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Abstract: In recent years, global climate change and human alterations to land use have led to a
decrease in ecosystem services, making ecosystems more vulnerable. However, unlike the well-
established risk assessment frameworks used in natural disaster research, the concept of ecological
risks arising from changes in land use is still in its early stages, with its nuances and assessment
methodologies yet to be clearly defined. This study proposes a new framework for assessing
ecological risks resulting from changes in land use in the Tarim River Basin. The framework employs
a coupled PLUS and Invest model to evaluate the ecological risks of land use change under three
development scenarios projected for the Tarim River Basin in Xinjiang by 2035. The findings indicate
that: (1) Between 2000 and 2020, the predominant land use types in the Tarim River Basin in Xinjiang
were primarily unused land, followed by grassland and cropland. Conversely, grassland, water,
and construction land were relatively less prevalent. During this period, the area of unused land
and cultivated land increased, while grassland, forest land, and water exhibited a declining trend.
Moving forward, under the three scenarios from 2020 to 2035, land use changes in the study area are
characterized by the expansion of cropland and unused land, coupled with a significant decrease
in grassland area, while other land categories demonstrate minor fluctuations. (2) From 2020 to
2035, across various scenarios, the total ecosystem service within the study area demonstrates an
overall increasing trend in both the northern and southern marginal zones. Specifically, under the
baseline scenario, the total amount of ecosystem services in the study area decreased by 15.247%
compared to 2020. Similarly, under the economic development scenario, this decrease amounted
to 13.358% compared to 2020. Conversely, under the ecological protection scenario, the decrease
reached 19.852% compared to 2020. (3) The structure of ecological risk levels from 2020 to 2035, across
multiple scenarios, demonstrates a consistent pattern, characterized by a predominant proportion of
moderate risk. Conversely, other risk levels occupy relatively smaller proportions of the area.

Keywords: land use change; ecological risk; ecosystem services; PLUS model; Invest model; Tarim
River Basin; China

1. Introduction

Since the beginning of the 21st century, the combination of human activities and natu-
ral processes has caused significant changes in land use and global ecosystems. This has
brought attention to the ecological risks associated with changes in land use [1,2], which
are a major concern for both developed and developing nations [3]. Human alterations
to land use patterns in recent decades have significantly disrupted ecosystems, result-
ing in ecological functional degradation, soil erosion, land desertification, environmental
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pollution, and diminishing biodiversity [4,5]. These alterations have markedly increased
ecosystem risks [6] and pose severe threats to human well-being [7–10]. Assessing eco-
logical risks associated with changes in land use and identifying their causes is essential
for establishing an ecological risk warning system. This system can help accurately and
effectively control ecological risks, guide human behavior, and provide a scientific basis for
ecological construction.

The concept of ecological risk assessment originated in the United States Environmen-
tal Protection Agency (EPA), which defines ecological risk as the probability of adverse
ecological impacts resulting from exposure to one or more stressors [10]. Since the 1990s,
ecological issues have become increasingly prominent, leading to a shift in the focus of risk
assessment from human health to ecological risk assessment [11]. This shift has extended
to populations, communities, and entire ecosystems. Ecological risk is typically defined as
the probability and magnitude of adverse effects on ecosystem structure, function, stability,
and sustainability caused by external stressors [12]. As research scales expand from local to
regional, a significant branch of ecological risk research has emerged, known as regional
ecological risk assessment. This primarily evaluates the probability and extent of adverse
effects of environmental pollution, human activities, or natural disasters on multiple risk
receptors at the regional scale [13]. Currently, ecological risk sources include natural
variability and human activities. Within the domain of natural disasters, a theoretical
and methodological framework for ecological risk assessment has been established [14,15].
Changes in land use can reflect the impact of human activities on natural ecosystems [16,17].
Such changes can have significant ecological impacts on atmospheric, soil, aquatic, and
biological systems [18]. These impacts are cumulative and can have regional effects.

The assessment of ecological risks associated with changes in land use primarily
focuses on urban areas, watersheds, coastal regions, administrative districts, and nature
reserves. In urban areas, frequent conversions among different land use types due to
excessive population density and rapid spatial expansion have resulted in increasingly
prominent ecological issues [19,20]. Watershed areas are ecologically sensitive due to their
poor natural endowments, particularly water resources. The landscape in these areas expe-
riences both ecological improvement and deterioration. However, the deterioration trend
outweighs the improvement trend, leading to an intensification of landscape ecological de-
terioration [21,22]. During the development of coastal areas, uncontrolled urban expansion
in the early stages of economic development can lead to landscape fragmentation, which
increases overall ecological risk and tends to concentrate spatially. However, as expansion
is restrained, overall ecological risk decreases [23,24]. Establishing conceptual models for
ecological risk assessment and determining quantitative assessments of ecological risk
present significant challenges due to the complexity of ecosystems and the uncertainty of
risk occurrence.

Two mature theories and methods currently exist in the field of ecological risk as-
sessment. The first is the traditional assessment approach based on the source–pathway–
receptor theory, known as “source analysis–receptor assessment–exposure and hazard
assessment–risk characterization’ [25]. The Relative Risk Model (RRM) is widely employed
for conceptual model construction within this framework. For example, Muditha K. and
Heenkenda used this assessment system to rank and classify pressure sources and habitats
in a specific area. They modeled the interactions between them using exposure and effect
filters, revealing the spatio-temporal distribution of ecological risks in a port setting [26,27].
Yu et al. [28] constructed a “source–pressure source–ecosystem–ecological adverse end-
point” assessment framework based on the principles of RRM to predict and rank the
potential ecological risks of various sub-regions in Xiamen Bay. In comparison to RRM, the
Landscape Pattern Risk Assessment and Evaluation (LPRAE) method is more commonly
used to assess single risk sources. LPRAE quantitatively evaluates ecological risk by assess-
ing the likelihood of ecological risk occurrence within a region and the losses caused by risk
sources to risk receptors [29]. Another method involves ecological risk assessment based
on landscape ecology theory. This method emphasizes the impact of landscape patterns
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on specific ecological functions or processes and focuses on the overall loss of landscape
in providing ecosystem services and ecological functions [30,31]. Evaluation indicators
include landscape fragility, resilience, and stability. Research outcomes emphasize the com-
prehensive characterization and spatial visualization of multiple risk sources, supporting
sustainable landscape planning, design, and ecological management. Landscape ecological
risk assessments often overlook the structure and functionality of the ecosystem, focusing
solely on the landscape perspective. Despite the fact that the landscape represents only a
small portion of the entire ecosystem, assessments are typically static, failing to account for
the dynamic nature of land use changes. As a result, landscape ecological risk assessments
do not adequately capture the fluctuations in ecological risks associated with land use
changes. Current risk assessment methodologies only consider the impact of baseline land
use changes, without exploring the potential transitions between different land use types
and ignoring future risks. Therefore, a new approach is needed to evaluate the ecological
risks associated with land use changes, capable of addressing the dynamic alterations in
land use and the complex nature of ecosystems.

The Tarim River Basin (TRB) is located in an extremely arid region of China and is
heavily influenced by dry climates and intense human activities. As a result, significant
alterations in ecological processes have occurred, leading to a heightened ecological vulner-
ability (EV). Furthermore, rapid urbanization and extensive cropland development in the
region have resulted in dramatic changes to the ecosystem. The study’s logical framework
focuses on analyzing and simulating land use changes, assessing ecosystem service func-
tions, and spatially identifying and evaluating ecological risks. To achieve this, we coupled
the PLUS and Invest models [32] to simulate potential future scenarios of land use changes
in the TRB under three development scenarios for the year 2035: baseline development,
economic development, and ecological conservation. The economic Sharpe ratio [33] is
subsequently introduced to integrate land use simulation results and ecosystem services
into ecological risk assessment. This study provides empirical evidence for ecological
risk assessment in the TRB by analyzing the spatiotemporal differentiation of ecological
risks associated with land use changes under the three development scenarios for 2035
and exploring their attribution. It also offers technical support and a multi-level research
approach for similar study areas.

2. Overview of the Study Area and Data Sources
2.1. Overview of the Study Area

The Tarim River is the largest inland river in China, stretching 2179 km in length,
and ultimately flowing into the Taitema Lake. Its basin covers an area of 1.02 million
square kilometers, accounting for approximately one-sixth of China’s territory [34]. The
geographical coordinates range from longitude 71◦39′ E to 93◦45′ E and latitude 34◦20′ N
to 43◦39′ N. The TRB has a total of 42.9 billion cubic meters of water resources, with
39.83 billion cubic meters being surface water resources and 3.07 billion cubic meters
being groundwater resources. Its climate is typical of a temperate arid continental climate,
characterized by abundant sunshine, dryness, strong winds, large diurnal temperature
variations, sparse precipitation, and intense evaporation. This region contains 54% of the
world’s natural poplar forests and 90% of China’s natural poplar forests. It serves as a
gene bank for poplar forest resources and is a crucial component of China’s “Two Screens
and Three Belts” ecological security strategy. Its ecological significance is irreplaceable [35]
(Figure 1).
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Figure 1. Overview of the study area. (a) Location of the Tarim River Basin in China, (b) Tarim River
Basin countries, (c) Tarim River Basin DEM.

2.2. Data Sources

The study utilized various types of data, including land use, topographic, meteoro-
logical, socioeconomic, and other sources (Table 1). All data were resampled to a spatial
resolution of 250 m and projected onto the WGS_1984_World_Mercator coordinate system.

Table 1. Land use change ecological risk data characterization.

Data Type Data Name Spatial Resolution Data Sources

Land Use Data
2000 30 m

https://www.resdc.cn/ (accessed on 13 March 2020)2010 30 m
2020 30 m

Limiting Factor Open Water 30 m https://www.resdc.cn/ (accessed on 13 March 2020)
Nature Reserve 250 m https://www.resdc.cn/ (accessed on 13 March 2020)

Driving Factor

DEM 250 m https://www.resdc.cn/ (accessed on 15 March 2020)
Slope 250 m by DEM data

Aspect 250 m by DEM data
Roads 250 m http://www.gis5g.com/ (accessed on 15 March 2020)

Waterways 250 m http://openstreetmap.org/ (accessed on 15 March 2020)
NDVI 30 m https://www.resdc.cn/ (accessed on 15 March 2020)

Other Factors

Rainfall Erosion Factor R 1000 m http://www.gis5g.com/ (accessed on 16 March 2020)
Soil Erodibility Factor K 300 m http://www.gis5g.com/ (accessed on 16 March 2020)
Potential Evaporation 1000 m https://www.resdc.cn/ (accessed on 16 March 2020)

Amount of Precipitation 1000 m https://www.resdc.cn/ (accessed on 16 March 2020)

3. Methodology
3.1. Research Framework

This study analyzes the ecological risks associated with land use changes in the TRB
of China. The PLUS model was used to simulate three scenarios for the year 2035: baseline
development, economic development, and ecological conservation. Four ecosystem service
functions were quantified: water yield, carbon storage, soil retention, and habitat quality.
The study quantified the ecological risk of land use changes using the Sharpe ratio and sim-
ulated the spatial distribution of ecological risks under three scenarios. Figure 2 illustrates
the specific framework.

https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
http://www.gis5g.com/
http://openstreetmap.org/
https://www.resdc.cn/
http://www.gis5g.com/
http://www.gis5g.com/
https://www.resdc.cn/
https://www.resdc.cn/
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3.2. Quantification of Ecosystem Services
3.2.1. Carbon Stocks

The Carbon module in the InVEST model version 3.9.2 was used to evaluate and
study land use cover type and carbon stock. The overall carbon stock was calculated by
determining the above-ground carbon stock of vegetation, below-ground carbon stock of
vegetation, soil carbon stock, and dead organic matter carbon stock using a specific carbon
density reference [36]. The calculation formula is as follows:

Ctotal = Cabove + Cbelow + Csoil + Cdead (1)

where Ctotal is the total carbon stock, Cabove is the above-ground part of the carbon stock,
Cbelow is the below-ground part of the carbon stock, Csoil is the soil carbon stock, and Cdead
is the dead organic carbon stock.

3.2.2. Water Production

The water production module in the Invest model uses the water balance principle
based on Budyko’s [37] coupled hydrothermal equilibrium assumptions and average
annual precipitation data. This means that the annual water production, Y(x), for each
raster cell, x, in the study area is calculated as the difference between precipitation and
actual evapotranspiration, which is shown in the formulas below:

Yxj = (1 − AETx

Px
)× Px

AETx

Px
=

1 + wxRx

1 + wxRxj +
1

Rx

wx = Z × (
AECx

Px
)

Rx =
kx × ETox

Px

AWCx = min(MSDx, RDx)× PAWCx

(2)

where Yxj is the average annual water production of grid x, and Px is the annual rainfall of
grid x. Since the actual annual evapotranspiration cannot be obtained by direct measure-
ment, it can be approximated by using a curve to AETx/Px. The Rx value is dimensionless
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and is an index of dryness of grid x, which can be calculated from the potential evapotran-
spiration and rainfall. wx is an empirical parameter that can be calculated. AWCx is the
vegetation available water content, which is determined by soil texture and effective soil
depth, and is used to determine the total amount of water stored and provided by the soil
for plant growth. Z is known as the Zhang coefficient [38], and the final Z coefficient was
determined to be 3.6 in this study.

3.2.3. Soil Conservation

Soil conservation aims to reduce soil erosion by improving the structure of vegetation.
This is achieved by calculating the potential soil erosion and sand production, as well as
the real erosion and sand production, based on the topography of the study area region,
precipitation, and other factors. The difference between these two measurements is used as
the quantitative value of soil conservation. The specific formulas are shown below:

Qsrx = Qse_px − Qse_ax

Qse_px = Rx × Kx × Lx × Sx

Qse_ax = Rx × Kx × Lx × Sx × Cx × Px

(3)

where Qsrx is the soil retention, Qse_px is the potential soil erosion, Qse_ax is the actual soil
erosion, Rx is the rainfall erosivity factor, Kx is the soil erodibility factor, Lx is the slope
length factor, Sx is the slope gradient factor, Cx is the vegetation cover factor, and Px is the
factor that indicates soil and water conservation measures.

3.2.4. Habitat Quality

The InVEST model’s habitat quality module quantifies regional habitat quality by
considering the range of vegetation types in a given area and the degree of degradation
of each type. The model assumes that areas with good habitat quality also have high
biodiversity. Specific calculations are as follows:

Dxj = ∑R
r=1 ∑Yr

r=1 (
Wr

/
∑R

r=1 Wr
)ryirxyβxSjr (4)

where Dxj denotes the degree of habitat degradation of raster x in habitat type j; R is
the number of threat factors; Wr is the weight of the threat source r; Yr is the number of
rasters of the threat source; ry is the coercion value of raster y; irxy is the accessibility of
the threat source to raster x; βx is the sensitivity of the habitat type j to the threat source r;
and dxy denotes the level of stress exerted by the grid cell y on grid x, with two types of
effects—linear and exponential.

linear : irxy = 1 − (
dxy

drmax
) (5)

exp onential : irxy = exp(
−2.99dxy

drmax
) (6)

where dxy is the straight-line distance between grid x and grid y; and dr max the maximum
coercive distance of the threat source r. The habitat quality formula is:

Qxj = Hj

[
1 −

Dz
xj

Dz
xj + k2

]
(7)

In the equation, Qxj represents the habitat quality index of grid x in habitat type j; Hj
denotes the habitat suitability of habitat type j, ranging from 0 to 1; k is the half-saturation
constant, set to half of the maximum habitat degradation degree, designated as 0.5; z is the
normalization constant, typically set to 2.5. Threat sources are extracted from cropland,
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construction land, and unused land. The maximum threat distance, weight, attenuation
type, and sensitivity of different habitats for each threat source are specified in Table 2.

Table 2. The habitat sensitivity data.

Name Habitat Cropland Construction Land Unused Land

Cropland 0.3 0 0.8 0.4
Forest 1 0.6 0.4 0.2

Grassland 1 0.8 0.6 0.6
Water 0.7 0.5 0.4 0.2

Construction land 0 0 0 0.1
Unused land 0.6 0.6 0.4 0

This study selected cropland, construction land, and unused land directly affected
by anthropogenic factors as threat factors based on the geographical environment and
land use patterns in the TRB, as well as the model user manual [37] and existing relevant
literature [39]. The maximum threat distance, weight, and decay characteristics of the threat
factors were determined through comparison and calibration, as specified in Table 3.

Table 3. The threats data.

Threat Max_dist Weight Decay

Cropland 4 0.6 Linear
Construction land 8 0.4 Exponential

Unused land 6 0.5 Linear

3.2.5. Quantification of Total Ecosystem Services

To emphasize the significance of ecosystems, this study selected four key indicators
for ecosystem service assessment in the TRB based on the principles of data accessibility,
necessity, and priority, and considering the current situation and ecological service impor-
tance. These indicators include water conservation, habitat quality, soil erosion, and carbon
storage. According to this research, the total quantity of ecosystem services in the TRB is
the sum of soil retention, water yield, habitat quality, and carbon storage, which represent
four critical ecosystem service functions.

ESIj = ∑4
i=1 ESNij (8)

where ESIj represents the sum of standardized values of the four ecosystem services in
grid j. It signifies the total ecosystem service in grid j. ESNij denotes the standardized ith
ecosystem service in grid j. To standardize the four dimensions of ecosystem services, the
values are normalized to ensure that the value of each ecosystem service falls between
0 and 1.

ESNij =
ESij − ESmin

ESmax − ESmin
(9)

where ESNij is the ith ecosystem service in standardized grid j; ESij represents the value of
the ith ecosystem service in grid j; ESmax is the maximum value of the ith ecosystem service
in grid j; ESmin is the minimum value of the ith ecosystem service.

Thus, the value of ESI, j, ranges from 0 to 4; higher values indicate a higher capacity of
the ecosystem to provide ecosystem services. To facilitate subsequent calculations, ESI was
normalized using the formula. j is again a value between 0 and 1; values close to 1 indicate
a higher capacity of the ecosystem to provide ecosystem services.



Land 2024, 13, 561 8 of 18

3.3. Model of PLUS Land-Use Dynamics
3.3.1. The PLUS Model

The PLUS model is a cellular automaton (CA) model that simulates land use/land
cover (LULC) changes at the patch scale using raster data. It integrates rule mining
methods based on land expansion analysis and a CA model based on multi-type random
seed mechanisms. This allows for the identification of driving factors of land expansion
and the prediction of the patch-level evolution of land use landscapes. The PLUS model
enhances existing CA models by utilizing the Transition Analysis Strategy (TAS) and Pattern
Analysis Strategy (PAS) to better represent patch-level changes in land use processes. It also
employs landscape dynamic change simulation strategies and targets transformation rule
mining strategies. Furthermore, the Transformation Rule Mining Framework (LEAS) and
the Cellular Automaton Random Seed (CARS) model offer advantages in land expansion
analysis. To assess the accuracy of simulated land use data, we generated simulation
data for the year 2020 based on baseline land use data from 2000 and 2010. We validated
the accuracy of both real and simulated land use data using the Figures of Merit (FOM)
coefficient and the Overall coefficient. The FOM for the year 2020 was 0.135, and the overall
coefficient was 0.813. These results demonstrate a high level of spatial consistency between
the two layers, satisfying future scenario simulations. Please refer to reference [40] for
specific formulas.

3.3.2. Multi-Scenario Model

Land use change predictions involve planning interventions, incentives, and restrictive
measures. Changes in natural reserves and infrastructure may alter the land development
process when modeling future scenarios. The PLUS model, which utilizes historical land
use changes and suitability maps, can forecast land use scenarios for specific future dates.
In this study, three future scenarios were set: the baseline development scenario, ecological
protection scenario, and urban expansion scenario.

(1) Baseline Development Scenario (JZ): The LULC changes in this scenario follow
the current development trends from 2000 to 2020. The areas of LULC types in 2035 were
obtained through Markov chain analysis.

(2) Ecological Protection Scenario (ST): This scenario primarily focuses on a develop-
ment pattern centered around protecting forest ecosystems within the basin. This scenario
utilizes the most recent data on natural reserves in China to establish ecological limitations
and incentives for land changes within the reserves. Transfer probabilities from cropland,
grassland, unused land, and construction land to forest land are increased by 50%, while
probabilities of transfer from forest land to grassland, construction land, cropland, and
unused land are decreased by 40%.

(3) Economic Development Scenario (JJ): This scenario assumes an acceleration in
the rate of conversion from grassland, unused land, and construction land to cropland
of 50%. Similarly, the rate of conversion from grassland, cropland, and unused land to
construction land is also accelerated by 50%, based on thresholds set by previous studies
and expert opinions.

3.4. Quantification of Ecological Risk Indicators

The purpose of this paper is to evaluate the Regional Ecological Risk Index (ERI) using
the Sharpe ratio. The formula for the Sharpe ratio is provided below:

Sharpe·Ratio =
E(RP)− R f

σp
(10)

where E(Rp) is the expected return of the portfolio and Rf is the risk-free rate; E(Rp) − Rf is
the excess return of the portfolio and σp is the standard deviation of the portfolio, which
is used to measure the level of risk. The ratio is an indicator of risk-adjusted return. The
higher the ratio, the higher the return for a given level of risk, and vice versa. Drawing on
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this concept, future ESV at a given spatial unit can be considered as the expected ecological
return, and uncertainty about future land use change can be considered as risk. Combined
with the scenario approach, the likelihood of future land use patterns and corresponding
ESV can be obtained. However, the Sharpe ratio is anomalous when negative excess returns
are encountered. Therefore, the formula was improved. The evaluation model for ERI is
shown below: 

ERIj =
ERIj

σj
, ERIj ≥ 0

ERIj =
ERIj

σ−1
j

, ERIj < 0
(11)

EERj = ESVij − ESVkj (12)

where ERIj is the ecological risk index of region j, and is the excess ecological return of
region j, which is calculated by subtracting the risk-free ecological return from the expected
ecological return. In this study, ESVkj is the ESV of region j in 2020 as the risk-free ecological
regression, ESVij is the total ecosystem services of region j under scenario i in 2030 as the
expected ecological regression, and σj is the standard deviation of EER.

4. Results
4.1. Analysis of the Evolution of Spatial and Temporal Patterns of Land Use

From 2000 to 2020, the land use types in the study area were predominantly unused
land, followed by grassland and cropland, with comparatively fewer areas covered by
grassland, water, and construction land (refer to Figure 3). Unused land is concentrated
mainly in the central part of the basin, belonging to the Taklimakan Desert region. Cropland
is primarily distributed in the central-western and southwestern central zones, while
forestland is concentrated in the Awat area in a strip-like pattern. Grassland predominantly
occupies the northern and southern edge areas, with substantial area coverage, while
water and construction land are relatively dispersed. Table 4 shows that from 2000 to
2020, cropland, construction land, and unused land increased, while forestland, grassland,
and water decreased. The proportion of unused land increased significantly by 1.72%,
and cropland increased by 1.54%. In contrast, the grassland area experienced the most
significant decrease, with its proportion declining by 1.87%. This was followed by a
decrease in water proportion by 1.45% and forestland area proportion by 0.10%. However,
the area of construction land only saw a marginal increase of 0.17%. Therefore, from 2000
to 2020, there were minimal changes in the area of construction land and forestland.
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Table 4. The areas of land use types for the years 2000, 2010, and 2020.

Land Use Type
2000 2010 2020 Change of

Percentage
(%)

Areas
(km2)

Percentage
(%)

Areas
(km2)

Percentage
(%)

Areas
(km2)

Percentage
(%)

Cropland 45,496.3 2.61 61,433.9 3.52 72,384.8 4.15 1.54
Forest 23,854.9 1.37 22,583.8 1.29 22,168.1 1.27 −0.10

Grassland 427,430.4 24.50 404,483.4 23.19 394,739.2 22.63 −1.87
Water 61,828.1 3.54 35,809.1 2.05 36,452.3 2.09 −1.45

Construction land 2552.3 0.15 6788.4 0.39 5436.3 0.31 0.17
Unused land 1,183,220.6 67.83 1,213,283.9 69.55 1,213,201.9 69.55 1.72

4.2. Spatial Increase or Decrease in Different Land Use Types

The study analyzes the spatial dynamics of different land use types during histor-
ical periods, showing the areas of increase and decrease for each category from 2000 to
2020. Figure 4 illustrates that cropland has increased mainly in the northwest of Kashgar
and the central region of Awat, with a relatively concentrated distribution. Conversely,
the areas experiencing loss of cropland are sparse and scattered. Regions with increased
forestland exhibit a sporadic distribution patterns, whereas areas with decreased forestland
are primarily concentrated in the central region of Awat. Increased grassland areas are
sporadically distributed along the southern fringe, whereas areas of decrease are mainly
concentrated in the northwest of Kashgar, the central region of Awat, and the northern
part of Manas, displaying a relatively concentrated distribution. There are no substantial
changes observed in water. Areas of increased construction land are predominantly dis-
tributed in the eastern part of Korla, while areas of decrease are primarily concentrated in
the northern region of Korla, exhibiting a relatively concentrated distribution. Regions of
increased unused land are mainly situated in the northern part of Korla, with a relatively
concentrated distribution, whereas areas of decrease in unused land are predominantly
characterized by sparse and scattered distribution patterns.
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4.3. Multi-Scenario Model of Land-Use Change

Using the 2020 baseline image, and based on the expansion changes in land use
between 2010 and 2020 in the study area, three scenarios of land use in the TRB for 2035
were simulated (refer to Figure 5).
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Compared to 2020, according to the statistical data under the baseline development
scenario, the area of cropland increased by 15,976.63 km2, with a growth rate of 2.46%;
the area of water increased by 945.19 km2, with a growth rate of 0.13%. Meanwhile, the
areas of forestland, grassland, and unused land decreased by 480.31 km2, 13,352 km2,
and 2461.81 km2, respectively, with reduction rates of 0.12%, 2.64%, and 1.40%. Under
the economic development scenario, the areas of cropland, water, and construction land
increased by 24,545.79 km2, 996.13 km2, and 702.31 km2, respectively, with growth rates
of 2.95%, 1.40%, and 0.21%; whereas the areas of forestland, grassland, and unused land
decreased by 499.90 km2, 19,622.50 km2, and 6121.84 km2, respectively, with reduction
rates of 0.13%, 3.00%, and 1.37%.

Figure 5 depicts the expansion of cropland towards the northwest in the Kashgar area
under the baseline development scenario (Figure 5b). The encroachment of cropland and
unused land on grasslands is significant, particularly in the northwest region. Unused
land primarily expands towards the marginal zones, while changes in construction land,
forestland, and water are less pronounced. Under the economic development scenario
(Figure 5d), cropland expands more actively in the northwest of Kashgar, the central region
of Awat, and the northern region of Korla. In particular, there is extensive encroachment
of grassland by cropland in the northwest of Kashgar and the central region of Awat.
Unused land mainly encroaches upon grassland at the margins and continues to expand
towards the periphery, while construction land predominantly exhibits scattered patchy
distributions in the northern region. Under the economic development scenario (see
Figure 5c), the expansion of cropland is notably active in the northwest of Kashgar, the
central region of Awat, and the northern region of Korla. Extensive encroachment of
cropland into grassland is observed in the northwest of Kashgar and the central region of
Awat. Forestland expansion is concentrated in the eastern region of Awat and the western
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region of Korla, displaying patchy distributions. Water exhibits more active expansion in
the southwest of Hotan and the northern region of Yining.

4.4. Characterizations of Ecosystem Services under Different Model Scenarios

The total ecosystem service quantity in the study area exhibits significant spatial
heterogeneity, showing a general increasing trend in the northern and southern marginal
zones. Specifically, under the baseline development scenario, the total ecosystem service
quantity decreased by 15.247% compared to 2020, with a decrease of 3.818% in water yield,
0.02% in habitat quality, and 0.061% in carbon storage, and an increase of 0.036% in soil
retention. Under the economic development scenario, the total ecosystem service quantity
decreased by 13.358% compared to 2020, with a decrease of 4.81% in water yield, 0.253% in
habitat quality, and 0.005% in carbon storage, and an increase of 0.451% in soil retention.
Under the urban expansion scenario, the total ecosystem service quantity decreased by
19.852% compared to 2020, with a decrease of 3.628% in water yield and 0.516% in habitat
quality, an increase of 0.011% in carbon storage, and a decrease of 7.113% in soil retention.

There is significant regional variation in ecosystem services in the study area, with
ecosystem service conditions in the marginal areas significantly better than those in the
plains (see Figure 6). Specifically, significant changes are observed in the northwestern,
southern, and western parts of the study area, while minimal changes are noted in the cen-
tral and eastern regions, with the lowest values of ecosystem service functions. Particularly,
the spatial distribution of soil retention function predominantly exhibits low values, with
relatively higher values observed in the northern and western marginal areas. Water yield
appears to be clustered in large areas of high-value regions in the northern area, while the
spatial distribution characteristics of habitat quality and carbon storage remain consistent
with the overall ecosystem services, showing a pattern of high values in the periphery and
low values in the central region.

Figure 6. Spatial distribution of multi-scenario projections of ecosystem services from 2020 to 2035.

4.5. Characteristics of Changes in the Distribution of Ecological Risks under Different Scenarios

Based on the statistics of changes in risk zones at various levels, it is clear that in 2035,
the ecological risk level structure in the study area will be dominated by medium risk,
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with other risk levels accounting for a small proportion of the total area. It is important
to note that this analysis is objective and does not include any subjective evaluations.
The medium-risk zones cover the largest and most widespread area, accounting for over
97% of the total ecological risk level area. In contrast, the low-risk zones are the smallest,
each accounting for less than 0.2%. Under the baseline development scenario, the area
distribution of high-risk levels is the widest, accounting for 1.14%. Meanwhile, the area
of medium-risk levels reaches its maximum under the economic development scenario,
accounting for 98.17%, followed by the baseline development scenario, accounting for
98.03%. In the medium-high risk levels, the economic development scenario increases by
0.36% compared to the ecological protection scenario. Meanwhile, the ecological protection
scenario has the largest proportions of low-risk and medium–low-risk levels, accounting
for 0.15% and 1.32%, respectively, with increases of 0.12% and 1.05%.

The spatial distribution of risk zones remains consistent across the three scenarios,
mainly dominated by medium risk (see Figure 7). However, there are significant changes in
the medium–low-risk and high-risk levels. Under the baseline development scenario (see
Figure 7a), high-risk areas are primarily located in the northwest of Kashgar, the central
part of Awate, the central part of Hotan, and the northwest direction of Korla. The widest
distribution of high-risk areas is in the northwest of Kashgar, while other regions exhibit
scattered and patchy distributions. In the economic development scenario (see Figure 7b),
the main changes occur in the medium–high-risk and medium–low-risk aspects. Medium–
low-risk areas are concentrated mainly in the northwest of Kashgar and the central part of
Awate. Medium–high-risk areas are mainly distributed in the central part of Kashgar, the
north-central part of Awate, the northwest of Korla, and the central part of Hotan. Other
areas exhibit scattered patchy distributions. Regarding ecological protection (see Figure 7c),
significant changes occur mainly in the medium–low-risk level. These changes are mainly
distributed in Atushi, the central and northern parts of Kashgar, the northern part of Awate,
the central and southern parts of Hotan, and the central part of Korla. The distribution
in Kashgar is the most concentrated, while the high-risk level is mainly distributed in
scattered patches, mainly concentrated in the Kashgar and Awate areas.
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5. Discussion
5.1. Spatial Heterogeneity of Ecological Risk Indices and Their Formation Mechanisms

Land is a crucial element for socio-economic activities, and serves as a tangible repre-
sentation of human development and utilization of the natural environment. Changes in
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land structure and patterns are closely related to the spatiotemporal distribution of ecologi-
cal risk. By assessing the spatial patterns of ecological risk, we can reveal the impacts of
land use changes on the structure and function of ecosystems. In the TRB report of 2035, the
spatial distribution of ecological risk remained largely unchanged across all three scenarios.
The risk tends to increase from the central part of the basin towards the periphery, with
medium risk being the most common. The study area is characterized by peripheral regions
with high- and medium-high risk areas, while low- and relatively low-risk areas are mainly
distributed around the basin. The most extensive distribution of areas with medium risk
is observed. Unused land is the predominant land use type in the study area, especially
in the basin’s central region, which includes the Taklamakan Desert, China’s largest and
the world’s tenth-largest desert, as well as the second-largest mobile desert globally. As a
result of the land use types, the overall ecosystem services in the basin’s central region are
relatively low [41]. The transitional zones adjacent to the desert have extensive grasslands
and forests. However, these areas are experiencing a decrease in forest, grassland, and
water due to the encroachment and expansion of unused land [42]. As a result, ecosystem
services are declining. In this environmentally harsh region, the types of land available
for human development and utilization are relatively limited. Therefore, the expansion of
construction land will not be significant over the next 20 years, although it will be relatively
concentrated in distribution.

Under the baseline development scenario, land use changes mainly follow historical
developmental trends. The expansion of cropland and unused land predominates, while
there is a trend of decreasing ecological land areas such as forests, grasslands, and water.
Construction land experiences concentrated expansion, with relatively insignificant land
encroachment. However, the proportion of cropland and unused land encroaching on
other ecological areas increases, leading to significantly reduced vegetation cover, sparse
vegetation, severe soil erosion, and intense desertification. Consequently, ecosystem service
indices, such as water yield, habitat quality, and carbon storage, are relatively low, while
soil conservation service indices increase. Under the baseline development scenario, the
transitional zones at the periphery of the basin present higher ecological risks. Therefore,
it is necessary to control agricultural and ecological spaces. Protection measures should
be improved in the agroforestry transition zones, as well as in the grassland and unused
land transition zones, to enhance forest and grass cover and strengthen ecosystem stability.
In the scenario of economic development, rapid urbanization and agricultural expansion
worsen human activities, which significantly contribute to the decline in regional ecological
environment quality [43]. The expansion of construction and cropland increases the size
of areas classified as medium- to high-risk. Urbanization accelerates soil erosion and
water loss, while cropland expansion encroaches upon other ecological land, resulting in
decreased grassland and forest areas. This threatens ecological balance [44]. Therefore,
ecological risks in transitional areas between cropland and grassland or forest are worsened.
In the ecological protection scenario, the proportion of cropland, forest land, and water
increases, resulting in significant changes in areas classified as low-ecological-risk and
medium–low-ecological-risk. These changes are mainly concentrated in the transitional
zones between grassland and cropland, which are characterized by high vegetation cover,
high organic matter content in soil, and fertile soil, thus exhibiting strong ecosystem service
functions. However, the study area’s unique location and fragile ecological environment
exacerbate the pressures on cropland, forest land, and unused land due to intensified
human disturbances. Therefore, it is crucial to nurture mountain vegetation and water
resources in this region for sustainable development.

Simulations of multiple future scenarios indicate an urgent need to optimize land
use structures to provide decision support for sustainable development and high-quality
ecological environments. Considering the extensive desertification in the hinterland of this
basin, which may exacerbate desertification in peripheral areas, it is imperative to rationally
plan urban development boundaries, limit uncontrolled expansion, and improve land use
efficiency at the same time. Urban development boundary planning is significant in mitigat-
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ing the exacerbation of desertification and improving land use efficiency [45]. To enhance
the ecological benefits of forest and grassland areas with low to medium–low ecological
risks, it is essential to promote the positive feedback evolution of forest–grassland ecosys-
tems and urgently strengthen land remediation efforts. The goal is to intensify cropland
and grassland use, limit the disorderly expansion of unused and construction land, and
harmonize relationships among various ecological landscapes. This will reduce ecological
risk levels and enhance the stability of the land ecosystem. Additionally, measures can
be taken to increase soil carbon sequestration and fertility potential. This can be achieved
by actively implementing ecological protection projects [46], optimizing species richness,
enhancing ecosystem stability and resilience, and promoting synergies among ecosystem
services. These actions can enhance ecosystem productivity and sustainability [47,48].

The TRB is a crucial ecological barrier in western China. The degradation of its ecolog-
ical environment poses significant challenges to the high-quality development of ecological
civilization. The rapid development and transformation of urban construction have in-
evitably altered land use patterns and functions, leading to ecological risks. In the core area
of the study region, the activation speed of marginal sand dunes has accelerated, posing
a severe threat to cropland. This is particularly concerning as artificial oases continue to
expand, replacing natural ones. As a result, the buffer zone between oases and deserts is
continuously shrinking, which has a negative impact on desert-edge vegetation. Therefore,
to implement the concept of guided restoration, it is essential to create artificial ecosystems
in the Taklamakan Desert by constructing artificial oases. Additionally, adjusting the in-
dustrial structure and optimizing the allocation of agriculture, forestry, animal husbandry,
and subsidiary industries can help mitigate the risks of vegetation destruction caused by
human activities. Under the conditions of economic and technological priority, broad-scale
afforestation is an effective method for protecting vegetation on the edges of deserts. There-
fore, it is necessary to strictly adhere to policies and regulations to protect the ecological
environment, mitigate the negative impacts of human activities on the environment, and
promptly initiate ecological restoration efforts.

5.2. Comparison with Previous Research

Currently, the ecological risks of land use changes in the TRB have not been assessed.
This study integrates simulated land use results and ecosystem services into ecological risk
assessment by introducing the economic Sharpe ratio [33].

Extensive research has been conducted on the ecosystem services of the TRB. The
ecological security assessment, based on ecological footprint, indicates that water scarcity is
a significant constraint on the socio-economic development of the TRB. This is exacerbated
by climate change and rapid cropland expansion. Furthermore, the significant growth of
artificial ecosystems, referred to as artificial oases, resulting from the transformation of
natural oases or deserts, worsens landscape fragmentation and the ongoing degradation
of ecological security levels in the basin [49]. The increase in ecological risks due to water
scarcity is consistent with the findings of this study, primarily resulting in a gradual rise in
ecological risks in the transitional zones between cropland and forests. The TRB indicates an
overall increase in ecosystem vulnerability levels, with some areas experiencing extremely
severe vulnerability [50]. This finding is consistent with the gradual rise in ecological risk
levels discussed in this study. The evaluation of ecological risks resulting from ecosystem
degradation shows a significant correlation between these risks and the swift urbanization
and expansion of cropland, which are the primary drivers of ecological risks in the TRB [13].

The study shows that the spatial distribution of ecological risk resulting from land
use change in the TRB is closely aligned with the spatial distribution pattern of ecosystem
service functions in the TRB after the implementation of ecological restoration projects, as
described in other studies [51]. This suggests that human activities significantly influence
land use change-induced ecological risks.
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5.3. Shortcomings and Prospects

The PLUS model’s Markov module relies exclusively on past land use changes for
quantitative prediction. However, accurately predicting the transfer of land use types
in the future is challenging due to the influence of multiple factors, limiting the model’s
accuracy. To enhance accuracy, it is advisable to comprehensively consider policy and
natural economic factors for precise quantitative analysis. Furthermore, the spatiotemporal
evolution of ecological risk is influenced by multiple factors, which requires additional
research. To clarify the impact of land use change on ecological risk, longer time series
studies are necessary, along with a thorough investigation of the relationship between
ecosystem services and ecological risk. In summary, future research on the ecological
risk of land use change should consider multiple variables, including social, economic,
and environmental factors, and conduct more empirical studies. Furthermore, ecological
protection should be a dynamic adaptive response, focusing on the trends of land use
change in high-risk areas, and intensifying land restoration efforts to enhance resilience
against ecological risks.

6. Conclusions

(1) Between 2000 and 2020, the primary land use types in the study area were unused
land, followed by grassland and arable land. Grassland, water, and construction land had
relatively less coverage. There was a significant increase in unused and arable land, while
grassland, forest land, and water exhibited a declining trend. From 2020 to 2035, the main
trend in the three development scenarios was the expansion of arable and unused land,
while the grassland area decreased significantly. There were minimal changes in other
land types. Unused land was mainly clustered in the central part of the basin, while arable
land was concentrated in the central areas of Kashgar and Awat. The Awat region had a
strip-like pattern of forest land, while the northern and southern marginal areas had mainly
grassland. Water and construction land areas were relatively dispersed in comparison.

(2) Between 2020 and 2035, the total quantity of ecosystem services in the study area
showed significant spatial differentiation under various scenarios. There was an overall
increasing trend in the total quantity of ecosystem services in the northern and southern
marginal areas. Under the baseline development scenario, the total quantity of ecosystem
services decreased by 15.247% compared to 2020. Under the economic development
scenario, it decreased by 13.358% compared to 2020. Under the ecological protection
scenario, it decreased by 19.852% compared to 2020.

(3) Between 2020 and 2035, various scenarios showed that ecological risk levels had
similar characteristics. The majority of the areas fell under the moderate-risk category,
with other risk levels accounting for a smaller proportion of the total area. Moderate-risk
areas had the largest and most widespread distribution, covering over 97% of the total
ecological risk level area. Conversely, low-risk areas had the smallest area, with proportions
all below 0.2%. In various scenarios, the distribution of high-risk areas varied. In the
baseline development scenario, high-risk areas were mainly located in the northwest of
Kashgar, the central part of Awate, the central part of Hotan, and the northwest part of
Korla. Under the economic development scenario, there were significant changes in the
distribution of moderate–high-risk and moderate–low-risk areas. Under the ecological
protection scenario, there were noticeable changes in the distribution of moderate- to
low-risk areas. These changes were mainly concentrated in specific regions, with Kashgar
having the most concentrated distribution.

Author Contributions: Y.C. and X.Z.: methodology, software, data curation, validation, and
writing—original draft; Y.C. and X.Z.: project administration and writing—review and editing;
W.S.: conceptualization, funding acquisition, writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by The Third Comprehensive Scientific Investigation in Xinjiang
(Grant No. 2022xjkk0905).



Land 2024, 13, 561 17 of 18

Data Availability Statement: All relevant data sets in this study are described in the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global

consequences of land use. Science 2005, 309, 570–574. [CrossRef] [PubMed]
2. García-Nieto, A.P.; Geijzendorffer, I.R.; Baró, F.; Roche, P.K.; Bondeau, A.; Cramer, W. Impacts of urbanization around Mediter-

ranean cities: Changes in ecosystem service supply. Ecol. Indic. 2018, 91, 589–606. [CrossRef]
3. Omar, H.; Cabral, P. Ecological risk assessment based on land cover changes: A case of Zanzibar (Tanzania). Remote Sens. 2020, 12,

3114. [CrossRef]
4. Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 2020, 113,

106243. [CrossRef]
5. Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D. China’s response to a

national land-system sustainability emergency. Nature 2018, 559, 193–204. [CrossRef] [PubMed]
6. Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of

prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [CrossRef] [PubMed]
7. Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M.

Past and future impacts of land-use changes on ecosystem services in Austria. J. Environ. Manag. 2023, 345, 118728. [CrossRef]
[PubMed]

8. Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Wu, J. Multi-scenario simulation of landscape ecological risk probability to facilitate
different decision-making preferences. J. Clean. Prod. 2019, 227, 325–335. [CrossRef]

9. Chen, J.; Dong, B.; Li, H.; Zhang, S.; Peng, L.; Fang, L.; Zhang, C.; Li, S. Study on landscape ecological risk assessment of Hooded
Crane breeding and overwintering habitat. Environ. Res. 2020, 187, 109649. [CrossRef]

10. US Environmental Protection Agency. Risk Assessment Forum 1992. Report on the Ecological Risk Assessment Guidelines Strategic
Planning Workshop; US Environmental Protection Agency: Washington, DC, USA, 1992.

11. Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on land use changes and ecological
risk assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [CrossRef]

12. Liang, Y.; Song, W. Integrating potential ecosystem services losses into ecological risk assessment of land use changes: A case
study on the Qinghai-Tibet Plateau. J. Environ. Manag. 2022, 318, 115607. [CrossRef]

13. Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the response of ecological risk to land
use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [CrossRef] [PubMed]

14. Bertollo, P. Assessing landscape health: A case study from northeastern Italy. Environ. Manag. 2001, 27, 349–365. [CrossRef]
[PubMed]

15. Barnthouse, L.W.; Suter, I.I. User’s Manual for Ecological Risk Assessment; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1986.
16. Kong, X.; Fu, M.; Zhao, X.; Wang, J.; Jiang, P. Ecological effects of land-use change on two sides of the Hu Huanyong Line in

China. Land Use Policy 2022, 113, 105895. [CrossRef]
17. Liang, Y.; Song, W. Ecological and Environmental Effects of Land Use and Cover Changes on the Qinghai-Tibetan Plateau: A

Bibliometric Review. Land 2022, 11, 2163. [CrossRef]
18. Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719.

[CrossRef]
19. Wang, D.; Ji, X.; Li, C.; Gong, Y. Spatiotemporal variations of landscape ecological risks in a resource-based city under transforma-

tion. Sustainability 2021, 13, 5297. [CrossRef]
20. Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on

the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [CrossRef]
21. Qu, Y.; Zong, H.; Su, D.; Ping, Z.; Guan, M. Land use change and its impact on landscape ecological risk in typical areas of the

Yellow River Basin in China. Int. J. Environ. Res. Public Health 2021, 18, 11301. [CrossRef]
22. Cheng, Y.; Song, W.; Yu, H.; Wei, X.; Sheng, S.; Liu, B.; Gao, H.; Li, J.; Cao, C.; Yang, D. Assessment and Prediction of Landscape

Ecological Risk from Land Use Change in Xinjiang, China. Land 2023, 12, 895. [CrossRef]
23. Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use

change. Appl. Geogr. 2020, 117, 102174. [CrossRef]
24. Li, J.; Pu, R.; Gong, H.; Luo, X.; Ye, M.; Feng, B. Evolution characteristics of landscape ecological risk patterns in coastal zones in

Zhejiang Province, China. Sustainability 2017, 9, 584. [CrossRef]
25. Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source

identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [CrossRef] [PubMed]
26. Heenkenda, M.K.; Bartolo, R. Regional ecological risk assessment using a relative risk model: A case study of the Darwin Harbour,

Darwin, Australia. Hum. Ecol. Risk Assess. 2016, 22, 401–423. [CrossRef]
27. Kanwar, P.; Bowden, W.B.; Greenhalgh, S. A regional ecological risk assessment of the Kaipara Harbour, New Zealand, using a

relative risk model. Hum. Ecol. Risk Assess. 2015, 21, 1123–1146. [CrossRef]

https://doi.org/10.1126/science.1111772
https://www.ncbi.nlm.nih.gov/pubmed/16040698
https://doi.org/10.1016/j.ecolind.2018.03.082
https://doi.org/10.3390/rs12193114
https://doi.org/10.1016/j.ecolind.2020.106243
https://doi.org/10.1038/s41586-018-0280-2
https://www.ncbi.nlm.nih.gov/pubmed/29995865
https://doi.org/10.1038/s41598-022-07656-9
https://www.ncbi.nlm.nih.gov/pubmed/35332130
https://doi.org/10.1016/j.jenvman.2023.118728
https://www.ncbi.nlm.nih.gov/pubmed/37536130
https://doi.org/10.1016/j.jclepro.2019.03.125
https://doi.org/10.1016/j.envres.2020.109649
https://doi.org/10.3390/su11102817
https://doi.org/10.1016/j.jenvman.2022.115607
https://doi.org/10.1016/j.scitotenv.2024.169908
https://www.ncbi.nlm.nih.gov/pubmed/38190905
https://doi.org/10.1007/s002670010154
https://www.ncbi.nlm.nih.gov/pubmed/11148762
https://doi.org/10.1016/j.landusepol.2021.105895
https://doi.org/10.3390/land11122163
https://doi.org/10.1016/j.scitotenv.2016.07.078
https://doi.org/10.3390/su13095297
https://doi.org/10.1016/j.scs.2022.104055
https://doi.org/10.3390/ijerph182111301
https://doi.org/10.3390/land12040895
https://doi.org/10.1016/j.apgeog.2020.102174
https://doi.org/10.3390/su9040584
https://doi.org/10.1016/j.jhazmat.2019.121763
https://www.ncbi.nlm.nih.gov/pubmed/31818668
https://doi.org/10.1080/10807039.2015.1078225
https://doi.org/10.1080/10807039.2014.976046


Land 2024, 13, 561 18 of 18

28. Yu, W.; Zhang, L.; Ricci, P.F.; Chen, B.; Huang, H. Coastal ecological risk assessment in regional scale: Application of the relative
risk model to Xiamen Bay, China. Ocean. Coast. Manag. 2015, 108, 131–139. [CrossRef]

29. Du, X.; Lin, X. Conceptual model on regional natural disaster risk assessment. Procedia Eng. 2012, 45, 96–100. [CrossRef]
30. Du, L.; Dong, C.; Kang, X.; Qian, X.; Gu, L. Spatiotemporal evolution of land cover changes and landscape ecological risk

assessment in the Yellow River Basin, 2015–2020. J. Environ. Manag. 2023, 332, 117149. [CrossRef] [PubMed]
31. Yu, Z.; Deng, X.; Fu, P.; Grebby, S.; Mangi, E. Assessment of land degradation risks in the Loess Plateau. Land Degrad. Dev. 2024,

35, 2409–2424. [CrossRef]
32. Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a

patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85,
101569. [CrossRef]

33. Sharpet, W.F. Capital asset prices: A theory of market equilibrium under conditions of risk. J. Financ. 1964, 19, 425–442.
34. Feng, M.; Chen, Y.; Li, Z.; Duan, W.; Zhu, Z.; Liu, Y.; Zhou, Y. Optimisation model for sustainable agricultural development based

on water-energy-food nexus and CO2 emissions: A case study in Tarim river basin. Energ. Convers. Manag. 2024, 303, 118174.
[CrossRef]

35. Chen, Y.; Li, Z.; Li, W.; Deng, H.; Shen, Y. Water and ecological security: Dealing with hydroclimatic challenges at the heart of
China’s Silk Road. Environ. Earth Sci. 2016, 75, 881. [CrossRef]

36. Zhang, Z. Study on Trade-Off Synergistic Relationships and Driving Factors of Key Ecosystem Services in Xinjiang Region.
Master’s Thesis, Chinese Academy of Environmental Sciences, Beijing, China, 2023.

37. Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.
VEST 3.2. 0 user’s guide. In The Natural Capital Project; Stanford University: Stanford, CA, USA, 2015; Volume 133.

38. Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale.
Water Resour. Res. 2001, 37, 701–708. [CrossRef]

39. Baixue, W.; Weiming, C.; Shengxin, L. Impact of land use changes on habitat quality in Altay region. J. Resour. Ecol. 2021, 12,
715–728. [CrossRef]

40. Zhang, X.; Zhou, Y.; Long, L.; Hu, P.; Huang, M.; Xie, W.; Chen, Y.; Chen, X. Simulation of land use trends and assessment of scale
effects on ecosystem service values in the Huaihe River basin, China. Environ. Sci. Pollut. Res. 2023, 30, 58630–58653. [CrossRef]
[PubMed]

41. Congjuan, L.; Abulimiti, M.; Jinglong, F.; Haifeng, W. Ecologic service, economic benefits, and sustainability of the man-made
ecosystem in the taklamakan desert. Front. Environ. Sci. 2022, 10, 813932. [CrossRef]

42. Zhang, F.; Yushanjiang, A.; Wang, D. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County,
Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. Environ. Earth Sci. 2018, 77, 491. [CrossRef]

43. Xu, D.; Cheng, J.; Xu, S.; Geng, J.; Yang, F.; Fang, H.; Xu, J.; Wang, S.; Wang, Y.; Huang, J. Understanding the relationship between
China’s eco-environmental quality and urbanization using multisource remote sensing data. Remote Sens. 2022, 14, 198. [CrossRef]

44. Meng, Z.; Dong, J.; Ellis, E.C.; Metternicht, G.; Qin, Y.; Song, X.; Löfqvist, S.; Garrett, R.D.; Jia, X.; Xiao, X. Post-2020 biodiversity
framework challenged by cropland expansion in protected areas. Nat. Sustain. 2023, 6, 758–768. [CrossRef]

45. Li, Z.; Cheng, X.; Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological
conservation area, Beijing, China. Forests 2020, 11, 584. [CrossRef]

46. Cai, D.; Ge, Q.; Wang, X.; Liu, B.; Goudie, A.S.; Hu, S. Contributions of ecological programs to vegetation restoration in arid and
semiarid China. Environ. Res. Lett. 2020, 15, 114046. [CrossRef]

47. Yu, C.; Zhang, Z.; Jeppesen, E.; Gao, Y.; Liu, Y.; Liu, Y.; Lu, Q.; Wang, C.; Sun, X. Assessment of the effectiveness of China’s
protected areas in enhancing ecosystem services. Ecosyst. Serv. 2024, 65, 101588. [CrossRef]

48. Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and driving mechanism of ecological restoration efforts in China from
2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [CrossRef]

49. Zhang, J.; Hao, X.; Li, X.; Fan, X.; Zhang, S. Evaluation and regulation strategy for ecological security in the Tarim River Basin
based on the ecological footprint. J. Clean. Prod. 2024, 435, 140488. [CrossRef]

50. Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim
River Basin, China. Sci. Total Environ. 2024, 649, 876–888. [CrossRef]

51. Qian, K.; Ma, X.; Yan, W.; Li, J.; Xu, S.; Liu, Y.; Wang, Y. Trade-offs and synergies among ecosystem services in Inland River Basins
under the influence of ecological water transfer project: A case study on the Tarim River basin. Sci. Total Environ. 2024, 908,
168248. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ocecoaman.2014.04.027
https://doi.org/10.1016/j.proeng.2012.08.127
https://doi.org/10.1016/j.jenvman.2022.117149
https://www.ncbi.nlm.nih.gov/pubmed/36808004
https://doi.org/10.1002/ldr.5069
https://doi.org/10.1016/j.compenvurbsys.2020.101569
https://doi.org/10.1016/j.enconman.2024.118174
https://doi.org/10.1007/s12665-016-5385-z
https://doi.org/10.1029/2000WR900325
https://doi.org/10.5814/j.issn.1674-764x.2021.06.001
https://doi.org/10.1007/s11356-023-26238-4
https://www.ncbi.nlm.nih.gov/pubmed/36977884
https://doi.org/10.3389/fenvs.2022.813932
https://doi.org/10.1007/s12665-018-7676-z
https://doi.org/10.3390/rs14010198
https://doi.org/10.1038/s41893-023-01093-w
https://doi.org/10.3390/f11050584
https://doi.org/10.1088/1748-9326/abbde9
https://doi.org/10.1016/j.ecoser.2023.101588
https://doi.org/10.1016/j.scitotenv.2023.168676
https://doi.org/10.1016/j.jclepro.2023.140488
https://doi.org/10.1016/j.scitotenv.2018.08.321
https://doi.org/10.1016/j.scitotenv.2023.168248

	Introduction 
	Overview of the Study Area and Data Sources 
	Overview of the Study Area 
	Data Sources 

	Methodology 
	Research Framework 
	Quantification of Ecosystem Services 
	Carbon Stocks 
	Water Production 
	Soil Conservation 
	Habitat Quality 
	Quantification of Total Ecosystem Services 

	Model of PLUS Land-Use Dynamics 
	The PLUS Model 
	Multi-Scenario Model 

	Quantification of Ecological Risk Indicators 

	Results 
	Analysis of the Evolution of Spatial and Temporal Patterns of Land Use 
	Spatial Increase or Decrease in Different Land Use Types 
	Multi-Scenario Model of Land-Use Change 
	Characterizations of Ecosystem Services under Different Model Scenarios 
	Characteristics of Changes in the Distribution of Ecological Risks under Different Scenarios 

	Discussion 
	Spatial Heterogeneity of Ecological Risk Indices and Their Formation Mechanisms 
	Comparison with Previous Research 
	Shortcomings and Prospects 

	Conclusions 
	References

