological environment quality and
policy-making recommendations. Figure 2 shows the detailed research framework.
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Figure 2. Research framework.

2.4. Ecological Environment Quality Assessment

We used the RSEI to calculate the GISEI to assess and simulate the ecological environ-
ment quality of the Xi’an.

2.4.1. Remote Sensing Ecological Index (RSEI)

The RSEI is often used to evaluate the quality of a local ecological environment [15,34].
To calculate the RSEI [7], the band combinations of remote sensing images were used to
extract the normalized difference vegetation index (NDVI), wet index (WET), normalized
difference building and soil index (NDBSI), and land surface temperature (LST), and a
composite RSEI was derived from principal component analysis (PCA) for an objective and
quantitative assessment [35]. Specifically, the RSEI of Landsat-8 OLI images was calculated
using the following formula:

RSEI = f(NDVI, WET, NDBSI, LST)
NDVI = (ρNIR − ρred) / (ρNIR + ρred)

WET = 0.1511ρblue + 0.1973ρgreen + 0.3283ρred + 0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2

NDBSI =

(ρ SWIR1+ρred)−(ρ NIR+ρblue)
(ρ SWIR1+ρred)+(ρ NIR+ρblue)

+

2ρSWIR1
ρSWIR1+ρNIR

−
(

ρNIR
ρNIR+ρred

+
ρgreen

ρgreen+ρSWIR1

)
2ρSWIR1

ρSWIR1+ρNIR
+

(
ρNIR

ρNIR+ρred
+

ρgreen
ρgreen+ρSWIR1

)
2

LST = γ× [(φ1 × Lsensor +φ2)/ε+φ3] + δ

γ ≈ T2
sen/(br × Lsensor)

δ ≈ Tsen − T2
sen/br

(1)

where ρi is the reflectance of the Landsat-8 image corresponding to band i, br is a constant,
Tsen is the brightness temperature detected by the sensor, Lsensor is the radiant luminance
measured by the sensor, the calculation of φ1—φ3 can be found in the reference [36], and ε

is the surface-specific radiance, which is calculated from NDVI [37]. In this paper, we used
Landsat-8 images from June to September 2020 to calculate the RSEI of Xi’an, because June
to September is the season when the vegetation grows most vigorously, which can better
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reflect the local ecological environment. First, we downloaded images with a less than
5% cloud cover and performed radiometric calibration, atmospheric correction, cropping,
stitching, and fusion pre-processing operations on the images. Then, the four indices of
NDVI, WET, NDBSI, and LST were calculated using the image band combinations. And
finally, the RSEI was synthesized using PCA.

2.4.2. Geographic Information System Ecological Index (GISEI)

The GISEI is a method to calculate EI objectively based on the RSEI theory using GIS
technology. Referring to the calculation of RSEI using greenness, dryness, temperature,
and humidity, greenness and dryness can be mainly determined by land use types, and
temperature and humidity can be responded to by meteorological indicators. Therefore,
land use types, mean annual temperature, and mean annual relative humidity were used
as ecological indicators, and these indicators and the RSEI were regression analyzed to
calculate the GISEI. The GISEI can be used not only to assess current ecological environ-
ment quality, but also to simulate future ecological environment quality by predicting the
ecological indicators. In this paper, we assess the ecological environment quality in 2020
and predict the ecological environment quality in 2030 using the GISEI.

2.5. Regression Analysis

Regression analysis is a predictive modeling technique that uses sample data to
establish a relationship between the dependent and independent variables to obtain the
value of the dependent variable that is not contained in the sample data [38]. In this
study, ridge regression, support vector machine (SVM), random forest (RF), and BP neural
network (BP) were used for regression analyses of RSEI and ecological indicators.

2.5.1. Ridge Regression

Ridge regression as a modification of the least squares approach [39], which aban-
dons the requirement of unbiasedness in the least squares method from the perspective
of reduced precision and loss of some information, is a regression method with biased
estimation. Especially for pathological data, its regression results are reliable and realistic,
suitable for data with covariance problems. In this paper, we used 1520 random sample
points of plowland (x1), woodland (x2), grassland (x3), wave (x4), construction land (x5),
unused land (x6), mean annual temperature (x7) and mean annual relative humidity (x8)
for the ridge regression analysis with the RSEI (Y), and the results of the calculation are
as follows:

Y = 0.77014 − 0.03x1 + 0.07x2 + 0.04x3 − 0.03x4 − 0.14x5 − 0.05x6 + 0.16508x7 − 0.17339x8 (2)

2.5.2. Support Vector Machine

SVM is a binary classification model whose basic principle is structural risk minimiza-
tion, and the SVM has developed into a supervised learning model after incorporating
mathematical and statistical theory [40]. At present, the SVM is mainly used in pattern
recognition, classification, regression analysis, etc. It has the advantages of fast convergence,
strong generalization ability, and global optimization. In this paper, we used 1520 random
sample points as the training dataset and the fishing nets as the test dataset for the SVM
regression analysis; Y and X were the same as the above ridge regression.

2.5.3. Random Forest

RF grows into categorized “trees” by randomly selecting vectors through a self-help
method, with each tree growing in its entirety without pruning. The variables at each
node are generated from only a few random variables when the trees are generated, the
variables (columns) and data (rows) are randomized, and a large number of trees generated
in this randomized way are used for classification and regression, hence the name “random
forest” [41]. Each tree in the forest depends on a random vector, and all vectors in the
forest are independently and identically distributed. The final decision tree is generated
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by “voting” on potential random vector trees, with the RF selecting the classification that
receives the most votes. If the goal is regression, the mean of the results from these trees is
the predicted value of the dependent variable. The RF improves the prediction accuracy
without significantly increasing the computational complexity. In this paper, we used 1520
random sample points as the training dataset and fishing nets as the test dataset to perform
the RF regression analysis; Y and X were the same as the above ridge regression.

2.5.4. BP Neural Network

BP is the most widely used neural network at present; it is a multi-layer feed-forward
neural network, and the adjustment rule of its network weights uses the back-propagation
learning algorithm with the optimal gradient descent technique; the goal is to achieve the
smallest mean squared error of the network between the actual output and the desired
output [42]. It has the advantages of nonlinearity, high accuracy, and good generalization
performance. In this paper, we used 1520 random sample points as the training dataset and
the fishing nets as the test dataset for the BP regression analysis; Y and X were the same as
the above ridge regression.

2.6. Taylor Diagram

The Taylor diagram can plot the correlation coefficients, root mean square errors
(RMSE), and standard deviations of multiple fields on a single polar plot, allowing for
an intuitive and comprehensive assessment of the simulation capabilities and differences
between multiple models [43]. The higher the correlation coefficient, the lower the RMSE,
and the lower the standard deviation, which means the better the simulation. In this paper,
the Taylor diagram was used to compare the simulation results of the four regression
models to select an optimal regression model. Firstly, the four models were assigned values
of 4, 3, 2, and 1 in the orders of standard deviation, RMSE, and correlation coefficient
(Table 2). Then, the values of the four models in each aspect were summed up to obtain the
comprehensive evaluation index (CEI). Finally, the model with the largest CEI was selected
as the optimal regression model.

Table 2. Values of the four regression models in terms of standard deviation, RMSE, and correlation
coefficient.

Model Standard Deviation RMSE Correlation Coefficient CEI

Ridge 4 1 1 6
SVM 1 2 2 5
RF 2 4 4 10
BP 3 3 3 9

2.7. Markov Chain

A random process can be reliably predicted by the Markov chain (MC) in an after effect-
free manner. In addition, land use change is a random process with no consequences [44].
The Markov transfer matrix was used to determine the target year’s land-use scenarios,
and MC was used to predict the changes in land-use [45]. The formula is as follows:

p(Xt+1|Xt, . . . , X1) = p(Xt+1|Xt)

Pn,n+1 =
(

Pin ,in+1

)
=


P0,0 P0,1 P0,2 . . .
P1,0 P1,1 P1,2 . . .
P2,0 P2,1 P2,2 . . .
. . . . . . . . . . . .

 (3)

where Xt is a set of random variables; and Pa,b is the probability of event a moving to
event b.
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2.8. PLUS Model

The PLUS model is a cellular automata (CA) model based on raster data that can be
used to simulate land use change at the patch scale. The model combines a rule mining
method based on the land expansion analysis strategy (LEAS) and a CA model based on
cellular automata of random seeds (CARS), which can be used to mine land expansion
drivers and predict the patch-scale evolution of land use landscapes [46]. The LEAS module
extracts the proportion of all types of land use expansion between two periods of land use
change, samples from the increased proportion, and uses the random forest algorithm to
mine all types of land use expansion and drivers one-by-one to determine the probability
of land use development and the contribution of drivers to land use expansion. The
CARS module combines random seed generation with a threshold-decreasing mechanism
to simulate the automatic generation of plaques in a spatio-temporal dynamic manner,
taking into account the probability of development. In addition, the PLUS model also
provides land type transformation under different scenarios, such as a natural development
scenario, ecological protection scenario, cultivated land protection scenario, etc. [47]. This
paper aimed to find out the future ecological environment quality in Xi’an without policy
intervention, and then scientifically formulate an ecological protection policy to guide the
ecological environment quality to develop in a good direction. Therefore, we selected a
natural development scenario to predict the land use of Xi’an in 2030.

3. Results
3.1. RSEI

We used RSEI to assess the ecological environment quality in Xi’an in 2020. The results
are shown in Figure 3, from which we know that the ecological environment quality of
the Qinling Mountains in the southern part of Xi’an was better than that of the plain areas.
There are two main reasons for this: on the one hand, the Qinling Mountains are mostly
forested, with high vegetation cover and few people living there, while the plain areas are
construction land, with high building density, sparse vegetation, and where industry and
population are concentrated; on the other hand, in Xi’an, the RSEI has a negative correlation
with the surface temperature. The Qinling Mountains in the south have lower temperatures
due to their higher elevation, while the temperature in the urban area is higher due to
the urban heat island effect. Meanwhile, the RSEI identifies the ecological nuances within
Xi’an well, and in general, the higher the building density and the more concentrated the
population, the worse the ecological environment quality.
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3.2. Ecological Environment Quality Assessment

The land use types were divided into six categories: plowland, woodland, grassland,
wave, construction land, and unused land (Figure 4a), and we established 100 × 100 m
fishing nets to calculate the area of each land use type within each fishing net. Meanwhile,
the mean annual temperature (Figure 4b) and mean annual relative humidity (Figure 4c)
with a resolution of 100 × 100 m were obtained by the interpolation method, and the
mean annual temperature and mean annual relative humidity of each fishing net could be
obtained by a superposition analysis. Similarly, the RSEI of each fishing net was analyzed
by the superposition analysis. It is worth noting that the number of fishing nets was huge,
and for convenient calculation, we created 1520 random points (Figure 4d) as sample data,
which were analyzed in superposition with the fishing nets to obtain random sample points.
Thus, each random sample point included these attribute data: the RSEI, the area of each
land use type, the mean annual temperature, and the mean annual relative humidity.
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Finally, we performed regression analyses using four models: ridge regression, SVM,
RF, and BP. Specifically, we used the RSEI as the dependent variable and the area of
each land use type, mean annual temperature, and mean annual relative humidity as the
independent variables. The results are shown in Figure 5, where we can see a few subtle
differences in the results calculated by the four regression models. The next step was to
choose an optimal regression model.
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3.3. Model Selection

We have obtained four groups of GISEI values through regression analysis, and to
select an optimal regression model, i.e., the GISEI was closest to the RSEI, we used the
Taylor diagram to evaluate them. Specifically, we calculated the standard deviation, RMSE,
and correlation coefficient between each group of GISEI and RSEI and plotted the polar plot
(Figure 6). From the figure, we can see that in terms of the standard deviation, Ridge > BP >
RF > SVM; in terms of the RMSE, RF > BP > SVM > Ridge; and in terms of the correlation
coefficient, RF > BP > SVM > Ridge. According to the calculation, the CEI of the RF was the
largest, so the RF was the optimal regression model in the regression analysis for RSEI and
ecological indicators.

3.4. Ecological Environment Quality Prediction

The prediction of ecological environment quality is a guiding significance for ecological
security management. In this paper, we predicted the ecological environment quality in
Xi’an in 2030. First, we predicted these ecological indicators. Then, we use the relationship
between ecological indicators and RSEI obtained from the RF regression analysis in the
previous paper to simulate the future GISEI.
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3.4.1. LUCC Prediction

In this paper, we used Patch-generating Land Use Simulation Model Software 1.4 to
predict the land use changes in Xi’an in 2030. The main steps are as follows: First, the total
amounts of various land use types of Xi’an in 2030 are predicted using the Markov chain
based on the land use data of 2010 and 2020, and the result is shown in Table 3. Second,
the land expansion analysis is conducted based on the land use data of 2010 and 2020.
Third, we considered DEM, slope, distance to government, distance to roads, distance to
railways, distance to water bodies, GDP, population, mean annual precipitation, mean
annual temperature, and soil types as driving factors to analyze land expansion. Finally,
the spatial distribution of land use types in 2030 is simulated based on the land expansion
analysis strategy (Figure 7a).

Table 3. Total amounts of land use types of Xi’an in 2030.

Year Plowland Woodland Grassland Wave Construction Land Unused Land

2010 3,793,914 3,098,105 2,047,794 139,937 1,151,608 3513
2020 3,583,530 3,061,949 2,126,329 164,354 1,292,107 4560
2030 3,397,372 3,030,416 2,202,182 186,743 1,410,792 5324

3.4.2. Meteorological Data Prediction

The temperature and drought dataset was clipped to follow the Xi’an boundary, and
we averaged the 12-month temperature data for 2030 to obtain the mean annual temperature
for Xi’an. For the mean annual relative humidity, we used the inverse of drought because
relative humidity is inversely proportional to drought. Then, we used the interpolation
method to obtain the mean annual temperature (Figure 7b) and mean annual relative
humidity (Figure 7c) at 100 × 100 m resolution of Xi’an in 2030. We found that the climate
of Xi’an will be hotter and drier in 2030.
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3.4.3. Ecological Environment Quality in 2030

After predicting the land use data and meteorological data of Xi’an in 2030, we built
100 × 100 m fishing nets to record the ecological indicators in 2030. Then, we calculated
the areas of the six land use types, mean annual temperature, and mean annual relative
humidity for each fishing net, and the order of the fields was the same as the order of the
fields in 2020. Then, we used RF regression analysis to calculate the GISEI of Xi’an in 2030.
Specifically, the random sample points of 2020 from the previous paper were used as the
training dataset and the fishing nets in 2030 as the test dataset to perform the RF regression
analysis to obtain the GISEI of each fishing net in 2030, i.e., the spatial distribution of the
GISEI of Xi’an in 2030 (Figure 7d). The lower the GISEI value, the worse the ecological
environment quality, we can see that in 2030, the overall ecological environment quality
in Xi’an is worse, and most of the ecological environment quality of the Guanzhong Plain
shows a poor value. Only the Qinling Mountains still have a good ecological environment
quality, although this area covers only a relatively small area of Xi’an.

3.5. Ecological Environment Quality Change

To study the changes in the ecological environment quality in Xi’an from 2020 to 2030,
we classified the GISEI obtained from the RF regression analysis in 2020 into five levels
(poor, fair, moderate, good, and excellent) according to the natural breakpoint method. As
shown in Figure 8a, the overall ecological environmental quality of Xi’an City shows a
gradual deterioration from south to north, among which, poor accounts for 9%, mainly
distributed in the central part of Xi’an, where buildings are dense and the population is
densely populated; Fair accounts for 25%, which was mainly distributed in the central and
northern parts of Xi’an; Moderate accounts for 13.8%, which was mainly distributed around
the fair; Good accounts for 9.4%, which was mainly distributed in the areas bordering
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the Qinling Mountains and Guanzhong Plain in the south of Xi’an and a small amount
in the Qinling Valley area; Excellent accounts for 42.8%, which was mainly distributed in
the Qinling Mountains in the south of Xi’an. In short, the overall quality of the ecological
environment in Xi’an during this period was good.
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Similarly, we divided the GISEI in 2030 into five levels with the same breakpoint values.
The result is shown in Figure 8b. Overall, the distribution of the ecological environment
quality in Xi’an in this period was still better in the southern Qinling Mountains than in
the Guanzhong Plain, but the ecological environment quality had seriously deteriorated
compared with that in 2020, in which the excellent areas accounted for only 3.8%, a
decrease of 39%. However, the fair areas increased significantly from 25% to 35.3%, and
the Guanzhong Plain areas were almost all fair or even poor, and the proportion of poor,
moderate, and good was 15.7%, 8.6%, and 36.6%, respectively.

We subtracted the GISEI in 2020 and the GISEI in 2030 to obtain the spatial changes
in ecological environment quality from 2020 to 2030 (Figure 8c). Here, the values indicate
the level of the changes, where a positive value means better, a negative value means
worse, and zero means no change. For example, it means that the ecological environment
quality has deteriorated by three levels if the value is −3. There were very few areas with
ecological environment quality change for the better or a three-level change for the worse;
the areas with no change in ecological quality were mainly in the Guanzhong Plain and the
southern part of the Qinling Mountains; the areas with two levels of worsening ecological
environment quality were mainly in the areas bordering the Qinling Mountains and the
Guanzhong Plain; and the ecological environment quality of most of the Qinling Mountains
had degraded by one level.
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At the same time, we also examined the area transformation between ecological envi-
ronment quality levels (Figure 8d). From 2020 to 2030, for poor, 19.78 km2 will transform
into fair; for fair, 886.94 km2 will transform into poor, and 16.42 km2 will transform into
moderate; for moderate, 89.08 km2 will transform into poor, 1747 km2 will transform into
fair, and 16.65 km2 will transform into good; and for good, 16.69 km2 will transform into
poor, 652.65 km2 will transform into fair, 469.97 km2 will transform into moderate, and
13.86 km2 will transform into excellent; for excellent, 4.61 km2 will transform into fair,
611.11 km2 will transform into moderate, and 5136.71 km2 will transform into good. In
summary, only 66.71 km2 of the ecological environment quality had changed for the better,
while the area that had changed for the worse was as high as 9614.76 km2, and moderate
and good almost all decreased by one level, while excellent had the most serious change,
with more than half of the ecological environment quality deteriorated, and some of them
even decreased by three levels.

4. Discussion
4.1. The Advantages and Disadvantages of GISEI

We assessed the ecological environment quality in Xi’an in 2020 using RSEI (Figure 3)
and GISEI (Figure 5c), respectively, and it can be seen from the two figures that both RSEI
and GISEI identify the ecological environment quality in Xi’an well. However, there is a
slight difference in the details; for example, in the central city of Xi’an, the results of the
RSEI assessment can distinguish the difference, while the results of the GISEI assessment
are almost all shown in red. It seems that the RSEI ecological environment quality can better
highlight the details, but the indicators of the RSEI and the GISEI are calculated differently,
as far as the buildings are concerned, the RSEI uses the reflectance of remote sensing images
to calculate the normalized difference built-up index (NDBI) [48], while the buildings of
the GISEI are obtained through supervised classification by machine learning, as well
as manual visual interpretation. Therefore, the ecological environment quality assessed
by the GISEI is more accurate from the perspective of the indicators data. The RSEI has
significant advantages in dynamic monitoring of ecological environment quality. However,
it cannot predict future changes in the ecological environment quality and is not suitable
for research in large areas. However, the prediction of land use and meteorological data is
more mature, and the GISEI can realize the prediction of future ecological environmental
quality using land use and meteorological data as ecological indicators and can evaluate
over large areas because of the ease of access to such ecological indicator data. In addition,
to ensure the accuracy of the model, we chose four popular regression analysis methods,
by analyzing the performance of the regression results in different aspects we found that in
terms of the standard deviation, Ridge > BP > RF > SVM; in terms of the RMSE, RF > BP >
SVM > Ridge; and in terms of the correlation, RF > BP > SVM > Ridge. We chose the RF
through comprehensive consideration, this machine learning method has better results, but
its readability is not good. With the help of the Ridge regression, we know that the relative
humidity, temperature, and construction land are the main factors affecting the ecological
environment quality.

A large amount of ecological indicator data at different times need to be collected
and processed when we monitor the ecological environment quality dynamically, which is
undoubtedly a huge amount of work, unlike the RSEI which can be easily realized with the
help of Google Earth Engine. Therefore, the GISEI does not perform well in the dynamic
monitoring of an ecological environment. In addition, factors such as population and
economy have a greater impact on the ecological environment, and although there is a
strong correlation between land use types and these factors, they cannot be completely
replaced. Therefore, the GISEI reflects the state of the ecological environment, the same
as the RSEI, and does not reflect all the factors affecting the ecological environment or the
relationship between these factors.
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4.2. The Reasons and Policy Implications

By predicting the ecological environment quality in Xi’an in 2030, we found that there
will be a large extent of ecological degradation in Xi’an by 2030, and one of the main reasons
for this is that the construction land will have increased by 9% from 2020 to 2030. The
densely built areas may cause the land surface temperature to rise and the urban heat
island effect, making the city less comfortable in hot weather [49]. Furthermore, numerous
buildings divide and destroy the natural landscape, exacerbating the degradation of the
ecological environment quality [50]. Another reason is that the climate of Xi’an will become
warmer and drier by 2030. If the city’s ecological environment continues to deteriorate,
plant and animal habitats will be destroyed, urban pollutants will be difficult to clean
up, factories will be forced to close down, and the city will lose its population, making it
difficult to sustain development when it is a serious threat to the health of its residents.
Therefore, we need to protect the ecological environment as early as possible, so that the
ecological environment will change for the better or slow down the rate of deterioration.

The ecological environment quality in Xi’an will be seriously deteriorated by 2030
under the natural development scenario. However, Yang [9] dynamically monitored the
ecological quality of Xi’an over the past 20 years and showed that the overall ecological
quality of Xi’an will first decrease and then increase. The reason for this is that the theory
that lucid waters and lush mountains are invaluable assets was proposed in 2005 and
implemented nationwide in 2017, which has led to increased protection of the ecosystem. It
shows that human policies are crucial to the ecosystem and can even change the direction of
ecological quality development. In other words, the future quality of the urban ecosystem
depends on our current behavior. If we want to guide the ecological environment quality to
continuously develop in a good direction, we need to make great efforts. Compared with
previous studies, the advantage of this paper is that by analyzing the future changes in the
ecological environment quality, we identify the ecologically fragile areas, which are crucial
for the delineation of ecological red line and urban planning and provide spatial references
for ecological environment protection and management. We suggest that different measures
should be taken in different areas. In areas where the ecological environment is already
poor, we should strengthen urban greening and properly dispose of domestic garbage and
industrial wastewater; in areas where the ecological environment is excellent, protection
should be strengthened. In particular, the development of tourism resources should be
moderate and reasonable; and in fragile areas, where protection should be strengthened,
the ecological environment may deteriorate, and it is necessary to take some treatment
measures, such as establishing water source protection zones, optimizing the soil, planting
trees, and so on.

4.3. The Limitations and the Research Topics

The purpose of this paper is to provide a new method for assessing and predicting
the ecological environment quality and to demonstrate the feasibility of the GISEI using
Xi’an as an example. We have selected only one scenario to predict ecological indicators.
However, this prediction is often inaccurate, and a multi-scenario prediction should be
carried out in subsequent studies. In addition, the ecological environment is a whole, and
cities have to sacrifice the ecological environment for the sake of development. Therefore,
the neighboring areas play an important role in ecological compensation, and a large-scale
ecological environment quality assessment is essential. Coincidentally, another advantage
of the GISEI is that it can be applied to large-scale ecological environmental quality assess-
ments. Therefore, future research should focus on the ecological environment of urban
agglomerations and their neighborhoods on a large scale.

5. Conclusions

This paper assesses and predicts the ecological environment quality in Xi’an. Some
of the contributions of this paper are calculating the RSEI of Xi’an in 2020, establishing
a relationship between the RSEI and ecological indicators using regression analysis, and
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assessing the ecological environmental quality of Xi’an in 2020 using the GISEI, which
found that the ecological environmental quality of the Qinling Mountains in the southern
part of Xi’an is better than that of the plains. The ecological environmental quality is
generally better in this period. The proportion of excellent areas is 42.8%.

Another contribution of this paper is that we predicted the ecological environment
quality in Xi’an in 2030 through the prediction of ecological indicators. By 2030, the
ecological environment quality in Xi’an as a whole will be poor, excellent areas are only
3.8%, and most of the area also shows poor quality, only the ecological environmental
quality of the southern Qinling Mountains is still good, but the areas that account for
Xi’an’s area are relatively small. Meanwhile, we analyzed the changes in the ecological
environment quality from 2020 to 2030; the regions with a serious degradation of ecological
environment quality are mainly located in the areas bordering the Qinling Mountains and
the Guanzhong Plain. The ecological environment quality in most areas of the Qinling
Mountains will deteriorate from excellent to good, almost all of the original moderate
and good areas will have decreased by one level, and the change in excellent areas is the
most significant. In addition, through the assessment and prediction of the ecological
environment quality in Xi’an, it is proved that the GISEI ecological environment assessment
method proposed in this paper is feasible and has a strong robustness.
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