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Abstract: The escalating concern regarding increasing air pollution and its impact on the health risks
associated with PM2.5 in developing countries necessitates attention. Thus, this study utilizes the
WRF-CMAQ model to simulate the effects of meteorological conditions on PM2.5 levels in Changchun,
a typical city in China, during January 2017 and January 2020. Additionally, it introduces a novel
health risk-based air quality index (NHAQI) to assess the influence of meteorological parameters and
associated health risks. The findings indicate that in January 2020, the 2-m temperature (T2), 10-m
wind speed (WS10), and planetary boundary layer height (PBLH) were lower compared to those in
2017, while air pressure exhibited a slight increase. These meteorological parameters, characterized by
reduced wind speed, heightened air pressure, and lower boundary layer height—factors unfavorable
for pollutant dispersion—collectively contribute to the accumulation of PM2.5 in the atmosphere.
Moreover, the NHAQI proves to be more effective in evaluating health risks compared to the air
quality index (AQI). The annual average decrease in NHAQI across six municipal districts from 2017
to 2020 amounts to 18.05%. Notably, the highest health risks are observed during the winter among
the four seasons, particularly in densely populated areas. The pollutants contributing the most to the
total excess risk (ERtotal) are PM2.5 (45.46%), PM10 (33.30%), and O3 (13.57%) in 2017, and PM2.5

(67.41%), PM10 (22.32%), and O3 (8.41%) in 2020. These results underscore the ongoing necessity for
PM2.5 emission control measures while emphasizing the importance of considering meteorological
parameters in the development of PM2.5 reduction strategies.

Keywords: WRF-CMAQ; PM2.5; Changchun; meteorological impact; NHAQI

1. Introduction

In recent years, rapid urbanization and industrialization have propelled the country’s
economy forward and enhanced the convenience of people’s lives. However, this progress
has also led to the emergence of air pollution issues in many Chinese cities, particularly
concerning fine particulate matter (PM2.5) pollution [1,2]. PM2.5 refers to fine particulate
matter with a diameter less than 2.5 µm, originating primarily from human activities’ pri-
mary PM2.5 emissions and natural sources, as well as secondary PM2.5 generated through
chemical reactions with other substances upon entering the atmospheric environment [3,4].
Numerous studies have demonstrated that meteorological conditions play a significant
role in influencing the mass concentration of PM2.5 and, consequently, urban air qual-
ity. For instance, a study conducted in Northern China revealed a positive correlation
between relative humidity and PM2.5 levels, whereas wind speed exhibited a negative
correlation with PM2.5 [5]. In addition to relative humidity and wind speed, PM2.5 levels
were found to be negatively correlated with surface temperature and planetary boundary
layer height (PBLH) in previous studies [5,6]. The study by Zhai et al. confirmed that
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meteorological conditions significantly contribute to the variability of air quality in many
regions of China [4]. Air quality models are frequently employed to gain a comprehensive
understanding of and forecast air pollution issues. For instance, the Weather Research
and Forecasting/Community Multiscale Air Quality (WRF-CMAQ) model enables the
quantification of the impacts of anthropogenic emissions and meteorological conditions
on PM2.5 [7,8]. Related studies have demonstrated that the interannual variation in at-
mospheric pollutant concentrations (e.g., PM2.5, NO2, and O3) and inter-city pollution
transport processes in the Beijing-Tianjin-Hebei and Eastern provinces regions are influ-
enced not only by anthropogenic emissions but also by meteorological conditions that
cannot be overlooked [9–11].

Furthermore, excessive air pollutants not only degrade the quality of the air envi-
ronment but also exert a significant impact on human health and climate change [12,13].
Past epidemiological research has indicated that atmospheric pollutants contribute to a
range of human diseases, including lung diseases, respiratory ailments, cardiovascular
disorders, and even malignancies [14–16]. Moreover, they lead to elevated morbidity and
premature mortality among exposed populations. A study conducted in the Beijing-Tianjin-
Hebei region revealed that exposure to PM2.5 resulted in 120,000 premature deaths (95%
CI: 80,000, 150,000) in the region in 2013 [17]. In a nationwide study conducted across
China, it was determined that 1.8 million premature deaths were attributable to PM2.5
exposure in 2017 (95% CI: 1.6 million, 2 million), marking a 31% increase compared to
2005 [18]. Atmospheric pollutants also influence the spread of epidemics, as evidenced by
several studies correlating the number of novel coronavirus infections (COVID-19) with air
pollutants [19–22].

In 2012, China introduced the latest Ambient Air Quality Standards (AAQS), which
provide detailed guidelines on the utilization of the Air Quality Index (AQI). AQI serves
as a crucial indicator for assessing air quality, and numerous studies have explored the
relationship between AQI changes and pollutants [23,24]. However, due to AQI’s reliance
on the maximum calculated value among six pollutants, it may not adequately characterize
overall air quality or assess the adverse effects of individual pollutants on public health.
To address this limitation, Kyrkilis et al. and Hu et al. proposed the aggregate air quality
index (AAQI) and health risk-based air quality index (HAQI) as alternatives to AQI [25,26].
Subsequently, Ma et al. introduced an enhanced version of HAQI to improve its accuracy.
Several subsequent studies utilizing HAQI have demonstrated its superior effectiveness
over AQI in assessing population health [27–29].

The rapid onset and global dissemination of COVID-19, which emerged around the
Chinese New Year in 2020, prompted stringent quarantine measures by the Chinese gov-
ernment. These measures included the implementation of town and city lockdowns and
restrictions on transportation. Consequently, emissions of most air pollutants decreased,
leading to significant changes in air quality. This provided a unique opportunity to in-
vestigate the impacts of anthropogenic emissions and meteorological conditions on air
quality [30,31]. Some studies have revealed that in certain areas, air pollution levels were
more pronounced in January 2020 compared to previous years, indicating a correlation
between reduced social activity and heightened pollution levels [32,33]. This observation
warrants further attention and investigation.

As the capital city of Jilin Province, Changchun is situated in the heart of Northeast
China. Its primary industries revolve around automobile manufacturing and agricultural
product processing. However, the city also grapples with environmental pollution and
associated public health issues due to frequent biomass burning and high coal consumption,
factors that cannot be overlooked [32]. However, most recent studies have predominantly
focused on regions such as Beijing-Tianjin-Hebei, the Yangtze River Delta, the Pearl River
Delta, and Southwest China, leaving fewer studies conducted in other areas. In light of this
gap, this paper selects Changchun as the study area and utilizes the WRF-CMAQ model to
examine the influence of meteorological conditions on PM2.5 concentrations in Changchun
during January 2017 and January 2020. Additionally, it assesses the health risks associated
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with air pollutants in these two time periods based on the enhanced HAQI. The findings of
this study aim to provide valuable insights for policymakers in formulating more effective
emission reduction strategies.

2. Data and Methods
2.1. Data Collection

The hourly mass concentration data of PM2.5 pollutants utilized in this study were
sourced from the publication platform of the China National Environmental Monitoring
Center (CNEMC, http://106.37.208.233:20035/ (accessed on 7 April 2023)). Specifically, the
data were collected from 10 state-controlled automatic atmospheric environmental monitor-
ing stations and one meteorological monitoring station located in Changchun (Table 1). All
data underwent pre-processing in accordance with the Technical Regulation for Ambient
Air Quality Assessment. This involved excluding spatial and temporal anomalies in the
monitoring results to ensure data quality. The number of valid data obtained adhered to the
relevant regulations outlined in the Ambient Air Quality Standards (AAQS). Ground-based
meteorological monitoring data in Changchun were obtained from the China Meteorolog-
ical Data Service Center (CMDSC, http://data.cma.cn (accessed on 10 April 2023)), and
rigorous quality checks were conducted on the data to evaluate the WRF model.

Table 1. List of the 10 individual air quality monitoring sites and the meteorological station.

Number Name Abbr. Longitude (◦E) Latitude (◦N)

1 Food Products Factory FPF 125.31 43.92

2 Bus Factory Hospital BFH 125.29 43.90

3 Institute of Posts and
Telecommunications IPT 125.30 43.85

4 Labor Park LP 125.37 43.87

5 Gardern Management Office GMO 125.32 43.88

6 Jingyue Park JYP 125.46 43.79

7
Economic Development Zone

Environment Sanitary
Administration

EESA 125.42 43.87

8 High-Tech Zone Management
Committee HZMC 125.25 43.82

9 Daishan Park DP 125.22 43.85

10 Shuaiwanzi SWZ 125.63 43.55

11 Longjia Airport
Meteorological Station LJA 125.70 44.00

2.2. Model Configuration

In this study, the WRF-CMAQ model was employed to simulate the spatial and
temporal distribution of PM2.5 concentration (versions WRF v3.9.1 and CMAQ v5.3.2).
Figure 1 illustrates the three-level nested domains of the study area. The outermost domain
encompassed the three northeastern provinces with a grid resolution of 27 km × 27 km;
the middle domain covered Jilin province with a grid resolution of 9 km × 9 km; and the
innermost domain focused on Changchun with a grid resolution of 3 km × 3 km. The
initial and boundary conditions for the meteorological inputs in the WRF model were
obtained from the National Centers for Environmental Prediction (NCEP) final analysis
data (FNL), featuring a temporal resolution of 6 h and a spatial resolution of 1.0◦ × 1.0◦.
The gridded emission inventory required for the CMAQ model was derived from the Multi-
scale Emission Inventory Model for China (MEIC, http://meicmodel.org/ (accessed on
16 March 2023)), developed by Tsinghua University. This study utilized the 2017 regional

http://106.37.208.233:20035/
http://data.cma.cn
http://meicmodel.org/
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anthropogenic source pollutant and greenhouse gas (GHG) emission data from Tsinghua
University’s emission source inventory for China, encompassing SO2, NOx, CO, NH3,
VOCs, PM2.5, PMcoarse, BC, OC, CO2, and other pollutants. VOCs were allocated based
on the CB06 atmospheric chemistry mechanism. The inventory provided gridded emission
data for various pollutants at a horizontal resolution of 0.25◦, categorized into five sectors:
power, industry, residential, transport, and agriculture [34,35]. To conform the emission
inventory data to the input format required by the CMAQ model, the Inventory Spatial
Allocation Tools (ISAT) were utilized for further spatial and temporal allocation of the
emission inventory [36]. Spatial allocation coefficients were established based on town grid
data for electricity sources, road network grid data for transportation sources, farmland
grid data for agricultural sources, industrial grid data for industrial and mining sources,
and GDP grid data for residential sources.
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Figure 1. Study area (green circles shown atmospheric monitoring stations; red triangular represents
meteorological stations, KC: Kuancheng District, LY: Lvyuan District, CY: Chaoyang District, NG:
Nanguan District, ED: Erdao District, SY: Shuangyang District).

2.3. Evaluation Indicators

In order to evaluate the effectiveness of WRF-CMAQ simulations, six statistical indica-
tors, namely correlation coefficient I, mean fraction bias (MFB), mean fraction error (MFE),
normalized mean bias (NMB), normalized mean error (NME), and Root Mean Square
Error (RMSE), are used to validate the system simulation results. R indicates the degree
of agreement between the simulated value and the trend of the monitored value, with a
value closer to 1 indicating better simulation quality. MFB reflects the fractional bias of the
simulated value from the mean of the monitored value, while MFE represents the mean
absolute error of the simulated value from the mean of the monitored value. NMB reflects
the average direction and degree of bias from the monitored value, while NME indicates
the average absolute degree of bias from the monitored value for each simulated value.
RMSE is a commonly used measure of the accuracy of a model’s predictions and is used
to measure the degree of discrepancy between observations and model predictions. The
meteorological parameters evaluated included temperature at 2 m (T2), wind speed at
10 m (WS10), and wind direction at 10 m (WD10), and the pollutant evaluated was PM2.5.
Emery et al. [37] and Boylan and Russell et al. [38] proposed that the model performance
criteria are considered satisfactory when −60% ≤ MFB ≤ 60% and MFE ≤ 75%, or when
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NMB ≤ ±30% and NME ≤ 50%, and R ≥ 0.40. The specific formulas for the six indicators
are as follows [39]:

R =
∑N

i=1 (mi − m)
(
Oi − O

)√
∑N

i=1(mi − m)2
√

∑N
i=1

(
Oi − O

)2
(1)

NMB =
∑N

i=1(mi − Oi)

∑N
i=1 Oi

(2)

NME =
∑N

i=1|mi − Oi|
∑N

i=1 Oi
(3)

MFB =
1
N ∑N

i=1
(mi − Oi)

(O i + mi)/2
(4)

MFE =
1
N ∑N

i=1
|mi − Oi|

(O i + mi)/2
(5)

RMSE =

√
1
N ∑N

i=1(mi − Oi)
2 (6)

where N is the number of samples, mi is the simulation result at moment i, Oi is the
monitoring result at moment i, m is the mean value of the simulation result, and O is the
mean value of the monitoring result.

2.4. Health Assessment
2.4.1. AQI

Referring to the Ambient Air Quality Standards (AAQS) and the Technical Regulation
on Ambient Air Quality Index, the air quality sub-index (AQIi) for individual pollutant
i is calculated using Equation (7), and the total AQI for six pollutants is calculated using
Equation (8), as follows:

AQIi =

(
AQIi,j − AQIi,j−1

)
(
Ci,j − Ci,j−1

) ×
(
Ci,m − Ci,j−1

)
+ AQIi,j−1, j > 1

AQIi = AQIi,1 ×
Ci,m

Ci,1
, j = 1 (7)

AQI = max{AQI1, AQI2, . . . . . . . . . , AQIn}, n = 1, 2, . . . . . . . . . , 6 (8)

where i is the pollutant category, j is the health risk category, Ci,m is the observed concen-
tration of pollutant i, AQIi,j and AQIi,j−1 are the maximum limits of AQI corresponding to
the jth and j−1th risk category nearest to the observed concentration of pollutant i, and
Ci,j and Ci,j−1 are the maximum limits of concentration corresponding to the jth and j−1th
risk category nearest to the observed concentration of pollutant i, respectively. The range
of AQI values and the corresponding pollutant concentration limits and health categories
obtained from the Ministry of Ecology and Environment of China are shown in Table 2.

Table 2. Ranges of AQI values and the corresponding pollutant concentration limits and health
categories.

AQI
PM2.5 PM10 SO2 NO2 CO MDA8 O3 Category Health Risks

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3)

0–50 35 50 50 40 2 100 Excellent Satisfactory, no risk

51–100 75 150 150 80 4 160 Good
Acceptable, may be a moderate
risk for a very small number of

people
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Table 2. Cont.

AQI
PM2.5 PM10 SO2 NO2 CO MDA8 O3 Category Health Risks

(µg/m3) (µg/m3) (µg/m3) (µg/m3) (mg/m3) (µg/m3)

101–150 115 250 475 180 14 215 Light
pollution

Unhealthy for sensitive people
(children, older adults, etc.)

151–200 150 350 800 280 24 265 Moderate
pollution

Unhealthy (everyone begins to
have adverse health effects)

201–300 250 420 1600 565 36 800 Serious
pollution

Very unhealthy (everyone
experience more serious health

effects)

301–400 350 500 2100 750 48 1000 Very severe
pollution

Hazardous (healthy people
have significant symptoms)401–500 500 600 2620 940 60 1200

2.4.2. Novel Health Risk-Based Air Quality Index (NHAQI)

The excess risk (ER) of the pollutant was introduced to represent HAQI [26]. In this
case, the relative risk of pollutant i (RRi) is calculated as follows:

RRi = exp[βi(Ci,m − Ci,0)], Ci,m > Ci,0 (9)

where βi is the exposure-response relationship coefficient that can represent the excess
health risk associated with each unit increase in concentration of pollutant i. According to
Shang et al. [40], each 1 µg/m3 increase in the concentration of six pollutants: PM2.5, PM10,
SO2, NO2, and O3, corresponds to 0.038%, 0.032%, 0.081%, 0.13%, and 0.048%, of βi; each
1 mg/m3 increase in the concentration of CO corresponds to βi is 3.7%. Ci,m is the observed
concentration of pollutant i and Ci,0 is the baseline concentration of pollutant i, which is the
maximum health concentration limit, using the upper limit of pollutant concentration of
the AAQS 24-h secondary standard (Table 2). In particular, when Ci,m is less than or equal
to Ci,0, RRi = 1, which is considered a health risk at this time. The ERi for pollutant i is
calculated as follows:

ERi = RRi − 1 (10)

The total ER for all six pollutants is calculated as follows:

ERtotal = ∑n
i=1 ERi = ∑n

i=1(RRi − 1) (11)

where ERtotal was classified as an arbitrary index between 0 and 10 in the study by Cairn-
cross et al. [41] to represent the excess health risk from air pollution. Hu et al. defined C*

i,m
to represent the equivalent concentration of pollutant i when ERi equals ERtotal [26], and if
we use Equation (13) to calculate C*

i,m directly, it may lead to high results in subsequent
calculations of HAQI, so this study used the novel HAQI (NHAQI) instead of HAQI [29].
Using the segmentation function, when Ci,m ≤ Ci,0, i.e., the observed concentration of pol-
lutant i does not cause additional health risk, the observed concentration Equation (14) is
still used; when Ci,m > Ci,0, i.e., the observed concentration of pollutant i causes additional
health risk, Equation (13) is used to calculate. In addition, the equivalent relative risk (RR*

i )
of pollutant i is calculated as follows:

RR*
i = ERtotal + 1 = exp

[
βi

(
C*

i,m − Ci,0

)]
(12)

C*
i,m =

ln
(

RR*
i

)
βi

+ Ci,0, Ci,m > Ci,0 (13)

C*
i,m = Ci,m, Ci,m ≤ Ci,0 (14)
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The equivalent concentration of pollutant i, C*
i,m is used instead of Ci,m to calculate

NHAQIi, which is calculated as follows:

NHAQIi =

(
AQIi,j − AQIi,j−1

)
(
Ci,j − Ci,j−1

) ×
(

C*
i,m − Ci,j−1

)
+ AQIi,j−1, j > 1

NHAQIi = AQIi,1 ×
C*

i,m

Ci,1
, j = 1 (15)

NHAQI = max{NHAQI1, NHAQI2, . . . . . . . . . , NHAQIn}, n = 1, 2, . . . . . . . . . , 6 (16)

2.5. Scenario Settings

To evaluate the influence of meteorological conditions on the change of PM2.5 in
Changchun City in January 2017 and January 2020, this study utilized the emission inven-
tory of 2017 and meteorological data of 2017 for WRF-CMAQ model simulation in January
2017. Similarly, for January 2020, the emission inventory of 2017 and meteorological data
of 2020 were used for the WRF-CMAQ model simulation. This approach allows for the
investigation of the impact of meteorological conditions on air quality in 2020 through
simulations. The details are summarized in Table 3.

Table 3. Different scenarios were considered in this study.

Scenarios Name Meteorological Emission

Case1 Meteorological of January 2017 Emissions listing of 2017
Case2 Meteorological of January 2020 Emissions listing of 2017

3. Results and Discussion
3.1. Model Performance
3.1.1. WRF Model

In this study, the accuracy of the WRF model simulation is initially verified, focusing
on meteorological parameters including T2, WS10, and WD10. The comparison of the WRF
model simulation results with the monitoring results is presented in Table 4 and Figure 2. It
is evident that the WRF model effectively replicates the peaks and trends of meteorological
parameters. Regarding meteorological parameters in 2017, the simulated value of T2
in January was recorded as −16.72 ◦C, which is 3.57 ◦C lower than the observed value.
Conversely, the simulated mean values of wind speed and direction in January are higher
than the monitored mean by 0.62 m/s and 17.7◦, respectively, indicating minor differences.

Table 4. Statistical metrics for WRF model evaluation over Changchun in 2017 and 2020.

Meteorological
Parameters Year Monitoring

Mean Value
Simulated

Mean Value R NMB NME MFB MFE RMSE

T2 (◦C) 2017 −13.15 −16.72 0.83 ** 27.16% −31.40% 28.37% 33.88% 4.66
2020 −13.23 −17.83 0.79 ** 74.22% 39.80% 34.36% 35.98% 4.92

WS10 (m/s) 2017 3.42 4.04 0.64 ** 18.25% 39.00% 12.82% 38.79% 1.05
2020 2.68 3.47 0.51 ** 28.80% 51.69% 25.76% 47.28% 1.44

WD10 (degree) 2017 271.49 289.15 0.74 ** 9.40% 12.98% 5.89% 7.86% 28.61
2020 223.08 238.64 0.68 ** 7.29% 25.83% 8.69% 22.87% 67.13

** By significant level 0.01 (two-sided) test.
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In 2020, T2 followed a similar trend as observed in 2017, displaying lower values than
the observed ones. This underestimation of T2 by the model is consistent with findings from
other studies, suggesting a possible correlation with the physicochemical scheme employed
in the model [42,43]. Overall, the R of T2, WS10, and WD10 are all above 0.5, indicating a
strong correlation. The R of WS10 and WD10 are lower than those of T2, which is consistent
with the results of other scholars, suggesting relatively poorer simulation accuracy for
wind speed and direction compared to T2 due to the subsurface effects on the surface wind
field. In terms of NMB, NME, MFB, MFE, and RMSE, January 2017 is simulated better than
January 2020 for all three meteorological parameters. This difference in simulation quality
between the two time periods may be attributed to frequent and drastic meteorological
changes in July 2020. Notably, the NMB for T2 in 2020 reaches 74.22%, which may be related
to limitations in the planetary boundary layer scheme and microphysical scheme used in
the present model for temperature simulation [44]. Overall, the WRF model effectively
captures meteorological parameters such as T2 and WS10, providing relatively accurate
input data for the CMAQ model.

3.1.2. CMAQ Model

The CMAQ model was employed to simulate the same time period as the WRF model.
Figure 3 presents box plots of simulated and monitored PM2.5 values in Changchun for
January 2017 and 2020. It is evident that the simulated PM2.5 values for both 2017 and 2020
are slightly lower than the observed values. Specifically, the simulated average PM2.5 value
in January 2017 was 71.95 µg/m3, whereas the observed average value was 89.23 µg/m3.
In January 2020, the simulated average PM2.5 value was 91.14 µg/m3, while the observed
average value was 115.10 µg/m3. Notably, the simulated average PM2.5 value in January
2020 was 26.7% higher than that in January 2017, while the observed average value was
28.9% higher. The difference between the two is relatively small.

To evaluate the simulation results of the CMAQ model, PM2.5 hourly monitoring data
from five national air quality monitoring stations located in the built-up area of Changchun
were selected for validation, as shown in Figure 4. Table 5 presents the statistical results
of PM2.5 concentration simulation compared to monitoring values. It is evident that the
simulation performance for January 2017 is significantly better than that for January 2020,
with the former outperforming the latter in all evaluation indicators. Overall, the NMB
values ranged from 0.042 to 0.41, and the NME values ranged from 0.48 to 0.61 for all
sites in both years, with an average NMB value of 0.26 and an average NME value of 0.59.
The higher NME may be attributed to uncertainties in the parameter program and the
emission inventories [45,46]. Furthermore, the MFB and MFE of all sites satisfy the criteria
of −60% ≤ MFB ≤ 60%, and MFE ≤ 75%. In summary, the validation results of the CMAQ
model are acceptable for subsequent analysis.
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Table 5. Error statistics of simulated PM2.5 concentrations and monitoring values in Changchun.

Monitoring Sites Statistical Indicators January 2017 January 2020

FPF

Simulated Mean Value 58.10 84.55
Monitoring Mean Value 90.46 133.34

R 0.67 ** 0.43 **
NMB 35.57% 36.00%
NME 48.86% 55.00%
MFB 47.00% 46.00%
MFE 65.40% 70.00%

BFH

Simulated Mean Value 54.00 96.63
Monitoring Mean Value 89.32 112.82

R 0.64 ** 0.23 **
NMB 40.29% 32.00%
NME 51.35% 60.14%
MFB 48.00% 41.20%
MFE 69.29% 68.21%

IPT

Simulated Mean Value 63.15 91.82
Monitoring Mean Value 99.05 119.96

R 0.55 ** 0.30 **
NMB 36.37% 17.20%
NME 53.67% 52.00%
MFB 43.00% 28.00%
MFE 70.78% 62.00%

LP

Simulated Mean Value 67.16 101.10
Monitoring Mean Value 97.93 115.90

R 0.49 ** 0.31 **
NMB 26.50% 12.10%
NME 56.48% 55.00%
MFB 28.00% 23.00%
MFE 69.11% 61.00%

GMO

Simulated Mean Value 68.46 101.25
Monitoring Mean Value 72.26 108.96

R 0.52 ** 0.31 **
NMB 4.16% 7.00%
NME 58.70% 56.00%
MFB 10.00% 21.00%
MFE 66.36% 61.01%

** By significant level 0.01 (two-sided) test.

Observing Figure 4, it is evident that the CMAQ model effectively captures the peak
variations of pollutants, and the observed and simulated values exhibit similar trends. No-
tably, the model performs well in simulating heavy pollution episodes from 15–17 January
2017. However, it is observed that the IPT, LP, and GMO sites tend to overestimate PM2.5
pollution levels. Overall, the simulated values for each site tend to be lower, resulting in an
underestimation of PM2.5 pollution from 6–8 January 2017 and 24–28 January 2020. This
discrepancy may stem from deviations between the inventory building results and actual
source emissions, particularly in terms of spatial and temporal distribution. Additionally,
some bias may be present in the topographic resolution and the WRF-CMAQ model’s
representation of complex topographic meteorological fields and pollutant concentration
distribution fields. Therefore, in alignment with previous findings, it can be concluded that
meteorological conditions in January 2020 were more unfavorable for pollutant dispersion
compared to January 2017, resulting in higher PM2.5 concentrations [32,33].

3.1.3. The Influence of Meteorological Parameters on PM2.5

To investigate the influence of meteorological parameters on PM2.5 concentrations, this
paper compares the differences between 2017 and 2020 based on meteorological parameters
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such as T2, WS10, air pressure, and PBLH. Figure 5a depicts the temperature trends for
January 2017 and 2020. The average temperature in January 2017 was −16.7 ◦C, whereas the
average temperature in January 2020 was −17.8 ◦C, indicating a 1.1 ◦C lower temperature
in 2020 compared to 2017. Figure 5b,c illustrate that the overall wind speed is lower in
2020 than in 2017, with the average wind speed in January 2017 being 4.04 m/s and the
average wind speed in January 2020 being 3.47 m/s. Notably, during the period of severe
pollution from 24–28 January 2020, wind speeds were significantly lower compared to
the same period in 2017. Lower wind speeds are more conducive to the accumulation of
pollutants, which raises concerns regarding air quality during this period.
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The barometric pressure values depicted in Figure 6a reveal that the difference between
2017 and 2020 is not significant, but there are higher barometric pressure values during
periods of heavy PM2.5 pollution, such as 6–8 January and 15–18 January 2017, and 24–28
January 2020. During periods of high pressure, low wind speeds accompany the sinking
movement of air, which tends to create a sinking inversion and hinder the upward diffusion
of pollutants. Consequently, PM2.5 pollution is more likely to occur. In Figure 6b, the PBLH
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for January 2017 and 2020 are compared. The monthly average value of PBLH in January
2017 was 259 m, whereas the monthly average value of PBLH in January 2020 was 138 m,
representing an 87.7% decrease compared to 2017. Notably, during the pollution period of
24–28 January 2020, the PBLH was significantly lower than in 2017. There is a significant
negative correlation between PBLH and PM2.5 pollution. From the above analysis, it
is evident that the meteorological parameters contributing to higher PM2.5 pollution in
January 2020 compared to January 2017 include lower wind speeds, higher air pressure,
and lower boundary layer heights. These conditions favor the accumulation of PM2.5 in
the atmosphere and hinder its dispersion, thus exacerbating pollution levels. Therefore,
it is imperative to consider the influence of meteorological parameters when developing
strategies to mitigate PM2.5 pollution.
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3.2. Interannual Spatial and Temporal Distribution of AQI and NHAQI

Figure 7 shows the comparison of the annual average mass concentrations of six
pollutants in Changchun in 2017 and 2020 (Data from 10 state-controlled atmospheric
environment automatic monitoring stations in Changchun). From 2017 to 2020, there was
a significant reduction in all six pollutants (PM2.5, PM10, SO2, NO2, O3, CO) by 8.39%
(3.87 µg/m3), 24.68% (19.94 µg/m3), 62.05% (15.57 µg/m3), 19.62% (7.45 µg/m3), 10.38%
(9.43 µg/m3), and 36.65% (0.41 mg/m3). Among them, the reduction in SO2 is the most
significant, while the reduction in PM2.5 is not satisfactory, which may be related to the
severe meteorological conditions in 2020.
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The AQI quantifies air quality, and the level of pollution is positively correlated with
the magnitude of the Air Quality Index (AQI) values. Figure 8 shows the percentage of days
in 2017 and 2020 for each of the six AQI health categories. Compared to 2017, air quality
at all ten sites in 2020 will improve significantly, with an average increase of 84.2 days for
excellent (AQI < 50) and 29.9 days for excellent and good (AQI < 100). While the number of
days for excellent pollution increases significantly, the number of days for serious and very
severe pollution (AQI > 200) increases by an average of 4.2 days from 2017 to 2020. We then
analyze the average AQI hourly concentrations in Changchun for 2017 and 2020, as shown
in Figure 9. The four seasons in Changchun are divided into spring (4.20–6.30), summer
(7.01–8.10), autumn (8.11–10.10), and winter (1.1–4.19 and 10.11–12.31) according to the
climatic seasonal division method. It can be seen that the overall pattern of air quality in
Changchun is more polluted in the winter and less polluted in the summer. In 2017, the
monthly average AQI value was highest in January at 118.87, followed by October at 99.2.
In addition, it is worth noting that the highest hourly AQI value of the year occurred in May,
mainly because of a strong dust storm weather process in Changchun starting on 6 May
2017. The dusty weather came from the Inner Mongolia Plateau and affected Changchun
from 4 May. AQI from 6–8 was in the range of 116 to 256, making Changchun have the
highest AQI hourly value for the year in May. The hourly AQI values in 2020 remain low in
summer, with the most severe pollution in January, when the monthly average AQI value
is 152.77, 28.5% higher year-on-year compared to 2017. The number of days in January
2017 when the daily average AQI reached moderately polluted and above (AQI > 150) was
9, and the number of days in January 2020 when the daily average AQI reached moderately
polluted and above (AQI > 150) was 14, which suggests that pollution is significantly worse
in January 2020 than in 2017. The monthly average AQI value in April 2020 is only lower
than that in January, at 132.56, which is 48.2% higher than the same period in 2017, due
to the impact of the COVID-19 epidemic, which led to an increase in emission sources
as work resumed and production resumed in April in various places. And the spring of
2020 saw a large, high-intensity open straw burning in the northeast, which was the main
cause of heavy pollution. This was accompanied by static meteorological conditions and
the presence of inversions, which aggravated the accumulation of pollutants. Changchun
Municipal Government issued an emergency yellow alert for heavy air pollution on 15
April, and the air quality improved on the 19th.
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Figure 9. Hourly change in air quality index in Changchun in 2017 and 2020.

The NHAQI used in this paper is more effective for representing health risks compared
to the AQI, and Figure 10 shows the distribution of days in each category for the NHAQI
based on the health classification categories of the AQI, including 2017 and 2020. When
the AQI is excellent or good (AQI < 100), the NHAQI is also excellent or good because
there is no excess risk ER at this time. When the AQI is light pollution (100 < AQI < 150),
the percentage of days when the NHAQI is light or moderate pollution is 92% and 8%
in 2017 and 100% and 0% in 2020, respectively. When the AQI is moderate pollution
(150 < AQI < 200), the percentage of days with moderate and serious pollution in the
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NHAQI is 59% and 41% in 2017 and 79% and 21% in 2020, respectively. When AQI is
serious pollution (200 < AQI < 300), the percentage of days with NHAQI of serious and
very severe pollution is 78% and 22% in 2017 and 58% and 41% in 2020, respectively.
When AQI is very severe pollution (AQI > 300), NHAQI is also very severe pollution.
Compared with 2017, the number of days with NHAQI of light and moderate pollution in
2020 has decreased and the air quality has improved, but the number of days with serious
pollution and above has increased, which can bring an increased health risk to the exposed
population. Overall, AQI is inadequate in characterizing the health risk from air pollution,
and there is an underestimation.
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The spatial distribution of the seasonal average NHAQI is studied based on six ad-
ministrative districts of Changchun city (KC: Kuancheng district, LY: Lvyuan district, CY:
Chaoyang district, NG: Nanguan district, ED: Erdao district, and SY: Shuangyang district),
as shown in Figure 11. All four seasons show a significant improvement in air quality from
2017 to 2020, with the annual average NHAQI decreasing from 80.87 in 2017 to 66.27 in 2020.
The NHAQI in the spring of both years is good (50 < NHAQI < 100), with a 29.43% decrease
in 2020 compared to 2017, the largest decrease among the four seasons, but high NHAQI
is observed in all areas on 6 May 2017 due to dust storms, and in April 2020 due to straw
burning in the suburbs of Changchun, from 5 April lasted until 18 April, during which the
NHAQI is serious pollution and above. The NHAQI values in summer and autumn are
excellent or good (NHAQI < 100), decreasing by 18.20% and 18.14%, respectively, with LY,
NG, and ED having relatively higher NHAQI in summer and KC, LY, CY, and ED having
relatively higher NHAQI in autumn, which is mainly due to the short and relatively stable
meteorology in summer and autumn in Changchun, where the air quality index is mainly
influenced by anthropogenic emissions. And these five areas are all located in the main
urban area, where anthropogenic emissions are more intensive. In the long winter of 2017,
NHAQI values were above light pollution (NHAQI > 100) except for NG, which can pose a
risk to population health, probably due to the need for coal burning for thermal heating in
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winter and frequent atmospheric stagnation in meteorological conditions. In 2020, although
it decreased by 8.241% compared to 2017, the NHAQI in KC still showed light pollution,
which may be related to the prevailing northwesterly winds in winter in Changchun. In
general, NG shows low NHAQI in any season due to the presence of National Forests in
the area and the large area of green space, in addition to the fact that pollution is more
severe in spring and winter than in summer and fall, especially in densely populated areas.
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Figure 12 shows the ERtotal of six administrative regions in Changchun for 2017 and
2020. the average ERtotal for 2017 is 0.65%, and among the six administrative regions, NG
has the smallest ER value of 0.40%, and KC, CY, and LY have higher than average ER values
of 0.84%, 0.72%, and 0.67%, respectively. The pollutants that contribute most to the ERtotal
are PM2.5, PM10, and O3, with 45.46%, 33.30%, and 13.57%, respectively, and CO does not
cause excess health risk. The average ERtotal in 2020 decreased by 0.11% compared to 2017,
and all six regions decreased significantly except NG, which remained unchanged, and
KC and CY, which had above-average ER values of 0.63% and 0.58%, respectively. The
pollutants contributing most to ERtotal are still PM2.5, PM10, and O3, with 64.71%, 22.32%,
and 8.41%, respectively, which shows that the control of PM10 and O3 is very effective, but
the control of PM2.5 has weakened.
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4. Conclusions

This paper investigates the effect of meteorological conditions on PM2.5 through the
simulation results of the WRF-CMAQ model and assesses the exposure risk of pollutants
to the population using the NHAQI index and ER. The results show that the higher PM2.5
in January 2020 is mainly due to the influence of meteorological conditions. By studying
the effect of meteorological parameters on PM2.5, we found that T2, WS10, and PBLH
were all lower in January 2020 than in January 2017, while the air pressure was slightly
higher than in January 2017. During the heavy PM2.5 pollution period from 24–28 January
2020, T2, WS10, and PBLH were negatively correlated with PM2.5 concentrations, while air
pressure was positively correlated. The lower wind speed and larger air pressure, as well
as the lower boundary layer height, are factors that favor the accumulation of PM2.5 in the
atmosphere and are not easily diffused, causing pollution. The average number of days
with excellent and good air quality (AQI < 100) in 2020 is 29.9 days more than the annual
average in 2017, but AQI is lacking in evaluating health risks, so NHAQI is introduced. The
NHAQI of all six municipal districts in Changchun decreased significantly from 2017 to
2020, but the four districts with a relatively high population (i.e., KC, LY, CY, and ED) had
relatively high NHAQI values and the highest NHAQI in winter among the four seasons.
The pollutants that contribute most to the ERtotal shift are PM2.5, PM10, and NO2 in 2017
and PM2.5 and PM10 in 2020. This paper will contribute to the future pollutant control
strategy of Changchun City.

However, there are some issues in this study that still lead to the creation of uncertainty.
First, due to the limitations of the inventory data, the 2017 MEIC inventory data is used as
the inventory input for case 2, which leads to errors in the subsequent simulations, and this
study will continue to research updated inventory files to improve them. Secondly, this
study do not take into account the effect of meteorological conditions on PM2.5 without
considering the effect of long-distance transmission on the local area, which may lead to
uncertainty in the results and still requires further research. Thirdly, the national exposure-
response relationship coefficients are used in this paper to represent Changchun City, and
we will further refine the coefficients in the future by combining epidemiologic studies and
clinical data. Finally, the calculation of NHAQI and ER may generate statistical errors, and
further research is needed for NHAQI to account for the interactions between pollutants.
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