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Abstract: In South China, the large quantity of rainfall in the pre-summer rainy season can easily lead
to natural disasters, which emphasizes the importance of improving the accuracy of precipitation
forecasting during this period for the social and economic development of the region. In this paper, the
back-propagation neural network (BPNN) is used to establish the model for precipitation forecasting.
Three schemes are applied to improve the model performance: (1) predictors are selected based
on individual meteorological stations within the region rather than the region as a whole; (2) the
triangular irregular network (TIN) is proposed to preprocess the observed precipitation data for input
of the BPNN model, while simulated/forecast precipitation is the expected output; and (3) a genetic
algorithm is used for the hyperparameter optimization of the BPNN. The first scheme reduces the
mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the simulation
by roughly 5% and more than 15 mm; the second reduces the MAPE and RMSE by more than 15%
and 15 mm, respectively, while the third improves the simulation inapparently. Obviously, the
second scheme raises the upper limit of the model simulation capability greatly by preprocessing the
precipitation data. During the training and validation periods, the MAPE of the improved model can
be controlled at approximately 35%. For precipitation hindcasting in the test period, the anomaly rate
is less than 50% in only one season, and the highest is 64.5%. According to the anomaly correlation
coefficient and Ps score of the hindcast precipitation, the improved model performance is slightly
better than the FGOALS-f2 model. Although global climate change makes the predictors more
variable, the trend of simulation is almost identical to that of the observed values over the whole
period, suggesting that the model is able to capture the general characteristics of climate change.

Keywords: pre-summer rainy season; precipitation forecasting; back-propagation neural network;
triangular irregular network

1. Introduction

The pre-summer rainy season (April to June) is referred to as the first rainy period of
the year in contrast to the second rainy period (July to September) in South China [1]. The
average precipitation during this period is 665 mm, accounting for approximately 50% of
the annual total. Some studies have shown that the average number of rainstorm days in the
pre-summer rainy season accounts for half of that in the whole year [2]. The long-term and
widespread rainfall is characterized by its high intensity and volume, which can easily lead
to natural disasters such as mountain flooding, landslides, and urban flooding [3], posing a
threat to people’s lives and property. Therefore, it is of great importance to improve the
accuracy of precipitation forecasting during the pre-summer rainy season in South China.
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Located in the coastal region, South China has complicated topography. The weather
systems controlling this area during the pre-summer rainy season are complex [4], in
which many general circulation patterns or antecedent factors affect precipitation, making
it difficult for models to describe land–atmosphere interactions and then forecast the
precipitation over the region. To investigate the physical processes involved, a number of
researchers have carried out numerous studies using available observation and reanalysis
data or by methods of numerical simulation. Qiang et al. [5] studied the sudden changes
in precipitation and atmospheric circulation indices at the beginning and end of the pre-
summer rainy season. Li et al. [6] analyzed the statistical characteristics of precipitation
during different periods of the pre-summer rainy season (frontal precipitation period
and monsoon precipitation period). Chen et al. [7] carried out numerical simulation
experiments to investigate the effect of the sea surface temperature (SST) in the Western
Pacific warm pool region on pre-summer precipitation. In addition, the relationship
between the precipitation and some indices of the atmosphere [8–10], oceans [11,12], and
the land surface [13] has also been studied so that the choice of predictors has a relatively
physical foundation when setting up statistical precipitation forecasting models.

Methods for precipitation forecasting are mainly classified into statistical and dy-
namical groups [14,15]. In recent years, there have been a great number of studies using
numerical models based on dynamical methods, e.g., the regional climate model RegCM3
and the climate forecast system CFSv2, to forecast precipitation in different regions of South
China at different time scales of the pre-summer rainy season [16–19]. Based on these
studies, it can be found that the error of the forecast of numerical models increases with the
lead time; various numerical models are highly skilled in precipitation forecasting in some
regions of South China, but their forecast capability is weak systematically over the whole
area. Meanwhile, some studies employed traditional statistical methods, e.g., the singular
value decomposition method [20], the partial least squares regression methods [21], and the
canonical correlation analysis method [22], to forecast precipitation during the per-summer
rainy season. Statistical methods are more suitable for seasonal scale precipitation forecast-
ing [23,24], but it is difficult to predict the precipitation distribution with higher resolution.
In general, both dynamic and traditional statistical methods for pre-summer precipitation
forecasting in South China have been developing in the past two decades, but few studies
can predict both accurate total amounts of seasonal precipitation and reasonable spatial
distributions of the precipitation during the pre-summer rainy season.

As a feed-forward network based on the error back-propagation algorithm, the back-
propagation neural network (BPNN) is one of the most widely used artificial neural net-
works [25,26]. In the last two decades, the BPNN has been widely used in precipitation
forecasting. Compared with dynamical methods, the BPNN is more fault-tolerant; com-
pared with traditional statistical methods, the BPNN does not require the mastery of a
priori statistical laws [27]. Many studies have confirmed that it is a stable and effective
method [28–30]. Previous researchers [31,32] confirmed that the BPNN optimised by a
genetic algorithm performs better than the multiple linear regression (MLR) method in
different areas. This study demonstrates the feasibility that BPNN can predict not only the
amount of precipitation but also the spatial distribution skillfully. As with most artificial
neural networks, the error of BPNN simulation comes from three main sources: weakness
of model structure, poor internal characteristics of the data, and unoptimised hyperparam-
eters. The internal characteristics of data determine the upper limit of BPNN simulation
capability. Conventional data preprocessing methods, e.g., wavelet denoising and mean
filtering, can make the characteristics of data more prominent and remove the noises [33].
Aiming at improving the simulation of the BPNN in this paper, a method for preprocessing
precipitation data based on the triangular irregular network (TIN) is introduced.

Additionally, under the background of global climate change, temperatures world-
wide are rising, and the state of the atmosphere is becoming more nonstationary [34],
causing transformations to the physical processes involved in precipitation. In the field of
hydrological forecasting, once the regional climate of an area has changed, the inconsistency
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of the hydrological sequence in the area affects the hydrological data and the hydrological
model parameters, making them no longer representative [35]. Thus, the hydrological
model needs to be calibrated repeatedly to ensure accuracy and reliability due to global
climate change. This paper discusses whether the same problem exists in the precipitation
forecasting model based on BPNN, finding out whether the BPNN is able to capture the
changed physical processes automatically or by calibration.

This paper attempts to set up a precipitation forecasting model based on BPNN for the
pre-summer rainy season in South China. There are three schemes to improve the model
according to the three sources of the BPNN simulation error. The improved models are
used to hindcast the precipitation so that their performance can be evaluated. In Section 2
of this paper, data sources of precipitation, climate indices, and the hindcast precipitation
of a dynamical climate model are introduced. Section 3 presents the approaches to set up
the model, the schemes to improve the model, and the evaluation indices. The results are
analyzed in Section 4, and the rest part of this paper contains a discussion and summary.

2. Data and Methods
2.1. Overview of the Experiments

The BPNN learns historical data from the training set to determine the network struc-
ture. The validation set is used for the judgment of overfitting and the optimization of
hyperparameters, and finally, the determined network is applied in independent prediction
during the test period. In this paper, the simulation refers to the model performance during
the training and validation periods, and the hindcast is referred to the model performance
during the test period. In consideration of the availability of data, the training set, valida-
tion set, and test set are divided according to the ratio 7:2:1, i.e., 1969–2002, 2003–2012, and
2013–2017. The simulation is influenced by data processing, model building, and hyper-
parameter optimization. After different methods of data preprocessing, the model is built
based on BPNN, and the initial weights and biases of BPNN are optimised by a genetic
algorithm (GA). The model with preeminent and reasonable simulation is applied in hind-
casting. The experiments in this paper are designed according to four schemes (Table 1).
They are described in detail in the following sections.

2.2. Data Sources and Processing

Precipitation data (the expected output of the model) are derived from the Daily
Values of Terrestrial Climate Information in China dataset (V3.0). This dataset contains
daily precipitation data from 824 national benchmarks and basic stations on the ground in
China, with missing or mismeasured data in some stations. The study area of this paper is
South China, including Guangdong, Guangxi, and Hainan provinces (104◦26′ E–117◦19′ E;
18◦10′ N–26◦24′ N); the study period is the pre-summer rainy season (April to June). Spatial
interpolation is carried out for missing or mismeasured data for the area during the period.
Considering the large number of missing or mismeasured data for some years and some
stations, 93 stations (Figure 1) are finally chosen to participate in the model construction
over 49 years, i.e., 1969–2017.
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Table 1. Designed schemes with the training, validation, and test periods over April–June of 1969–2002, 2003–2012, and 2013–2017 respectively.

Schemes Inputs Expected Output Initial Weights
and Biases

Other
Hyperparameters Training Period Validation Period Test Period

SregBP
Predictors correlated

with the regional
precipitation

Station precipitation Random Manual debugging 1969–2002 2003–2012 2013–2017

SstnBP
Predictors correlated

with the station
precipitation

As in SregBP As in SregBP As in SregBP As in SregBP As in SregBP As in SregBP

StinBP As in SstnBP TIN precipitation As in SregBP As in SregBP As in SregBP As in SregBP As in SregBP
StinGABP As in SstnBP As in StinBP GA optimization As in SregBP As in SregBP As in SregBP As in SregBP
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Climate index data (the inputs of the model) are derived from the 130 monthly moni-
toring indices from China National Climate Centre, including 88 indices for atmospheric
circulation, 26 for sea surface temperature (SST), and 16 for other indices such as the total
sunspot number index and the solar flux index (Supplementary Materials). Predictors are
taken from the climate index data in the previous months before the pre-summer rainy
season (i.e., December of the preceding winter to March).

Hindcast data of a dynamical model are obtained from the sub-seasonal to seasonal
(S2S) prediction system built by the Institute of Atmospheric Physics, Chinese Academy of
Sciences, based on the FGOALS-f2 model. Hindcast experiments have confirmed its high
prediction skills for ENSO, the Madden Julian Oscillation (MJO), and tropical cyclones [36],
and they have been incorporated into the China Multi-Model Ensemble (CMME) [37]. The
data of the FGOALS-f2 model in raster format are spatially interpolated to obtain the values
of the 93 stations. The hindcast data during 2013–2017 are selected and used for comparison
with the hindcast precipitation of the model in this study.

2.3. Methods
2.3.1. Correlation Analysis

Correlation analysis is used for the selection of predictors. In this paper, Pearson’s
correlation coefficients between the 130 monthly monitoring indices in the previous months
before the pre-summer rainy season and the monthly precipitation series in the pre-summer
rainy season are calculated separately. Monthly monitoring indices with significance levels
higher than 0.05 are excluded, and the remains are listed in descending order of the absolute
values of the correlation coefficients. Finally, the top four indices from different previous
months are selected as the predictors in this paper.

2.3.2. Back-Propagation Neural Network (BPNN)

The BPNN is usually composed of an input layer, several hidden layers, and an output
layer. The principle of BPNN can be briefly described as follows: the input X is combined
linearly to obtain the total input S, the weight of the linear combination is ω, and the biase is
θ; the total input S is acted upon by the activation function f to obtain the output P, which is
usually a nonlinear function to fit a complex relationship; there exists a deviation E between
the output P and the expected output O, which is a function of the weights and biases. The
objective is to find the optimal weights and biases with the minimum deviation, and the
method of seeking optimal values is usually the gradient descent method. Once the optimal
weights and biases are determined, the structure of the BPNN is also determined, i.e., the



Water 2024, 16, 1423 6 of 20

BPNN completes its training and can be used for simulation or actual forecasting. Therefore,
BPNN does not require a priori knowledge to spontaneously disclose the internal laws of the
data. Figure 2 shows the structure of a conventional BPNN containing 1 hidden layer [38].
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This paper attempts to establish a precipitation forecasting model for the pre-summer
rainy season in South China. From the perspective of spatial scale, the region includes
93 stations; from the perspective of time scale, the pre-summer rainy season includes
3 months. Accordingly, the task of the model can be divided into sub-model tasks, each
of which is an independent BPNN to realize the forecast of precipitation for a month at a
station individually. For example, for the forecast of April precipitation at the Nth station,
the expected output of the BPNN is April precipitation series at the station. There are
two options for the inputs: the series of the top four climate indices most correlated with
the regional mean precipitation series for April, which makes the model more interpretable,
and the series of the top four climate indices most correlated with the precipitation series
for April at the station, which theoretically improves the accuracy of the simulation. The
flow charts (Figures 3 and 4) show the sub-models for forecasting April precipitation at the
Nth station for both options of inputs, which are noted as SregBP and SstnBP.

The hyperparameters that usually have significant impacts on the performance of
BPNN are as follows: the number of hidden layer neurons, the activation function, the
initial weights and biases, the learning rate, the number of epochs, and the error goal [39]. In
this paper, the range for the number of hidden layer neurons is determined by Equation (1).

q =
√

n + m + a, (1)

In the formula, q is the number of hidden layer neurons, n and m are the numbers
of neurons in the input and output layers with the values of 4 and 1 in this study, and
a is an integer ranging from 1 to 10. Different q values within the range are tested, and
the q value that presents the best training effect is taken into the BPNN. In this paper,
the number of hidden layer neurons and the activation function are unchanged once they
are set and are not involved in debugging. The initial weights and biases are randomly
generated from the interval [−1, 1]. The learning rate, the number of epochs, and the
error goal require manual debugging. The network is trained using the 34 years of data
(1969–2002). The trained network is used to simulate the precipitation in the validation
period. The learning rate, the number of epochs, and the error goal are adjusted according
to the error of simulation so that the network, after hyperparameter optimization, has the
best performance in the validation period. The network structure is saved, which means
the sub-model is established and can be used to hindcast precipitation for the test period.
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For each sub-model, the four predictors are first selected according to correlations. The
n, the neural network, is trained on the training set, and the hyperparameters are adjusted
according to the validation set error. Finally, the network is saved and used for hindcast on
the test set.

In practical application, the hyperparameters of each sub-model are adjusted sepa-
rately, and the best hyperparameters can vary among sub-models. However, for conve-
nience in this study, the hyperparameters of the sub-models are adjusted uniformly, i.e.,
the hyperparameters of 93 sub-models based on the stations remain consistent and share
one set of values.

2.3.3. Triangular Irregular Network (TIN)

TIN is introduced to preprocess precipitation data (the expected output) in this study.
Previously, TIN was widely used in digital elevation models to fit the ground surface or
other irregular surfaces. The most conventional method of generating it is the Delaunay
triangulation method [40]. TIN is similar to orthogonal grids in that it can simply be
understood as a form of interpolation. The advantages of TIN over orthogonal grids are as
follows. TIN node data are the original observed data, while orthogonal grid node data are
the interpolated values of the original observed data. The topological relationship of TIN is
better than that of orthogonal grids. It has been confirmed that TIN is more suitable for
handling data with large spatial variability [41].

In this paper, a TIN is generated based on 93 stations in the region, including
154 triangular areas (Figure 5). Some unreasonable triangles are abandoned, which are
mainly obtuse triangles located at the boundary of the region and spanning long distances.
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Figure 5. The triangular irregular network (TIN) over South China.

The mean precipitation for each triangular area is an average of the precipitation at
the three stations located on the apices of the triangle, i.e., an equally weighted linear
combination of the precipitation at the three stations. Therefore, preprocessing by the
TIN changes the internal characteristics of the precipitation data. To ensure that the
preprocessing does not destroy the spatial distribution of precipitation, the annual average
precipitation during the pre-summer rainy season is calculated for each of the 93 stations
(denoted as PN, N = 1, 2, 3, ..., 93), and each of the 154 triangular regions (denoted as
PM, M = 1, 2, 3, ..., 154) over the multiyears. The mean values of the PN and PM series are
665 mm and 683 mm, with standard deviations of 169 mm and 133 mm, respectively. The
result shows that the preprocessing slightly increases annual mean precipitation during
the pre-summer rainy season and slightly decreases the spatial standard deviation over
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the multiyears. In other words, the dispersion of the spatial distribution of precipitation
during the pre-summer rainy season is slightly reduced, and some of the extreme signals of
precipitation are lost. Thus, the preprocessing by the TIN changes the internal characteristics
of the precipitation data while retaining the original spatial distribution of precipitation
data greatly. Figure 6 shows a comparison of the spatial distribution of the annual average
precipitation over the multiyears during the pre-summer rainy season in South China
before and after preprocessing.
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In the feasibility analysis prior to the study, it was found that the mean precipitation
has better internal characteristics and is more simulatable than the precipitation at a
single station. Therefore, SstnBP model may be improved by changing the expected
output, i.e., replacing the 93 stations precipitation series with the 154 triangular areas mean
precipitation series.

Figure 7 shows the flow chart of the StinBP sub-model (the model over the Mth
triangular area), with April precipitation forecasting as an example. The inputs of the
BPNN are the series of the top four climate indices most correlated with the triangular area
mean precipitation for April, which is, namely, the expected output.
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2.3.4. Genetic Algorithm (GA)

The GA is used to optimise the initial weights and biases of BPNN. The initial weights
and biases are the starting point for the gradient descent method to find the optimal weights
and biases, and the choice of the starting point is crucial to seek the optimal solution in a
global optimization problem. The initial weights and biases taken randomly tend to trap
the network in a local optimum, which is a widely recognised problem in BPNN training.
The GA is able to determine the starting point of the gradient descent method, from which
it is possible for the BPNN to converge to the global optimal solution by training. The GA
has now been widely used in the field of artificial neural network optimisation [42,43].

For given data, there is an upper limit of the BPNN simulation capability. In the three
previous schemes, i.e., SregBP, SstnBP, and StinBP, the aim of hyperparameter optimization
is to make the simulation close to the upper limit under a certain scheme. However, the
key hyperparameters, i.e., the initial weights and biases, are not involved in debugging.
Strictly speaking, there is no assurance that the simulation has reached the upper limit.
To confirm this conjecture, only the initial weights and biases are adjusted compared to
the StinBP model, while the remaining hyperparameters remain unchanged. The initial
weights and biases are optimised using the GA, and the goal of the optimisation is to make
the simulation error as low as possible during the validation period, which is unchanged
compared to the previous schemes, i.e., SregBP, SstnBP, and StinBP. The improved model is
noted as StinGABP.

2.3.5. Evaluation Indices

The indices to evaluate the model in this paper are the mean absolute percentage error
(MAPE), the root mean square error (RMSE), the anomaly sign consistency rate (AR), the
anomaly correlation coefficient (ACC), and the Ps score, which are conventionally used
in meteorological operations. Formulas for MAPE, RMSE, AR, and ACC are shown in
Equations (2)–(5) [44].

MAPEi =

(
1
T∑T

t=1

∣∣∣∣Pt − Ot

Ot

∣∣∣∣)× 100%, (2)

RMSEi =

√√√√ 1
T

T

∑
t=1

(Pt − Ot)
2, (3)

ARt =
N0

N
× 100%, (4)

ACCt =
∑N

i=1
(
Rfi − Rfi

)(
Roi − Roi

)√
∑N

i=1
(
Rfi − Rfi

)2
∑N

i=1
(
Roi − Roi

)2
, (5)

where T is the length of the hindcast period (i.e., the test period) by year and N is the number
of the stations evaluated, Pt and Ot are the hindcast and observed value of precipitation
in the pre-summer rainy season at a station, respectively, N0 is the number of stations at
which the hindcast anomaly signs are consistent with the observed anomaly signs in a
given year of the hindcast period, Rfi is the hindcast value of the Anomaly percentage of
precipitation in a given year of the hindcast period with Roi, which is the observed value
correspondingly in that year, and R f i and Roi are the mean values of the Rfi and Roi series,
respectively. MAPE and RMSE are applied to evaluate the performance of the model over
the hindcast period in terms of time scale, while AR and ACC describe the similarity of the
spatial patterns of the hindcast and observed precipitation.

Ps score is a conventional evaluation index for monthly and seasonal forecasting
models [45]. The unique point is that when precipitation is anomalous, a bonus score is
assigned if the model forecasts the anomaly correctly, and when precipitation is extremely
anomalous, a penalty is applied if the model fails to forecast the anomaly. The observed
precipitation is graded according to the Anomaly percentage (Table 2) [44].
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Table 2. Grades of precipitation anomalies.

Grades of Precipitation Anomalies Basis

Extreme |Roi| ≥ 100%
First grade 50% ≤ |Roi| < 100%

Second grade 20% ≤ |Roi| < 50%
Normal |Roi| < 20%

Equation (6) shows the Ps score formula. The detailed meaning of the letters and the
steps to calculate the Ps score can be found in the paper of Li et al. [45]. In the formula, a, b,
and c are the weights, which are taken as 1, 2, and 1, respectively, in this paper.

PS = 100 × a × N0 + b × N1 + c × N2

N − N0 + a × N0 + b × N1 + c × N2 + M
(6)

3. Results
3.1. Comparison of Simulation for Different Schemes

The simulation error of the initial model (i.e., SregBP) and the three improving schemes
(i.e., SstnBP, StinBP, and StinGABP) over the training and validation periods are compared
in Table 3.

Table 3. Simulation for different BPNN models.

Months Modeling
Schemes

Training Period Validation Period Training and
Validation Periods

RMSE (mm) MAPE (%) RMSE (mm) MAPE (%) RMSE (mm) MAPE (%)

April

SregBP 77.9 96.2 118.7 152.9 90.2 109.1
SstnBP 80.8 99.6 110.1 133.3 90.3 107.2
StinBP 69.2 57.9 93.7 86.0 75.2 64.3

StinGABP 121.7 61.7 61.7 47.5 111.0 58.5

May

SregBP 116.8 52.5 144.3 74.9 125.2 57.6
SstnBP 103.1 47.4 131.3 74.6 111.9 53.6
StinBP 89.3 32.4 112.1 46.3 95.0 35.6

StinGABP 130.3 34.1 58.0 22.7 117.9 31.5

June

SregBP 128.4 53.7 183.9 66.8 144.7 56.7
SstnBP 108.7 46.2 170.4 67.4 127.8 51.1
StinBP 95.6 33.9 149.4 43.1 110.1 36.0

StinGABP 157.3 36.9 108.6 31.5 147.7 35.7

The following information can be seen in Table 3. (1) The overall simulation error for
the training and validation periods for each month of the SregBP model is large. (2) The
upper limit of the model’s capability to simulate precipitation in the pre-summer rainy
season is slightly enhanced by replacing the predictors with climate indices more correlated
on the basis of the SregBP model. In May and June, the overall MAPE for the training
and validation periods is reduced by about 5%, and the RMSE by about 15 mm. (3) Based
on the SstnBP model, the upper limit of the model capability to simulate precipitation is
apparently increased by preprocessing the precipitation data. The overall RMSE for the
training and validation periods in each month is reduced by more than 15 mm, together
with the overall MAPE reduced by more than 40% in April and by more than 15% in May
and June. (4) Based on the StinBP model, the initial weights and biases are optimised using
GA, and the overall MAPE in each month is reduced slightly while the RMSE increases.
The simulation in the validation period is improved at the expense of a worse simulation
in the training period. In other words, part of the error is transferred from the validation
period to the training period, while the overall error is barely reduced.
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Table 3 confirms the previous conjectures, e.g., the predictors more correlated with
the precipitation can improve the simulation for every single station, through which the
precipitation forecast for the region is improved as a whole. By improving the internal
characteristics of the data using the TIN to preprocess precipitation data, the BPNN model
substantially improves the simulation performance. Additionally, the GA has the advantage
of global optimization compared with the BPNN, which might fall into local optimization
and could lead to a better simulation. Surprisingly, in this paper, GA used in BPNN cannot
improve the simulation capability of the model in the training and validation periods. The
excellent simulation in the validation period may also lead to the problem of overfitting,
and the hindcast in the test period is not necessarily as good.

By comparing the simulation and prediction values with the observations, it can be
found that MAPE tends to be high when the minimum value is observed. When the
maximum observation occurs, the RMSE is easily inflated. The models in this paper
are weak to predict the extreme values. TIN improves MAPE and RMSE by smoothing
observation data.

3.2. Hindcast and Model Evaluation

In the previous section, two BPNN models (StinBP and StinGABP) with better sim-
ulation and equivalent simulation capabilities are identified, and these two models are
used in this section to hindcast the precipitation during the pre-summer rainy season in
the hindcast period (i.e., the test period, 2013–2017). The model evaluation is divided into
two parts: (1) The mean error of hindcasting is compared with its own simulation error
in the training and validation periods to assess whether the model is overfitting. (2) The
model performance in the hindcast period is compared with that of the FGOALS-f2 model
results to evaluate the forecast capability of the model developed in this study.

3.2.1. Judgment of Overfitting

A model is defined to be overfitting if the simulation error is equivalent and low in
both the training and validation periods, but the forecast error is significantly higher in the
test period [46]. Only if the forecast error already exists can the model be determined to be
overfitting.

Table 4 lists the comparison between the simulation error and the hindcast error for
different models (i.e., StinBP and StinGABP). The RMSE of the StinBP model in the hindcast
period increases in all months compared to the simulation error, rising by 22 mm in April,
41 mm in May, and 11 mm in June, respectively, as does the RMSE of the StinGABP model,
rising by 26 mm in April, 102 mm in May, and 94 mm in June, respectively. The increase in
StinGABP RMSE during the hindcast period is much higher than that of StinBP RMSE in
May and June. The MAPE of the StinBP model in the hindcast period also increases in all
months compared to the simulation error, but not greatly, with the mean increase in MAPE
turning out to be 11% over the three months. Meanwhile, the mean increase in StinGABP
MAPE is 28%, which is 17% higher than that of the StinBP mode.

Table 4. Simulation error and hindcast error for StinBP and StinGABP.

Months Schemes
Training and

Validation Periods Hindcast Period

RMSE (mm) MAPE (%) RMSE (mm) MAPE (%)

April StinBP 75.2 64.3 97.5 78.9
StinGABP 111.0 58.5 137.0 87.9

May StinBP 95.0 35.6 136.2 44.4
StinGABP 117.9 31.5 220.2 55.1

June
StinBP 110.1 36.0 120.9 46.4

StinGABP 147.7 35.7 241.5 66.8
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It can be concluded that both models are overfitting, in which the StinBP model is
relatively slight overfitting. In this study, optimising the initial weights and biases of BPNN
by GA leads to an increase in the degree of overfitting.

3.2.2. Evaluation of Forecasting Capability

In practical applications, the observed precipitation data based on stations are often
processed into the mean values over areas as input items to systems, e.g., runoff models
and schemes of programming and management of water resources. The outputs of the
StinBP model and StinGABP model are the mean precipitation over triangular areas, which
are intended to meet the requirements of practical applications. In order to keep the spatial
scale of the model outputs consistent with those of the evaluation indices, the hindcast
precipitation is spatially interpolated to obtain the hindcast values at the stations. Similarly,
the hindcast precipitation for April, May, and June are summed to obtain the hindcast value
for the pre-summer rainy season. The FGOALS-f2 model hindcast data are processed in
the same way.

The anomaly sign consistency rate (AR), the anomaly correlation coefficient (ACC),
and the Ps score, which are conventionally used in meteorological operations, are calculated
for comparison. Table 5 lists the scores of evaluation indices for the StinBP model, the
StinGABP model, and the FGOALS-f2 model have a hindcast period of 5 years. Comparing
the scores over the hindcast period, the results of the two improved models in this paper
are equivalent to that of the FGOALS-f2 model and less stable. The AR and Ps scores of the
StinGABP model are higher than the results of the FGOALS-f2 model in 2015–2017, with
the maximum difference of AR appearing in 2016 at 11.8% and the maximum difference
of Ps score appearing in 2016 at 11.4. The mean scores of the StinGABP model hindcast
are higher than the results of the FGOALS-f2 model; the AR is 1.7% higher, the ACC is
0.012 higher, and the Ps score is 1.6 higher. While the mean scores of the StinBP model
hindcast are lower than the results of the FGOALS-f2 model, the AR is 0.2% lower, the ACC
is 0.033 lower, and the Ps score is 1.3 lower. In terms of AR and Ps scores, the StinGABP
model hindcast is substantially better than that of the FGOALS-f2 model in 2015–2017. In
terms of mean scores, the StinGABP model hindcast is slightly better than the results of the
FGOALS-f2 model. At the same time, the StinBP model is slightly less effective.

Table 5. Scores of evaluation indices for different models in the hindcast period.

Years
AR(%) ACC Ps

StinBP StinGABP FGOALS-f2 StinBP StinGABP FGOALS-f2 StinBP StinGABP FGOALS-f2

2013 39.8 38.7 47.3 −0.050 −0.205 −0.169 43.4 40.6 50.0
2014 63.4 53.8 54.8 0.172 0.134 0.205 64.9 57.0 57.1
2015 55.9 60.2 55.9 0.097 0.199 0.124 60.2 66.1 61.0
2016 54.8 64.5 52.7 0.028 0.076 0.250 57.6 68.3 56.9
2017 49.5 55.9 53.8 −0.027 0.243 −0.026 52.5 61.0 59.8

Mean 52.7 54.6 52.9 0.044 0.089 0.077 55.7 58.6 57.0

Both the improved models and the FGOALS-f2 model performed poorly in 2013 and
well in 2015 and 2016. There is no obvious difference in the grades of total precipitation
during the pre-summer rainy season in the three years, so the reason for the different
performance of the three models in different years may be the distinctions between the
spatial patterns of precipitation. According to Figure 8, the spatial distributions of pre-
summer precipitation in 2015 and 2016 are similar, and the centers of the precipitation
in 2015 and 2016 are northward compared to 2013. Different forecast methods may be
suitable for different spatial patterns of precipitation, so the hindcast scores of the three
models in 2015 and 2016 are better than those in 2013. The spatial patterns of pre-summer
precipitation are highly correlated to the SST of key regions [47] and the situation of the
previous low-level wind field [48]. Therefore, it may be significant for these three models
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(i.e., StinBP, StinGABP, and FGOALS-f2) to enhance the accuracy of forecasting by taking
these two factors into consideration.
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Figure 9 shows the spatial distributions of the observed and hindcast values of anomaly
percentage of pre-summer precipitation over 2013–2017. Focusing on the high and low
centers of the observed precipitation, spatial distributions of the hindcast precipitation of all
three models in 2013 differ from the observation. The spatial distribution of the StinGABP
model hindcast precipitation in 2014 is the closest to the observation. In 2015, the StinBP
model performed well in the coastal region of Guangdong, as did the StinGABP model in
Hainan Island. The spatial distribution of the StinGABP model hindcast precipitation in
2016 was similar to the observation, while the StinBP model performed better in 2017.
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The hindcasts of the three models over the hindcast period behave differently. The
spatial pattern of the StinBP model hindcast precipitation is less spatially varied, with a few
extreme values. The spatial variation is large for the StinGABP model hindcast precipitation,
with more extreme values in 2015 and 2016. In addition, the spatial distributions of
the FGOALS-f2 model hindcast precipitation over the five years present an inter-annual
similarity. Therefore, from the perspective of the spatial distribution of precipitation, the
hindcasts of the StinBP model and StinGABP model are more reasonable. The StinBP model
performance is weaker than that of StinGAPB in predicting extremes because BPNN is
enabled to capture few connections between predictors and the extremes through training
due to the small sample of extremes. However, the StinGABP model may not be much
better at predicting extremes as well. The extreme outputs of the StinGABP model may
come from overfitting rather than the physics of precipitation extremes because we did not
set a hyperparameter for each station, and the GABP is much more likely to overfit than
BP [49,50]. In general, considering the spatial distributions of the hindcast precipitation,
the StinGABP model performs better than the StinBP model.

4. Discussion

Although precipitation data in this study are organized at the stations, the gridded
precipitation datasets are also applicable for modeling [51]. Actually, the TIN preprocessing
of station precipitation data in this work is a special kind of gridding. Zhang et al. [31] used
a gridded precipitation dataset and obtained reliable precipitation prediction results, which
confirms the effectiveness of the gridded precipitation dataset. Therefore, it is applicable
to carry out similar studies in many regions of the globe despite the lack of observational
precipitation data.

The models in this study present apparently better forecasts in May and June than in
April in general (Tables 3 and 4). The major reason may be that the type of precipitation
in April is different from that in May and June, with frontal rain in April and monsoon
rain in May and June mainly [52], suggesting that the dynamical and physical processes
in the rainfall events might be quite different over South China and adjacent areas. This
is also consistent with the fact that there are also large differences in the climate indices
influencing precipitation in these three months, which implies that the forcings by large-
scale circulation in different months differ greatly. In addition, it might also be arguable
whether the major climate indices influencing precipitation in April have been included in
the 130 climate indices in this study, as shown in Supplementary Materials.

The initial precipitation data are locally homogenized after preprocessing and some of
the extreme values are lost, which is an inevitable problem coming from regionalization.
Keeping the spatial distribution of precipitation unchanged at most, the TIN in this study
is the most simplified method of regionalization. In this paper, these extreme values are
interference signals that bring the accuracy of the simulation down. However, in actual
forecasting, the extreme values are precisely the most important. The focus of subsequent
research is to improve the model’s capability to forecast extreme precipitation while keeping
the overall error as low as possible.

Under the background of global climate change, precipitation in the pre-summer rainy
season over South China shows a slightly downward trend. To investigate whether the
BPNN is able to capture the trend, a simple experiment has been designed as a feasibility
analysis prior to the study above. The total precipitation in the pre-summer rainy season of
the entire region is taken as the expected output, and four predictors with high correlations
are taken to establish a BPNN. The four predictors are ranked in the descending order of
correlations: NINO W SSTA Index in February (the correlation coefficient is −0.361), 30 hPa
zonal wind Index in February (the correlation coefficient is −0.355), Pacific Polar Vortex
Intensity Index in January, and Tropic Indian Ocean Dipole Index (IOD) in December. The
series of the NINO W SSTA Index in February, the Pacific Polar Vortex Intensity Index in
January, and the pre-summer precipitation over the 49 years are compared in Figure 10.



Water 2024, 16, 1423 16 of 20Water 2024, 16, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 10. NINO W SSTA Index in February, Pacific Polar Vortex Intensity Index in January, and 
pre-summer precipitation during 1969–2017. 

Coming with global climate change, long-term transformations appear in the wind, 
temperature, pressure, and moisture fields, which, in turn, affect precipitation. With 
global warming, each of these four winter climate indices has the following trends. There 
is a clear upward trend in the winter NINO W SSTA Index. Zonal winds in the strato-
sphere have exhibited a long-term east–west oscillation, i.e., the stratospheric quasi-bien-
nial oscillation (QBO), with a weakening trend in the amplitude and a lengthening trend 
in the wave period [53]. The overall area of the Arctic Polar Vortex has tended to reduce 
[54]. The eastern surface of the Indian Ocean has been warming slower than the western 
part. Additionally, the number of years with IOD-positive winter phases is increasing [55]. 
Anomalies in these four climate indices can bring about anomalies in the pre-summer 
precipitation. There is a large negative correlation between the winter NINO W SSTA In-
dex and the precipitation [56]. In addition, the precipitation decreases correspondingly in 
years when the Pacific Polar Vortex weakens [57]; the relatively small area of the Pacific 
Polar Vortex means that the westerlies are straight and would restrain the Polar Vortex, 
so it is unfavorable for the cold air to meet the warm and moist air to form precipitation 
and in years when the South China sea summer monsoon is strengthened during the east-
erly phase of QBO [58]. Moreover, the positive winter phase of IOD leads to anomalously 
low precipitation in the pre-summer rainy season [59]. 

If precipitation simulated by the BPNN above in this section is consistent with the 
observations in the pre-summer rainy season, it can be inferred that the physics between 
the predictors and the precipitation, which have been confirmed by the studies, can be 
learned by BPNN. Figure 11 shows the simulated precipitation series compared to the 
observed precipitation series. The simulated precipitation series has an overall decreasing 
trend, trending opposite to the observations in only a few single years. This confirms that 
the models in this study can combine the physics into the model structure to realize pre-
cipitation forecasting, even though some climate indices affecting precipitation in China’s 
monsoon region shifted abruptly in the 1990s [60], making it more difficult to simulate the 
land–air and sea–air interactions. It is also in this way that the BPNN captures the trend 
of decreasing precipitation in the pre-summer rainy season under the background of 
global climate change. 

Figure 10. NINO W SSTA Index in February, Pacific Polar Vortex Intensity Index in January, and
pre-summer precipitation during 1969–2017.

Coming with global climate change, long-term transformations appear in the wind,
temperature, pressure, and moisture fields, which, in turn, affect precipitation. With global
warming, each of these four winter climate indices has the following trends. There is a clear
upward trend in the winter NINO W SSTA Index. Zonal winds in the stratosphere have
exhibited a long-term east–west oscillation, i.e., the stratospheric quasi-biennial oscillation
(QBO), with a weakening trend in the amplitude and a lengthening trend in the wave
period [53]. The overall area of the Arctic Polar Vortex has tended to reduce [54]. The
eastern surface of the Indian Ocean has been warming slower than the western part.
Additionally, the number of years with IOD-positive winter phases is increasing [55].
Anomalies in these four climate indices can bring about anomalies in the pre-summer
precipitation. There is a large negative correlation between the winter NINO W SSTA Index
and the precipitation [56]. In addition, the precipitation decreases correspondingly in years
when the Pacific Polar Vortex weakens [57]; the relatively small area of the Pacific Polar
Vortex means that the westerlies are straight and would restrain the Polar Vortex, so it
is unfavorable for the cold air to meet the warm and moist air to form precipitation and
in years when the South China sea summer monsoon is strengthened during the easterly
phase of QBO [58]. Moreover, the positive winter phase of IOD leads to anomalously low
precipitation in the pre-summer rainy season [59].

If precipitation simulated by the BPNN above in this section is consistent with the
observations in the pre-summer rainy season, it can be inferred that the physics between
the predictors and the precipitation, which have been confirmed by the studies, can be
learned by BPNN. Figure 11 shows the simulated precipitation series compared to the
observed precipitation series. The simulated precipitation series has an overall decreasing
trend, trending opposite to the observations in only a few single years. This confirms that
the models in this study can combine the physics into the model structure to realize pre-
cipitation forecasting, even though some climate indices affecting precipitation in China’s
monsoon region shifted abruptly in the 1990s [60], making it more difficult to simulate the
land–air and sea–air interactions. It is also in this way that the BPNN captures the trend of
decreasing precipitation in the pre-summer rainy season under the background of global
climate change.
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5. Summary

In this paper, the models based on BPNNs are established for precipitation forecasting
during the pre-summer rainy season in South China. The training, validation, and test
sets are divided according to the ratio 7:2:1, i.e., over 1969–2002, 2003–2012, and 2013–
2017, respectively. Different inputs, different expected outputs, and different schemes
for hyperparameter optimization are chosen, respectively, in the four experiments, i.e.,
SregBP, SstnBP, StinBP, and StinGABP. After training and hyperparameter optimization,
the two models performing better (i.e., StinBP and StinGABP) are applied to hindcast the
pre-summer precipitation during 2013–2017, and the results are compared with that of the
FGOALS-f2 model to evaluate the capability of a forecast for the two models.

In this paper, a TIN is proposed for use in the processing of precipitation data, which
changes the internal characteristics of the data and raises the upper limit of the BPNN
simulation capability. The internal characteristics of data determine the upper limit, and
the simulation approaches the upper limit as closely as possible through hyperparameter
optimization. As a new method for preprocessing precipitation data, TIN keeps the spatial
distribution of precipitation unchanged at most, i.e., because the TIN in this study is the
most simplified method of regionalization using only three locations of the stations, it
presents more stable forecasts than those by three separate stations. As a result, TIN gives
the hindcasts closer to observations.

BPNN with the initial weights and thresholds optimised by GA in this paper tend
to be overfitting. It can be inferred that GA is not applicable to all BPNNs. However,
considering the spatial distributions of the hindcast precipitation, the StinGABP model
performs better than the StinBP model; considering the mean scores of the hindcasts, the
StinBP model is improved by GA.

The MAPE of the improved model hindcasts can be controlled at about 35% and RMSE
at about 225 mm. The AR comparing the StinGABP model hindcast with the observation
is less than 50% in only one season during the hindcast period, and the highest is 64.5%.
The model capability for precipitation forecasting during the pre-summer rainy season is
equivalent to that of the FGOALS-f2 model, with the hindcast results turning out to be
slightly better, which suggests that even the classical machine learning method (BPNN
plus GA) can present better performance than a much more complex dynamical model for
precipitation forecast in South China.
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