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Abstract: The serious problem of soil erosion not only has a profound impact on people’s lives
but also results in a series of ecological and environmental challenges. To determine the impact of
changes in land use type on soil erosion in the urban agglomeration on the northern slopes of the
Tianshan Mountains, this study commences by employing the InVEST-SDR (integrated valuation
of ecosystem services and tradeoffs–sediment delivery ratio) model to calculate soil erosion levels
spanning from 2000 to 2020. Subsequently, it forecasts land use and land cover (LULC) conditions for
the year 2030 under three scenarios: Q1 (natural development), Q2 (ecological protection), and Q3
(economic priority). This projection is accomplished through the integration of a coupled Markov
chain and multi-objective planning model (MOP) alongside patch-generating land use simulation
(PLUS) models. Ultimately, based on these outcomes, the study predicts soil erosion levels for the year
2030. There has been a consistent decline in soil erosion from 2000 to 2020 with high-intensity erosion
concentrated in the Tianshan Mountain region. Grasslands, glaciers, and permafrost are identified as
the most erosion-prone land types in the study area, with forests exhibiting the highest capacity for
soil retention. Converting from grassland and barren land to forest within the same area results in a
substantial reduction in soil erosion, specifically by 27.3% and 46.3%, respectively. Furthermore, the
transformation from barren land to grassland also leads to a noteworthy 19% decrease in soil erosion.
Over the past two decades, the study area has witnessed a significant decline in the area of grasslands,
with a notable shift towards barren and impervious surfaces due to economic development and
mining activities. The three predicted scenarios depict significant expansion towards barren land,
grassland, and impervious area, respectively. Soil erosion decreases under different shared socio-
economic pathway (SSP) scenarios relative to 2020. There is an increase in soil erosion in the Q1
scenario and in the Q3 scenario, whereas the amount of soil erosion in the Q2 scenario exhibits a
continued decrease when only the effect of land change on soil erosion is considered. Persistently
rapid economic development can exacerbate soil erosion problems, underscoring the need to find a
balance between economic growth and ecological conservation. As economic expansion slows down,
greater emphasis should be placed on environmental protection to maintain ecological stability.

Keywords: InVEST-SDR model; land use change; multi-scenario prediction; soil erosion; urban
agglomeration on the northern slopes of Tianshan Mountains
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1. Introduction

Soil is a vital resource on our planet as it plays a critical role in providing regulatory
ecosystem services that have a significant impact on human life and the environment [1].
Nevertheless, the presence and sustainability of these services are at risk due to soil
erosion [2], thereby making it a serious environmental and economic problem [3]. The
process of soil erosion involves denudation, transport, and eventually deposition of soil
particles in another location. Soil erosion modeling has a long history [4], and several
empirical models have been proposed in recent years, the most widely used of which are
the universal soil erosion model (USLE) [5] and the revised universal soil erosion model
(RUSLE) [6]. The (R)USLE is preferred over physical models such as the water erosion
and processing model (WEPP) [7] and Limburg soil erosion model (LISEM) [8] due to its
concise parameters, easily accessible data, extensive documentation in the literature [9],
and its ability to be applied to various geographical regions. Despite the (R)USLE model
having notable shortcomings in simulating sediment output and deposition processes, the
(R)USLE series of models are the most commonly used soil erosion models globally in
various forms [10]. Numerous scholars have effectively employed these models to assess
soil erosion in various regions and across different geographical scales [11–13].

The inclusion of the sediment delivery ratio (SDR) in the (R)USLE model allows
for the estimation of both sediment export and sediment retention within a watershed.
The SDR is defined as the proportion of sediment delivery from a specific section of
the watershed to the total erosion within the watershed [14,15]. Scholars have proposed
different methods for SDR estimation [16]. Consequently, several models, such as (R)USLE-
SDR [17], WaTEM/SEDEM [18], and SEDD [19], have been developed in response to these
efforts. In particular, the InVEST-SDR (integrated valuation of ecosystem services and
tradeoffs-sediment delivery ratio) model integrates the USLE equation and the work of
Borselli et al. [20] and Vigiak et al. [21] to determine the spatial distribution of sediment
production within a catchment. This is achieved by calculating soil erosion and sediment
transport ratios (SDR) [22]. The SDR values enable the simulation of soil output and
deposition, and the extensive utilization of this model has shown success in various
places [23,24].

In recent years, scholars have shifted their focus to evaluating the driving factors of
soil erosion [25], improving soil erosion factors [26], and simulating sediment [27]. Land
use/land cover (LULC) change has been a focus in socio-environmental research [28] in
recent years. Changes in land use are recognized as a significant factor and a crucial driver
of global environmental change, with alterations in land use and land cover being strongly
linked to soil erosion [29]. Land use influences the runoff and sediment transport processes,
and thus the soil erosion process, by altering surface morphology [30]. Several scholars
have conducted studies to investigate the effects of LULC changes on soil erosion [31–33], as
well as to analyze the ways in which various land uses and covers interact with soil erosion.
The urban agglomeration on the northern slopes of the Tianshan Mountains has undergone
large–scale soil and water development due to economic growth. Human activities have
drastically changed the land use distribution in the region, leading to a notable increase in
construction land and industrial and mining land. Additionally, desert areas have been
converted into artificial oases through the implementation of oasis expansion projects.
In order to achieve a comprehensive understanding and assessment of soil erosion in
the urban agglomeration on the northern slopes of Tianshan Mountains, it is essential to
investigate and forecast the effects of LULC changes on soil erosion.

Currently, there are two primary ways used for predicting soil erosion. One is based
on existing soil erosion results [34], while the other involves predicting future soil erosion
factors before applying soil erosion models for calculation [35]. The first method generally
uses the Markov model to predict soil erosion, ignoring the complex influencing factors
and evolution process of soil erosion. In contrast, the second method is the mainstream
of current research, how to predict the change in LULC is especially the focus of research.
In order to simulate LULC change, scholars have developed numerous models, including
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the CA–Markov model [36], CLUE/CLUE-S [37], and the FLUS model [38]. The patch-
generating land use simulation (PLUS) model, developed by Liang et al. [39] based on
the FLUS model, enables the analysis of factors that contribute to land expansion and
the prediction of how land use will evolve at the patch level with improved simulation
accuracy and adaptability.

Many scholars have combined soil erosion models with these LULC prediction models
to predict future scenarios [40,41]. The setting of simulation scenarios is a key factor
affecting the accuracy and reliability of future predictions of LULC. Previously, the impact
of policies on land use changes was simulated by setting various parameters, such as
the land use transfer matrix, neighborhood weights, and regional restrictions. Scholars
have used different methods to determine domain weights for simulation scenarios. These
methods include focusing on setting the transfer matrix [42], using the probability of land
class transfer [43], or using the Markov chain to predict future demand in land use classes.
However, these approaches are subjective and ignore benefit objectives [44]. The multi-
objective planning (MOP) model is a more scientifically accurate approach compared to
setting land use demand based on the Markov chain and relying on experiential limitations
for land class conversion. Implementing the MOP model can help mitigate the subjectivity
inherent in scenario setting. Additionally, the MOP model can consider ecological and
economic policy changes. It is also characterized by its openness and flexibility, enabling
the establishment of objective functions and restrictions based on policy formulation and
changes in demand.

This study utilized the InVEST-SDR model to evaluate the soil erosion risk in the
urban agglomeration on the northern slopes of Tianshan Mountains. The objectives were
to identify areas with high erosion risk, analyze the impact of LULC changes on soil
erosion over the past two decades, and predict the future land use patterns using the MOP-
PLUS coupled model under policy guidance. Three distinct scenarios, namely Q1 (natural
development), Q2 (ecological protection), and Q3 (economic priority), were established
as prospective scenarios for the future. The aim is to provide guidance and insight for
the optimal allocation of regional land resources while minimizing soil erosion risk. The
simulation of soil erosion changes under these three scenarios serves as a valuable reference
for relevant authorities in planning, striving to achieve a balance between economic and
ecological protection.

The innovation and significance of this study are primarily evident in two key aspects.
Firstly, there is a scarcity of research on soil erosion prediction regarding the urban ag-
glomeration of the northern slopes of the Tianshan Mountains, especially in relation to the
connection between land change and soil erosion. Given the rapid economic development
and extensive human activities affecting land use dynamics in this region, it is crucial
to understand the relationship between land use and soil erosion. Secondly, this study
provides a framework for rapid soil erosion prediction. It combines the InVEST-SDR model
for soil erosion calculation with the PLUS model to predict future land use changes. By in-
corporating the MOP model, various constraints can be adjusted and added to change land
demand, thereby reducing prediction subjectivity. This approach enables the quantification
of a variety of scenarios, enhancing the applicability and flexibility of this straightforward
framework for soil erosion estimation. This study facilitates the quantification of outcomes
related to changes in urban land cover under different scenarios, providing planning au-
thorities with valuable insights into achieving a harmonious balance between economic
growth and ecological preservation within this soil erosion-prone area.

2. Materials and Methods
2.1. Overview of Study Area

The urban agglomeration situated on the northern slopes of the Tianshan Mountains
is positioned in the northwest frontier region of China, in the hinterland of Asia and
Europe. It serves as the core city cluster for the Silk Road Economic Belt’s development
and construction. It is the most advanced economic region in Xinjiang, and a significant
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energy base in China. Moreover, it exerts a driving, radiating, and demonstration effect
on Xinjiang’s entire economy. The geographical extent of the urban agglomeration on the
northern slopes of the Tianshan Mountains, including Turpan, Urumqi, Wujiaqu, Changji
Hui Autonomous Prefecture, Shihezi, Shawan, Karamay, Kuitun, Huyanghe, and Wusu
(Figure 1), is between 40◦41′–46◦45′ N and 82◦51′–92◦54′ E. Situated on the western edge of
the second terrain of Chinese topography and in the Junggar Basin, the urban agglomeration
is characterized by a typical arid zone in Xinjiang, where the natural vegetation is mainly
influenced by the interplay of anthropogenic activities and the natural environment. As a
result, the region is a mixture of oasis and desert ecosystems, which often exhibit salinity
and desertification on the edges of the oasis [45]. The ecosystem in this region is fragile and
susceptible to imbalances.
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China. The map vector boundary was obtained from the Ministry of Natural Resources: GS(2020)4619
and no modification has been made to the base map boundary.
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2.2. Research Data

The data used in this study include land use-type data, a digital elevation model
(DEM), soil-type data, road network and water system data, meteorological data, and
socio-economic data, etc., as shown in detail in Table 1. The annual mean temperature was
obtained from NOAA’s meteorological station data around the urban cluster on the urban
agglomeration on the northern slopes of the Tianshan Mountains. The raster map was
produced using inverse distance weight interpolation. The DEM and nighttime light data
were sourced from and clipped by GEE (Google Earth Engine), and all data are resampled
to 30 m and projected to WGS_1984_UTM_Zone_45N.

Table 1. Data sources.

Data Source Resolution Time

LULC Globeland30 (http://globeland30.org)
(accessed on 23 August 2021) 30 m 2000, 2010,

2020

Temperature NOAA (https://gis.ncdc.noaa.gov)
(accessed on 14 February 2023) – 2020

Precipitation Dataset produced by Qu et al. [46] 1 km 2000, 2010,
2020

DEM SRTM30 30 m 2018

Soil type
Resource and Environmental Science and

Data Center (https://www.resdc.cn/)
(accessed on 14 February 2023)

1 km 1995

NDVI
National Ecosystem Science Data Center

(http://www.nesdc.org.cn/) (accessed on 3
September 2021)

30 m 2000, 2010,
2020

Highway
Open Street Map

(https://www.openstreetmap.org)
(accessed on 17 February 2023)

– 2020

Primary,
secondary, and
tertiary roads

Open Street Map
(https://www.openstreetmap.org)

(accessed on 17 February 2023)
– 2020

Railway Map World (https://www.tianditu.gov.cn/)
(accessed on 17 February 2023) – 2020

Water system Map World (https://www.tianditu.gov.cn/)
(accessed on 17 February 2023) – 2020

Night light NPP–VIIRS 750 m 2020

Population World Pop (https://hub.worldpop.org/)
(accessed on 25 March 2023) 1 km 2020

GDP Dataset produced by Zhao et al. [47] 1 km 2020
Future

precipitation Dataset produced by Li [48,49] 1 km 2030

2.3. Methodology

Figure 2 shows the methodology employed in this study. The InVEST-SDR model
was used to calculate soil erosion in the urban agglomeration on the northern slopes of
Tianshan Mountains from 2000 to 2020, analyzing the spatial and temporal variations of
soil erosion and identifying high risk areas. Furthermore, the Markov chain and MOP-
PLUS coupled models were utilized to forecast changes in LULC and soil erosion in the
urban agglomeration on the northern slope of the Tianshan Mountains in 2030 under three
different scenarios, with macro policies as constraints and ESV and economic benefits as
objectives. These scenarios were Q1 (natural development), Q2 (ecological protection), and
Q3 (economic priority).

http://globeland30.org
https://gis.ncdc.noaa.gov
https://www.resdc.cn/
http://www.nesdc.org.cn/
https://www.openstreetmap.org
https://www.openstreetmap.org
https://www.tianditu.gov.cn/
https://www.tianditu.gov.cn/
https://hub.worldpop.org/
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2.3.1. InVEST-SDR Model

The InVEST-SDR model is a widely used model that considers various factors, including
precipitation, topography, soil erodibility, soil conservation measures, and vegetation cover.
It streamlines the previous operation associated with the (R)USLE model by automating the
calculation of the LS factor through the utilization of DEM, employing the method estab-
lished by Desmet and Govers [50]. The soil erosion modulus is computed using Equation (1),
where USLEi is the soil erosion modulus [t/(ha-a)], R represents the rainfall erosivity factor
[(MJ-mm)/(ha-h-a)], K is the soil erodibility factor [(t-ha-h)/(MJ-ha-mm)], C represents the
vegetation cover factor, LS represents the topography factor, and P represents the erosion
support practice factor. The calculation of all factors is outlined in the subsequent sections.

The Chinese Ministry of Water Resources has developed the soil erosion classi-
fication standard (SL190-2007), which classifies the intensity of soil erosion into six
categories: slight erosion [<5 t/(ha-a)], light erosion [5–25 t/(ha-a)], moderate erosion
[25–50 t/(ha-a)], strong erosion [50–80 t/(ha-a)], very strong erosion [80–150 t/(ha-a)],
and severe erosion [>150 t/(ha-a)].

USLEi = R × K × LS × C × P (1)
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Rainfall Erosivity Factor (R)

Rainfall is a crucial factor affecting soil erosion, and the R factor is a dynamic
indicator that reflects the soil erosion condition. In this paper, the rainfall erosivity
factor is estimated using the annual rainfall algorithm proposed by Zhang et al. [51],
and the formula is shown below:

Ra = αPβ
a (2)

where Ra is the precipitation erosion force in year a and Pa is the precipitation in year a.
The parameters α and β are assigned the values of 0.0534 and 1.6548, respectively.

Vegetation Cover Factor (C)

The vegetation cover management factor represents the protective effect of vegetation
against soil erosion. The vegetation cover factor (C) is a numerical scale that spans from
0 to 1, with a C value of 1 indicating no vegetation cover and a lower value indicating a
stronger protective effect of vegetation. The C factor for each land use type is calculated
using the maximum annual NDVI value, as indicated in Equation (3). In this equation, the
values of α and β are 2 and 1, respectively.

C = exp(–α × NDVI
β − NDVI

) (3)

Soil Erodibility Factor (K)

The concept of soil erodibility pertains to the vulnerability of soil to erosion, which
is affected by the soil’s physical and chemical properties such as soil texture and organic
matter content. In this study, the EPIC equation proposed by Williams et al. [52] was used
to estimate soil erodibility. As stated in Equations (4) and (5), to the international system of
units, the results were multiplied by 0.1317.

K =
{

0.2 + 0.3 exp
[
−0.0256Sd(1 − Si

100 )
]}

× ( Si
Cl + Si )

0.3

×
[
1 − 0.25C

C + exp(3.72 − 2.95C)

]
×
[
1 − 0.7SN1

SN1 + exp(−5.51 + 22.9SN1)

] (4)

SN1 = 1 − Sd
100

(5)

where K is the soil erodibility factor; Sd, Si, Cl, and C are the percentages of sand, powder,
clay, and organic carbon content in the soil, respectively.

Erosion Support Practice Factor (P)

The factor for soil and water conservation measures is determined by comparing the
amount of soil loss resulting from implementing specific conservation strategies to the
amount of soil loss from cultivating downhill without such conservation strategies. The
topographical gradients of the terrain significantly influence this correlation. The allocated
P values for each land use category in this study were as follows: cropland (0.5), forest (0.9),
grassland (0.9), shrubland (0.9), wetland (0.1), water (0), impervious area (0), barren land
(1), and glacier and permanent snow (1).

2.3.2. Markov Chain

The Markov chain is widely used for simulating land use changes [53]. It utilizes a
historical matrix of probabilities for land use transition to forecast future land demand. The
formula for this model is shown in Equation (6), where S(t+1) denotes the land use type at
time t+1, pij denotes the land use transfer probability, and St denotes the land use type at
time t.

S(t+1) = pijSt (6)
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2.3.3. Ecosystem Service Value (ESV)

This study utilized the ecosystem service value assessment approach proposed by
Costanza et al. [54] as a foundation, with the findings of Xie et al. [55] on the per unit area
of terrestrial ecosystems in China serving as the primary data source. In order to assess
the density of ecological services within the designated study area, this study referred to
authoritative sources such as the Xinjiang Statistical Yearbook, the National Compilation of
Information on Costs and Benefits of Agricultural Products, and statistical data published by
municipal governments. The ecosystem service value per unit area of farmland in the urban
agglomeration on the northern slopes of the Tianshan Mountains was determined to be
2338.97 yuan/ha, based on the agricultural production data for the year 2020. Subsequently,
this value was utilized to compute the ecological service values for each form of land
use. Table 2 presents the ecosystem service values per unit area for each category on the
northern slopes of the Tianshan Mountains.

2.3.4. MOP Model
Future Multi-Scenario Settings

The multi-objective planning model is an important tool in land use optimization re-
search [56], which solves multi-objective problems by employing numerous constraints [57].
This paper presents three potential scenarios for future development in the urban agglom-
eration located on the northern slopes of the Tianshan Mountains. These scenarios are
formulated within the framework of the existing macro-development planning, i.e., natural
development (Q1), which assumes that the future trend will follow historical patterns [58],
ecological protection priority (Q2), and economic development priority (Q3).

Q1 aligns with the developmental trajectory observed between 2010 and 2020. The
Markov chain is used to predict the demand of various types of land in 2030. Q2 and Q3
meet the development trends under the two macro policies of ecological conservation and
economic benefit maximization as objectives, respectively. The relevant objective functions
of the MOP model are shown below. The LULC alterations in these two scenarios are
solved using lingo18.0.

The study focuses on the policy planning document titled “Development Plan for the
Urban Agglomeration on the North Slope of Tianshan Mountain” which offers guidance
on future development directions, limitations, and protections for specific land use types.
However, these documents lack precise quantification of future planning objectives and
are subject to uncertainty in the actual development process. To address this issue, three
extreme forecasting scenarios have been selected, and the selection of constraints and
limitations is informed by the findings of Li et al. [59] and Wang et al. [60].

F1 = max
n

∑
i=1

aiLUCi (7)

F2 = max
n

∑
i=1

biLUCi (8)

F1 is the eco-efficiency function, F2 is the economic efficiency function, LUCi is the
area of each land use type, ai and bi are the eco-efficiency coefficients and economic
efficiency coefficients of each land use type, the eco-efficiency coefficients of each category
are obtained from ESV, the economic efficiency coefficients of cropland, forest, shrubland,
grassland, wetland, and water are obtained through the statistics of the output values
of agriculture, forestry, animal husbandry, and fishery in the study area. The economic
efficiency coefficients for impervious areas are calculated based on the output value of the
secondary and tertiary industries.
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Table 2. Value of ecosystem services per unit area by land type, in yuan.

First Category Provisioning Services Regulating Services Supporting Services Cultural
Services

Second Category Food
Supply

Raw
Material
Supply

Water
Supply

Gas
Regulation

Climate
Regulation

Waste
Treatment

Water
Regulation

Erosion
Control

Nutrient
Cycling

Biological
Control

Aesthetic
Landscape

Cropland 2584.56 573.04 −3052.35 2081.68 1087.62 315.76 3496.75 1216.26 362.54 397.63 175.41
Forest 596.43 1379.99 713.38 4525.9 13,530.91 3999.63 9449.40 5508.25 421.02 5017.08 2198.61

Grassland 444.40 1005.75 514.57 3297.94 9893.82 2993.87 7835.54 4023.03 304.07 3672.18 1613.88
Shrubland 374.23 549.66 304.06 1929.66 5098.95 1684.05 3730.65 2350.66 187.12 2140.152 947.28
Wetland 1192.88 1169.47 6057.92 4444.02 8420.28 8420.28 56,673.14 5403.02 421.02 18,407.65 11,063.32

Water 11.69 35.08 23.389 152.04 116.94 479.49 280.67 175.43 11.69 163.73 70.17
Barren land 1871.17 537.96 19,390.02 1801.01 5356.22 12,981.27 239,135.86 2175.25 163.72 5964.30 4420.64
Glaciers and
permafrost 0.00 0.00 5052.17 421.02 1263.07 374.24 16,676.84 0.00 0.00 23.39 210.50
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Meanwhile this study uses the CMIP6 (coupled model intercomparison project)
climate data as the future climate data for the three scenarios, which combine diverse
shared socio-economic pathways (SSPs) to provide a different collection of climate sce-
nario data [61]. This study selected SSP119, SSP245, and SSP585. Detailed information
on the SSP data is as follows.

SSP119: In the SSP119 scenario, radiative forcing in the year 2100 is limited to a
value below 1.5 W/m2 and the achievement of sustainable socio-economic growth is
characterized by minimal greenhouse gas (GHG) emissions.

SSP245: In the SSP245 scenario, radiative forcing is anticipated such that the radiative
force will reach 4.5 W/m2 by the year 2100. This value corresponds to a moderate level of
socio–economic growth and greenhouse gas (GHG) emissions [62].

SSP585: In the SSP585 scenario, radiative forcing is projected to reach 8.5 W/m2 by
2100, which represents a rapid increase in the consumption of fossil fuels on a wide scale
and a substantial increase in greenhouse gas emissions [63].

The study compared and matched the three scenarios, SSP119, SSP245, and SSP585,
with the three scenarios Q1, Q2 and Q3, with Q1 being a high-speed development
scenario, which is matched in this paper with SSP585 as the scenario with the largest
carbon emissions among the three scenarios. The other two scenarios represent two
extreme positions within the framework of sustainable macro–development. In Q2,
the objective is to minimize terrestrial carbon emissions, while in Q3, the goal is to
maximize terrestrial emissions. Carbon emission factors were determined for each
category based on relevant studies [64–68]. The carbon emission factor for glaciers
and permafrost was assigned a value of 0 due to the lack of knowledge on the carbon
emission and absorption mechanisms of permanent snow and ice [69]. The carbon
emissions of impervious areas were determined using data from the IPCC Emission
Inventory and the Energy Statistics Yearbook. The formula for carbon emissions is shown
in Equation (9) and F3 is the carbon emissions in kg·m−2·a−1.

F3 = 0.0442x1 − 0.0644x2 − 0.0021x3 − 0.0021x4 − 0.00006132x5
−0.0253x6 + 27.3429x7

(9)

Constraint Settings

(1) Total Area
The sum of the areas of the various LULCs is constant and equal to the total area of

the study area.

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 19, 392, 063.84 (10)

(2) Cropland
There has been a continuous rise in the cropland area in the urban agglomeration on

the northern slopes of the Tianshan Mountains. In order to assure grain production and
apply cropland preservation measures, the minimum area must be equal to or greater than
the area in 2020, and the maximum will be the anticipated value of the Markov chain.

2, 472, 084.99 ≤ x1 ≤ 2, 652, 533.1 (11)

(3) Forest
It is imperative to comprehensively strengthen ecological protection and restoration,

accelerate the restoration and management of degraded forests, improve forest resource
protection, cultivate protective forests, and expand forest coverage. The minimum value is
1.05 times the area in 2020, and the maximum value is the Markov chain prediction.

314, 650.697 ≤ x2 ≤ 400, 980.96 (12)

(4) Grassland
The extent of grassland within the study region has shown a consistent decline between

the years 2000 and 2020. To protect natural grassland, improve the ecological quality, and
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maintain the regional ecological balance, the grassland area will not be less than 0.9 times
that in 2020, and the maximum area will be 1.1 times that in 2020.

4, 626, 365.95 ≤ x3 ≤ 5, 654, 447.271 (13)

(5) Shrubland
Shrubland did not change significantly from 2010 to 2020. The minimum area was

0.97 times that predicted by the Markov chain, and the maximum area was 1.03 times that
predicted by the Markov chain.

24, 329.8989 ≤ x4 ≤ 25, 834.8411 (14)

(6) Wetland
The area of wetlands continued to decrease from 2000 to 2020. In order to protect and

restore the ecosystem, preserve wetland retention, and execute wetland restoration projects,
the wetland area will not be less than that in 2020, and can potentially increase up to
1.1 times the 2020 area.

24, 071.67 ≤ x5 ≤ 26, 478.837 (15)

(7) Water
The water area has experienced a gradual reduction from 2010 to 2020. The regulation

of water resource development is implemented by stringent measures in order to safeguard
water resources, mitigate the deterioration of ecological processes in rivers and lakes, and
ensure ecological stability. It is essential to ensure that the water body area remains at least
equal to that predicted by the Markov chain, and potentially increases up to 1.05 times the
area in 2020.

58, 143.42 ≤ x6 ≤ 67, 009.005 (16)

(8) Impervious Area
The impervious area in the urban agglomeration on the northern slopes of the

Tianshan Mountains is expanding as the economy progresses. Nevertheless, as a result
of the prevailing economic development trajectory, it is anticipated that the growth of
building land will decelerate. In accordance with the development plan of the Tianshan
North Slope, upregulated expansion will be strictly curbed and the internal structure
optimized instead. The minimum value of the impervious area should be no less than
1.05 times that in 2020, while the maximum should be no greater than 0.95 times the
predicted value of the Markov chain.

338, 032.076 ≤ x7 ≤ 396, 107.31 (17)

(9) Barren Land
Barren land includes industrial and mining land. However, due to the lack of certain

urban macro-scale statistics, industrial and mining land cannot be addressed as a separate
category in this study. Therefore, two approaches have been established in this study, both
under the premise of ecological protection. The first approach limits the expansion of
mineral extraction and sets the area of barren land in 2030 to no more than 0.95 times that
in 2020. The second approach assumes that the area of barren land will increase due to the
development of industrial and mining land and sets it to 1.01 times that in 2020.

Ecological Protection
x8 = 10, 137, 143.5 (18)

Economic Priority
x8= 10, 982, 536.8 (19)

(10) Glaciers and Permafrost



Land 2024, 13, 550 12 of 26

Glaciers and permafrost are experiencing a decline in their coverage. To prevent
further degradation, this study sets a minimum projection using the Markov chain and a
maximum limit based on the area in 2020.

149, 483.88 ≤ x9 ≤ 169, 381.44 (20)

(11) Population
This study sets a population density of 2 persons/ha for cropland, forest, shrubland,

and grassland, and 18.75 persons/ha for impervious area. In order to achieve sustain-
able development, it is estimated that the population in 2030 would grow by at least 5%
compared to 2020.

2(x1 + x2 + x3 + x4) + 18.75x7 > 8, 334, 019.733 (21)

(12) Ecological Benefits
The ecological benefits in 2030 must be maintained at the same level or higher than

those in 2020.
n

∑
i=1

aiLUCi >
n

∑
i=1

aiLUCi2020 (22)

(13) Economic Benefits
The economic benefits in 2030 will not be lower than those in 2020.

n

∑
i=1

biLUCi >
n

∑
i=1

biLUCi2020 (23)

2.3.5. PLUS Model

The PLUS model, which integrates the land expansion analysis strategy (LEAS) and
the cellular automata (CA) model based on multiple random patch seeds (CARS) [39],
offers a powerful tool for analyzing the driving factors influencing land expansion and
predicting the evolution of land use at the patch level. The study assessed the growth of
land utilization over a span of 10 years by inputting land use data for both 2010 and 2020.
The LEAS module utilizes randomized sampling sites to derive the expansion component
of each land type from the supplied land use expansion data [70]. The module utilizes the
random forest algorithm to extract the expansion pattern of each land use type, thereby
obtaining the probability of change and the contribution of various drivers to the land use
changes within the provided timeframe. A total of 14 factors were chosen as driving factors
in this study (Figure 3). These factors include five environmental factors (elevation, slope,
soil type, precipitation, and temperature), three socio-economic factors (GDP, nighttime
lighting, and population), and six accessibility factors (distance to railroad, distance to
highway, distance to primary road, distance to secondary road, distance to tertiary road,
and distance to water system). The training method incorporated a sample rate of 0.1,
indicating that 10% of the pixels were included in the training process. The regression tree
was configured with a depth of 20. The mTry parameter in the random forest algorithm
was assigned a value of 14, representing the total number of driving factors. This value
defines the number of variables that are randomly sampled at each splitting node.

The integration of the land transfer matrix and neighborhood weights in the CARS
module enables the simulation of future land use patterns while adhering to the predicted
probability of expansion for each land use type obtained from the LEAS module. The
neighborhood weight was calculated based on the proportion of expansion area for each
land use type. Additionally, the land use demand was derived from the results generated
by the MOP model.
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3. Results
3.1. Soil Erosion

There has been a gradual improvement in soil erosion conditions over the past
20 years, characterized by a reduction in both extreme erosion events and overall ero-
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sion levels in the areas that had previously experienced severe erosion. The amount of soil
erosion in the urban agglomeration on the northern slopes of the Tianshan Mountains has
been decreasing from 2000 to 2020 (Figure 4). The total value was 688,885,900 tons in 2000,
600,191,600 tons in 2010, and decreased to 456,803,000 tons in 2020, resulting in a 33.69%
reduction over 20 years. This decrease may be attributed to the arid climate with limited
rainfall, which makes it more difficult for hydraulic soil erosion to occur and results in less
erosion overall. The northern slopes of the Tianshan Mountain are located in the westerly
wind belt and experiences cold air from the Arctic Ocean on its windward slope. The
topography lifts the airflow, facilitating precipitation formation. On the contrary, the area
located in the rear sun belt experiences low water evaporation, resulting in higher humidity.
The city of Turpan, being low-lying, faces difficulty in dissipating the high temperatures
generated, and is the most arid part of the study area (Figure 5).
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The Tianshan Mountain region is more susceptible to soil erosion problems because of
its steep slopes and high rainfall, and the spatial distribution of soil erosion in the urban
agglomeration on the northern slopes of the Tianshan Mountains remained consistent from
2000 to 2020, with high levels of erosion and high-risk areas.

The changes in rainfall patterns have played a significant role in the gradual reduction
in soil erosion in this area. An extreme decline in soil erosion was witnessed in 2020,
aligning with the variations in rainfall within the urban agglomeration on the northern
slopes of the Tianshan Mountains. Specifically, rainfall measured at 141.57 mm/grid in
2000, decreased to 133.81 mm/grid in 2010, and further plummeted to 85.59 mm/grid in
2020. This trend is consistent with the changes observed in soil erosion patterns across the
northern slopes of the Tianshan Mountains over the past 20 years.

Table 3 presents the statistics of six categories of soil erosion in the study area. Over
the span of two decades, there was a notable reduction in the area affected by light to severe
erosion. The most substantial declines were observed in severe erosion and light erosion
categories, with proportions decreasing from 18.12% and 16.82% in 2000 to 14.34% and
11.54% in 2020, respectively. The proportion of slight erosion, which had the largest share,
increased from 53.54% in 2000 to 65.14% in 2020.

The total soil erosion across all six soil erosion categories has been reduced, yet
the proportion of soil erosion within each category has remained relatively stable. This
underscores the consistency in the distribution of soil erosion throughout the 20-year
period. Although there has been a substantial increase in the area affected by slight erosion,
the total soil erosion in this category has significantly decreased. By 2020, slight erosion
accounted for only 0.22% of the total erosion, with the majority of erosion coming from
areas affected by severe erosion. Severe erosion consistently contributed to more than 96.5%
of the total erosion over the 20-year period.

Changji Hui Autonomous Prefecture has the largest amount of soil erosion, accounting
for 33.17% of the total erosion in the urban agglomeration on the northern slopes of the
Tianshan Mountains in 2020, followed by the city of Wusu with 23.22%. The city of Wusu
exhibits the highest soil erosion area ratio, accounting for 6.88% of the study area, yet
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it contributes to a substantial 23.24% of the total soil erosion. Notably, severe erosion
mainly occurs in the southern part of the city. The total amount of soil erosion in each
city has gradually decreased over the past 20 years, with the greatest reduction in the
city of Wujiaqu (90.74%), followed by the city of Kuitun (87.35%), indicating an overall
improvement in the soil erosion situation (Table 4).
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Table 3. Classified soil erosion in the urban agglomeration on the northern slopes of Tianshan Mountains.

2000 2010 2020

Erosion
Categories Area (%)

Soil
Erosion

(%)

Total Soil
Erosion

(Kiloton)
Area (%)

Soil
Erosion

(%)

Total Soil
Erosion

(Kiloton)
Area (%)

Soil
Erosion

(%)

Total Soil
Erosion

(Kiloton)

Slight 53.54 0.18 12,445.0 58.22 0.21 12,413.8 65.14 0.22 9902.7
Light 16.82 0.55 37,859.7 14.44 0.53 32,012.7 11.54 0.56 25,620.1

Moderate 5.13 0.50 34,638.7 4.41 0.50 29,868.1 3.67 0.55 25,104.3
Strong 2.88 0.51 34,932.1 2.56 0.52 31,063.2 2.35 0.62 28,472.9

Very strong 3.50 1.07 73,942.5 3.20 1.13 67,713.2 2.96 1.37 62,552.3
Severe 18.12 97.19 6,695,407.1 17.16 97.12 5,829,251.4 14.34 96.68 4,416,759.6
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Table 4. Soil erosion by region, 2000–2020.

2000 2010 2020

Name Area (%) Total Soil
Erosion

Soil Erosion
(%)

Total Soil
Erosion

Soil Erosion
(%)

Total Soil
Erosion

Soil Erosion
(%)

Chengji Hui
Autonomous

Prefecture
38.13% 2,320,325.84 33.68% 1,996,239.24 33.26% 1,515,162.90 33.17%

Karamay 3.64% 5329.49 0.08% 7020.98 0.12% 2167.96 0.05%
Kuitun 0.41% 309.44 0.004% 246.06 0.004% 39.14 0.001%
Shawan 6.15% 900,784.44 13.08% 700,310.74 11.67% 572,006.93 12.52%
Shihezi 0.24% 2014.83 0.03% 1745.34 0.03% 405.00 0.01%
Turpan 36.26% 1,042,277.81 15.13% 973,248.86 16.22% 706,980.87 15.48%
Urumqi 7.29% 1,016,839.12 14.76% 902,261.28 15.03% 710,426.77 15.55%
Wusu 6.88% 1,600,771.36 23.24% 1,420,708.74 23.67% 1,060,882.52 23.22%

Wujiaqu 0.38% 62.31 0.001% 34.73 0.0006% 5.77 0.0001%
Huyanghe 0.61% 101.26 0.002% 94.61 0.002% 15.15 0.0003%

3.2. Soil Erosion in Different LULC

Table 5 shows the soil erosion of various land use types in the study area, with TSE
representing total soil erosion and ASE representing average soil erosion. The average
soil erosion value of each land use type has decreased from 2000 to 2020, indicating an
improvement in the soil erosion problem. However, the total soil erosion of forests and
shrublands has increased, while all other land types have decreased. This increase is closely
related to the significant increase in the area of forests and shrublands over the 20-year
period. The land types with the highest soil erosion were grassland, barren land, and
glacier and permafrost, with grassland and barren land accounting for 64.65% and 26.73%
of the total erosion, respectively, and being the primary erosive land types in the study area.
Glaciers and permafrost, as well as grasslands, have the highest average soil erosion and
are the most susceptible land types to soil erosion in the study area.

Table 5. Total soil erosion (TSE) in thousand tons and average soil erosion (ASE) in tons/ha.

2000 2010 2020

LULC TSE ASE TSE ASE TSE ASE

Cropland 7906.18 3.85 4698.88 2.12 3215.70 1.30
Forest 135,090.85 895.39 67,655.98 454.54 115,090.5 384.06

Grassland 5,232,088.86 624.48 4,220,121.17 616.71 2,952,943 574.46
Shrubland 555.32 81.59 1649.25 65.62 936.59 37.46
Wetland 795.94 18.21 275.64 8.49 77.37 3.21

Water 1855.89 36.84 1235.24 17.83 632.83 9.92
Impervious area 413.60 2.51 362.11 1.79 261.99 0.81

Barren land 1,143,552.02 136.84 1,350,642.00 139.90 1,221,175 112.30
Glaciers and permafrost 366,380.80 1944.12 354,774.41 1811.87 273,467.10 1614.50

This study defines the soil retention amount as the difference between the soil erosion
amount before and after implementing soil conservation measures for a particular land
use type in order to capture the soil retention capacity of different land use types. The
soil erosion amount without soil conservation measures is determined by the plant cover
management factor (C) and soil and water conservation measures factor (P), both of which
are set to 1. The soil retention amount serves as a measure of the soil conservation capacity
of the land use type. The corresponding data are shown in Table 6, where TSR indicates the
total soil retention amount and ASR indicates the average soil retention amount.

The forest land type had the highest average soil retention capacity among all land use
types, indicating its effectiveness in soil retention. Glaciers and permafrost had the worst
soil retention capacity, followed by barren land and shrubland. The change in total and
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average soil retention varies with the total soil erosion, which is related to the definition of
soil retention capacity and complemented by ASE.

Table 6. TSR (thousand tons) and ASR (tons/ha).

2000 2010 2020

TSR ASR TSR ASR TSR ASR

Cropland 18,896.16 9.21 16,947.07 7.63 8416.38 3.40
Forest 401,861.96 2663.55 327,388.23 2199.54 408,942.94 1364.66

Grassland 4,325,671.89 516.29 4,471,365.08 653.42 2,793,762.04 543.49
Shrubland 207.01 30.41 635.64 25.29 396.93 15.88
Wetland 2325.24 53.20 1525.27 46.99 472.01 19.61

Water 2395.83 47.56 2848.54 41.12 1082.34 16.96
Impervious area 1807.48 10.96 1874.53 9.25 1613.89 5.01

Barren land 398,373.74 47.67 531,774.31 55.08 543,155.97 49.95
Glaciers and permafrost 70,220.08 372.61 83,877.67 428.37 41,336.95 244.05

3.3. LULC Variation

The land use types in the urban agglomeration on the northern slopes of the Tianshan
Mountains are predominately barren land and grassland, followed by cropland (Table 7,
Figure 6). There was a significant expansion in the area of barren land, and all other land
types except for grassland, wetland, glacier, and permafrost also experienced an increase in
their respective areas from 2000 to 2020. Wetland and grassland areas decreased the most,
by 47.8% and 38.6%, respectively, during this period. Conversely, shrubland and forest
areas increased the most, by 225% and 98.7%, respectively. Due to the rapid economic
development, the impervious area has increased rapidly with growth rates of 22.8% and
58.9% from 2000 to 2010 and 2010 to 2020, respectively. Furthermore, owing to the large
amount of mining activities, barren land had become the dominant land use type within the
urban agglomeration on the northern slopes of Tianshan Mountains, reaching a substantial
56.08% of the total area in 2020.

Table 7. Land use types and their respective areas in the urban agglomerations on the northern slopes
of Tianshan Mountains from 2000 to 2020.

2000 2010 2020

LULC Area (ha) % Area (ha) % Area (ha) %

Cropland 2,051,532.90 10.58 2,220,509.43 11.45 2,472,084.99 12.75
Forest 150,874.47 0.78 148,843.98 0.77 299,667.33 1.55

Grassland 8,378,302.68 43.21 6,842,988.99 35.29 5,140,406.61 26.51
Shrubland 6806.52 0.04 25,133.85 0.13 25,002.72 0.13
Wetland 43,704.36 0.23 32,460.66 0.17 24,071.67 0.12

Water 50,376.24 0.26 69,266.61 0.36 63,818.10 0.33
Impervious area 164,950.02 0.85 202,632.57 1.04 321,935.31 1.66

Barren land 8,356,653.72 43.09 9,654,422.40 49.79 10,873,798.83 56.08
Glaciers and permafrost 188,456.04 0.97 195,805.35 1.01 169,381.44 0.87

Table 8 shows the land transfer in the urban agglomeration on the northern slopes
of the Tianshan Mountains from 2000 to 2020. During this period, the most significant
land type outflow was grassland, with an area of 3,441,053 ha, mainly converted to barren
land (2,607,667 ha) and cropland (52,9021.6 ha), accounting for 75.78% and 15.37% of the
total grassland area converted, respectively. The most significant land type inflow was
barren land, which mainly came from grassland, accounting for 97.35% of the total inflow
area. Shrubland showed the most dramatic change, increasing by 225%, mainly from
grassland (18,803.4 ha) and cropland (2351.8 ha), and forests were also mainly converted
from grassland, accounting for 98.35% of the total transferred area. The continuous increase
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in shrubland and forest reflects the positive impact of some ecological protection projects
such as returning farmland to forest, sand control, and sand management.
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Table 8. LULC transfer matrix for the urban agglomeration on the northern slopes of the Tianshan
Mountains, 2000–2020 (unit ha).

Year LULC

2020

Cropland Forest Grassland Shrubland Wetland Water Impervious
Area

Barren
Land

Glaciers
and

Permafrost

2000

Cropland 1,877,230 1171.53 81,288.18 57.96 722.25 2705.40 78,904.35 9320.13 0
Forest 8.28 132,910.60 17,214.30 0 7.20 87.66 5.67 365.49 274.59

Grassland 529,021.60 164,009.30 4,935,886 18,803.43 11,339.64 23,405.58 77,199.66 2,607,667 9606.87
Shrubland 783.63 0.27 220.50 3590.82 0.27 4.50 126.72 2077.11 2.61
Wetland 3818.97 2.88 12,905.64 7.47 8527.95 4305.96 2245.50 11,884.14 0

Water 2776.95 46.44 9157.41 1.26 3119.58 30,362.67 406.98 4401.36 85.68
Impervious area 28,030.68 331.20 6785.91 3.24 56.52 829.26 126,946.4 1955.97 0

Barren land 30,401.37 1160.82 72,367.56 2351.79 293.94 2093.31 360,96.48 8,194,360 16,563.78
Glaciers and
permafrost 0 33.21 4437.72 186.21 0 19.98 0 40,907.52 142,745.80

In the same geographical area and timeframe, under identical rainfall erosion con-
ditions, changes in land use have an impact on both soil conservation measures and
vegetation cover. Converting cropland to forested land, for instance, results in a modest
3.5% reduction in soil erosion, which is a relatively insignificant improvement in soil ero-
sion control, especially since cropland is usually managed with contour farming practices
and has a low inherent risk of soil erosion. The conversion of grassland and barren land
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to forested land reduced soil erosion significantly by 27.3% and 46.3%, respectively. Ad-
ditionally, the conversion of barren land to grassland reduces soil erosion by 19%. This is
particularly relevant for the southern part of the Tianshan Mountains, i.e., southern Wusu
and Changji Hui Autonomous Prefecture, which suffered from severe erosion. This area
predominantly consists of barren land and grassland and is influenced by extreme climatic
conditions what impede plant growth. Consequently, the primary focus of remediation
efforts should be directed towards these high-risk areas. It is worth noting that abrupt and
extensive changes in land use are often driven by human interventions.

3.4. Multi-Scenario LULC Changes

The changes in land use types between 2020 and the predicted 2030 under three develop-
ment scenarios are shown in Figure 7, with the areas of different land uses shown in Table 9.
The most transferred-out land type in the Q1 scenario is grassland (1,313,454.24 ha), while
the most transferred-in land type is barren land (9,999,988.83 ha). The most transferred-in
land type in the Q2 scenario is barren land (846,913.86 ha), and the most transferred-out
land type is grassland (866,774.52 ha), with 89.56% of the grassland coming from barren land
(776,243.43 ha). Finally, the most transferred-out land type in the Q3 scenario is grassland
(528,783.75 ha), and the most transferred-in land type is barren land (270,444.42 ha). In
all three scenarios, cropland area is projected to increase. In the Q1 scenario, barren land
accounts for 60% of the total area, while in the Q3 scenario, barren land increases slightly
relative to 2020. Forests are predicted to expand to the highest value under all three scenarios,
highlighting their significance for economic and ecological development in line with the
macro policy of safeguarding the economy and environmental protection.
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Table 9. Different land use areas under different scenarios.

Q1 Q2 Q3

LULC Area (ha) % Area (ha) % Area (ha) %

Cropland 2,652,533.10 13.68 2,572,756.92 13.27 2,575,096.02 13.28
Forest 400,980.96 2.07 400,980.96 2.07 400,980.96 2.07

Grassland 4,030,595.28 20.79 5,654,447.01 29.16 4,748,637.96 24.49
Shrubland 25,082.37 0.13 25,834.86 0.13 25,834.77 0.13
Wetland 20,055.69 0.10 26,098.83 0.13 26,478.81 0.14

Water 58,143.42 0.30 67,009.32 0.35 67,009.32 0.35
Impervious area 416,955.06 2.15 338,032.08 1.74 396,107.28 2.04

Barren land 11,637,854.10 60.01 10,137,140.91 52.28 1,098,215.73 56.63
Glaciers and permafrost 149,483.88 0.77 169,382.97 0.87 169,381.44 0.87

3.5. Changes in Soil Erosion under Different Scenarios

Soil erosion for the Q1, Q2, and Q3 scenarios were all significantly lower than that
of 2020, with 2,719,436,000 tons, 2,757,876,500 tons and 2,574,784,400 tons, respectively
(Figure 8), and this anomaly originated from the predicted 2030 rainfall for the different
scenarios. Assuming that the 2030 predictions in different scenarios still use the rainfall
values for 2020, while the C values for each land type used in the InVEST-SDR model
inputs are calculated based on the C values for 2020. As the R values remain the same
and the land classes in the extreme areas do not change, the erosion in the extreme
erosion areas under each scenario remains identical to the erosion in 2020. The total soil
erosion in 2020 was 456,803,000 tons. It increases by 5,081,661,000 tons in the Q1 (natural
development) scenario, slightly increasing to 460,969,000 tons in the Q3 (economic
priority) scenario, and decreasing to 438,002,400 tons in the Q2 (ecological protection)
scenario. The current prediction method has limitations and requires improvements to
incorporate predictions of changes in rainfall and NDVI, which are key factors affecting
soil erosion through changes in LULC and related C and P factors. The continuous high-
speed development may exacerbate soil erosion, and the Q1 scenario, which is consistent
with the development trend of 2000–2020, shows a worsening of soil erosion. The past
20 years have witnessed significant changes in land use patterns due to rapid economic
development, but with overall economic growth slowing down, there is a growing
emphasis on ecological protection and restoration projects to optimize land use and
maintain a balance between the ecological environment and economic development. In
the Q3 scenario, which is subject to macro development policy restrictions, the predicted
soil erosion amount is similar to the erosion amount in 2020, despite the pursuit of
maximum economic benefits. Therefore, it is crucial for resource-based cities to strike a
balance between economic development and ecological protection.
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This approach only considers the impact of land-use change. The R-value, on the other
hand, continues to rely on the 2020 data. Rainfall is a very important factor influencing soil
erosion, and the SSP119 scenario exhibits significantly higher rainfall levels relative to the
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other two scenarios. It is worth noting that the environmentally protected scenario has the
highest soil erosion among the three scenarios (Figure 9). The Q1 scenario shows higher
peaks of soil erosion, but the erosion area in the central mountainous region is smaller than
the other two scenarios, which is also related to the effect of rainfall, with a decreasing
trend in the rainfall area from SSP119 to SSP585.
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4. Discussion

The prevention and management of soil erosion represent complex, long-term endeav-
ors, especially in resource-based cities where resource exploitation is essential for economic
development [71]. However, resource exploitation simultaneously elevates the risk of soil
erosion. In the urban agglomeration on the northern slopes of the Tianshan Mountains,
cropland is predominantly managed using contour farming techniques, resulting in a
relatively low risk of soil erosion. Therefore, the impact of converting it into forested land
through artificial intervention is limited. Instead, the primary focus should be on address-
ing soil erosion stemming from resource exploitation activities, particularly in the area
surrounding the Tianshan Mountains characterized by steep slopes, heavy precipitation,
and heightened susceptibility to severe soil erosion [72]. Artificial intervention in these
areas can include planting trees to safeguard the integrity of the existing forests and prevent
their degradation. Additionally, public awareness campaigns about ecological environment
preservation can play a pivotal role in reducing the damage and pollution associated with
human activities.

The forecasting component of this study integrates both the MOP model and the
PLUS model to address the inherent limitations of a single model. It used the MOP
model to impose constraints on the future scenarios of the two distinct development
paths. Nevertheless, the constraints applied by the MOP-PLUS coupled model are not
yet comprehensive enough. Additionally, due to the inherent volatility of real-world
development and the dynamic nature of policy implementation, the forecasting outcomes
may deviate from the actual development trajectory [73].

The selection of the three scenarios in this study was based on the future de-
velopment plan outlined in the “Development Plan for the Urban Agglomeration on
the North Slope of Tianshan Mountain”, which carried a degree of subjectivity [74].
Consequently, the three scenarios chosen for prediction represent extreme ends of the
spectrum: business-as-vvusual development, the pursuit of maximization of environ-
mental benefits under the constraints of the development plan, and the maximization of
economic growth. These three extreme scenarios serve as reference points for decision-
makers, aiding them in managing future land use patterns according to distinct develop-
ment objectives. The aim is to facilitate improvements in the natural environment and
to achieve a balance between environmental preservation and economic development
in the context of continuous economic growth. The challenge lies in striking this equilib-
rium by objectively predicting changes in land use and finding ways to harmonize the
inherent conflict between economic development and ecological protection, ultimately
paving the way for sustainable development.
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In future research, attention can be directed towards refining the control of variable
constraints. This can involve the selection of a broader range of variables [70], incorporating
additional variables from both social and economic perspectives, and introducing more
environmental factors as constraints. Another avenue to explore is employing multiple
objective functions to enhance the precision of predictions.

This study primarily emphasized the variations in soil erosion attributable to different
land use scenarios, and the R value did not significantly affect the comparative analysis of
soil erosion differences across the three scenarios. Nevertheless, improving the comprehen-
siveness of this study and more accurately characterizing soil erosion predictions requires
a crucial focus on predicting rainfall patterns for the year 2030. There is a high degree of
uncertainty in the modeling and prediction of the future climate, which may also lead to
bias in the projections, which can be reduced through the use of multi-modal ensembles of
climate scenario data [75].

The dynamics of soil erosion and land use change constitute a complex process,
making it challenging to provide a detailed explanation of the precise influence of land use
changes on soil erosion across a large region [76]. Summarizing the relationships between
major land categories and soil erosion, as well as the effects stemming from land transfers
may not fully capture the intricacies of this process. In future research endeavors, it would
be beneficial to shift the focus toward smaller areas, conduct comprehensive long-term
and month-to-month modeling analyses, and particularly emphasize soil erosion resulting
from land use transitions within specific regions. This approach will allow us to pinpoint
which specific land use transitions exert the most significant impact on soil erosion.

5. Conclusions

This study seeks to evaluate the soil erosion changes in the urban agglomeration
on the northern slope of the Tianshan Mountains between 2000 and 2020. It specifically
examines the influence of changes in land use on soil erosion. Furthermore, the MOP-PLUS
coupled model was employed to forecast land use transformations in 2030 across three
scenarios: Q1 (natural development), Q2 (ecological protection), and Q3 (economic priority).
Additionally, soil erosion was predicted by utilizing the climate data from CMIP6. It offers
a comprehensive land management guide for resource cities to achieve a harmonious
equilibrium between economic expansion and ecological preservation.

Soil erosion has decreased over the past two decades, with the most affected areas
concentrated around the Tianshan mountain region. Rapid conversion highlights the
urgency for land management strategies, especially considering the detrimental effects
on soil retention capacity and potential exacerbation of erosion in susceptible areas like
grasslands, glaciers, and permafrost regions. The projections for 2030 indicate distinct
variations in land-use patterns across the three scenarios. Forest areas continue to expand
in all circumstances, highlighting their significance in ecological preservation and economic
advantages. Soil erosion is expected to decrease in all three scenarios compared to 2020,
primarily because of the anticipated decrease in rainfall.

Nevertheless, this study is not without its constraints. The subjective nature of estab-
lishing constraint equations and the potential disparities between real-world progress and
planned scenarios present difficulties in ensuring the precision of the forecasts. Further-
more, the study’s comprehensiveness is constrained by the absence of accurate land use
data and the uncertainty surrounding the modeling of future climatic data.
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InVEST-SDR Integrated valuation of ecosystem services and tradeoffs–sediment delivery ratio
MOP Multi-objective planning
Q1 Natural development
Q2 Ecological protection
Q3 Economic priority
SSP Shared socio-economic pathway
SSP119 A sustainable socio-economic development
SSP245 A medium level of socio-economic development
SSP585 A high level of socio-economic development
CMIP6 Coupled model intercomparison project
R Rainfall erosivity factor
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