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Abstract: Establishing reliable and effective prediction models is a major research priority for air
quality parameter monitoring and prediction and is utilized extensively in numerous fields. The
sample dataset of air quality metrics often established has missing data and outliers because of
certain uncontrollable causes. A broad learning system based on a semi-supervised mechanism
is built to address some of the dataset’s data-missing issues, hence reducing the air quality model
prediction error. Several air parameter sample datasets in the experiment were discovered to have
outlier issues, and the anomalous data directly impact the prediction model’s stability and accuracy.
Furthermore, the correlation entropy criteria perform better when handling the sample data’s outliers.
Therefore, the prediction model in this paper consists of a semi-supervised broad learning system
based on the correlation entropy criterion (CC-SSBLS). This technique effectively solves the issue of
unstable and inaccurate prediction results due to anomalies in the data by substituting the correlation
entropy criterion for the mean square error criterion in the BLS algorithm. Experiments on the
CC-SSBLS algorithm and comparative studies with models like Random Forest (RF), Support Vector
Regression (V-SVR), BLS, SSBLS, and Categorical and Regression Tree-based Broad Learning System
(CART-BLS) were conducted using sample datasets of air parameters in various regions. In this paper,
the root mean square error (RMSE) and mean absolute percentage error (MAPE) are used to judge
the advantages and disadvantages of the proposed model. Through the experimental analysis, RMSE
and MAPE reached 8.68 µg·m−3 and 0.24% in the Nanjing dataset. It is possible to conclude that the
CC-SSBLS algorithm has superior stability and prediction accuracy based on the experimental results.

Keywords: air quality prediction model; broad learning system; correlation entropy criterion; problem
of outliers

1. Introduction

Predicting air quality requires the use of several airborne parameter indicators. To
create models for predicting the changes in air quality over time, researchers employ
statistical analysis [1,2] and machine learning approaches [3,4]. Prediction accuracy is often
increased by combining many algorithms and utilizing techniques like feature engineering
and model modification.

In the early days, traditional models were used to predict air quality. Traditional
air quality prediction techniques include the Multi-scale Air Quality Model (CMAQ) [5],
autoregressive moving average model (ARMA) [6], autoregressive integrated moving
average model (ARIMA) [7], time series regression model [8], etc. Peng Sijun et al. [9]
constructed a time-segment autoregressive integral moving average (ARIMA) prediction
model to predict the air quality of the last day of different time periods. The experimental
results show that the model has a good forecasting effect for air quality. Zhang et al. [10]
also constructed the ARIMA prediction model and further expanded the dataset. The
results show that the model has a better fitting effect and prediction accuracy. Hu et al. [11]
combined the Weather Research and Prediction Model (WRF) and CMAQ model to conduct
a one-year simulation study on air quality in China. The results demonstrate that the
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CMAQ model can reproduce PM2.5 concentrations in most cities. Although the above
model has the advantages of simple principles, fast prediction speed, and good short-term
data prediction of air quality, it is not suitable for long-term data prediction and nonlinear
series analysis. Machine learning is a method to enter data into the network for nonlinear
fitting to find the best solution, which can solve the drawbacks of traditional prediction
methods and improve prediction accuracy. Liang et al. [12] used a single random forest
model to predict the Air Quality Index (AQI) in three different regions, and the prediction
accuracy was improved to a certain extent compared with the traditional statistical model.
Ghaemi et al. [13] proposed an online nuclear classifier (LaSVM) for predicting urban air
quality in Tehran, Iran, and compared the performance of this system to that of a traditional
SVM, concluding that its significant advantage is that by removing nonsupport vector
samples in the training step, processing time is significantly reduced, and accuracy is not
compromised. Liu et al. [14] established a support vector regression (SVR) model to predict
the AQI of the Beijing dataset, established a random forest regression (RFR) model to
predict the nitrogen oxide (NOx) concentration of Italian cities, and finally concluded that
the prediction effects of the SVR and RFR models were significantly better than that of
classical regression models.

With the development of machine learning, deep learning algorithms are gradually
being applied to air quality prediction. Zhang et al. [15] predicted the concentration of
Hong Kong’s air quality through an extreme learning machine (ELM) based on eight types
of air quality data from two monitoring stations in Hong Kong. The model has achieved
good results in predicting air quality. Jiang et al. [16] improved the pigeon-inspired
optimization algorithm by using the particle swarm optimization algorithm and then
used the improved algorithm to optimize ELM. The Air Quality Index of Harbin city
is used to verify the proposed method, and the results show that the method has good
forecasting effect. Qiao et al. [17], based on RF models, designed a model combining the
improved ant colony algorithm, and a BP neural network was used to predict the AQI
data; the experimental results showed that the model achieved better results than the
single RF model. Feng et al. [18] used the RNN model to predict the AQI in the first 24 h,
and compared the experimental results with an RF model, finding that the prediction
accuracy of the RNN model was higher. Belavadi et al. [19] combined Long Short-Term
Memory (LSTM) with an RNN model to construct the LSTM–RNN model to complete
the air quality prediction, and the prediction results have a high accuracy. In order to
anticipate PM2.5 levels in Beijing, Zhang et al. [20] created a deep learning model that
combines Variational Mode Decomposition (VMD) with Bidirectional Long Short-Term
Memory (BiLSTM). This model greatly increases prediction accuracy. These models do a
decent job of capturing the temporal characteristics of the data, but they are not as good at
capturing the spatial correlations. Convolutional Neural Networks (CNN) were utilized
by Qin et al. [21] to extract spatial features from raw data. These features were then fed
into an LSTM model for prediction, yielding accurate forecasting outcomes. The Multi-
Scale Spatial–Temporal Network (MSSTN), a novel deep Convolutional Neural Network
model created by Wu et al. [22], increased prediction accuracy. Han et al. [23] proposed a
multi-adversarial spatiotemporal recurrent graph neural network (masterergnn), which
effectively suppressed the observation noise caused via spatiotemporal modeling and
further improved the prediction accuracy. Scientists have made significant progress in
the area of air quality prediction using deep learning. But as the networks get more
complicated, there are also more hyperparameters to tweak, which means that training
takes longer and uses more resources. Furthermore, tiny- to medium-sized datasets are not
as well modeled via deep learning systems.

Chen et al. [24] created a broad learning system (BLS) to address the problem of model
hyperparameters, enhancing the prediction accuracy of small- to medium-sized datasets
and decreasing training time and computer resource utilization. Based on random vector
functional linking, BLS is a learning network. BLS has a straightforward general structure,
and experiments on small- to medium-sized datasets have demonstrated the algorithm’s
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benefits of high prediction accuracy and quick training speed. Scholars have studied the
BLS algorithm in more detail in the last few years. An enhanced BLS structure based on
K-means feature extraction was proposed by Liu et al. [25], and it shows good prediction
performance while handling more complicated datasets. A model that integrates the broad
learning system (BLS) with Classification and Regression Trees (CART) was developed by
Wang et al. [26]. Through the division of the dataset’s features into more specialized subsets,
this approach generates numerous subsets of data pertaining to particular attributes. The
original dataset is utilized to train the global model, and these subsets are fed into the BLS
network to train the local models. By doing this, a global-local model is produced that
successfully resolves the global–local modeling duality issue and improves PM2.5 forecast
accuracy even more.

It was discovered during the tests that several regional sample datasets had outliers
and some data were missing because of uncontrollable circumstances impacting contin-
uous data collecting. The stability and accuracy of the prediction models built with the
aforementioned algorithms would decline in these kinds of scenarios. The SSBLS technique
was developed as a semi-supervised mechanism in combination with BLS to handle the
problem of partial data missing in the sample dataset. Outliers were found when several
regional sample datasets were analyzed, and this had an immediate effect on the stability
and precision of air quality prediction models. A semi-supervised broad learning system
based on the related entropy criteria was developed as a result of the mean square error
criterion in SSBLS being substituted with the related entropy criterion in order to address
the outlier issue in the sample data [27,28]. Through comparison studies, this approach
was applied to several region-specific sample datasets and compared with models such
as RF, V-SVR, BLS, SSBLS, CART-BLS, and others. The outcomes of the trial showed that
CC-SSBLS had superior accuracy and stability.

The contributions made in this paper are:

(1) Four regional air quality datasets were established and four regional meteorological
datasets were evaluated from Xuzhou, Nanjing, Beijing, and Changchun City (China);

(2) The semi-supervised criteria and the correlation entropy criterion serve as the foun-
dation for the CC-SSBLS prediction model, which is suggested with the goal of
addressing the partially missing data and outlier problems in the air quality dataset.
When the CC-SSBLS method is used on the air quality dataset spanning four locations,
the experimental findings demonstrate that it is effective in resolving the dataset’s
outlier and data-missing issues as well as improving the stability and prediction
accuracy of the algorithm;

(3) Air quality datasets from four different regions were subjected to CC-SSBLS appli-
cation along with RF, V-SVR, BLS, SSBLS, and CART-BLS models. Stability and
accuracy comparison experiments were also carried out, and the outcomes demon-
strated that the CC-SSBLS algorithm performed better in terms of both stability and
prediction accuracy.

The structure of the article is as follows. Section 1: introduces the current research
status and background of air quality prediction. Section 2: elaborates on the principles of
the algorithm used in this article. Section 3: presents experimental results and conducts
comparative analysis. Section 4: draws the final conclusion.

2. Algorithm
2.1. BLS

The random vector function link neural network serves as the foundation for BLS [24]
construction. On the one hand, feature nodes in the BLS network are created via feature
mapping. However, augmentation nodes are added to the BLS network in order to boost
its nonlinearities. The BLS structure diagram is shown in Figure 1. As the first step, the
input data X are sent to the input layer, and feature mapping is performed to obtain the
mapped feature Zi = φi(xωei + βei ), where ω, β are a randomly generated feature layer
weight. φ represents the function calculation formula. The first n sets of feature mappings
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are concatenated as Zn ≡ [Z1, . . . , Zn]. The mapped features are augmented in the second
step to obtain the augmented node Hj = ξ

(
znωhj

+ βhj

)
, where ω and β represent the

weights randomly generated with the enhancement layer, and ξ represents the function
calculation formula. The first m groups of enhanced nodes are Hm ≡ [H1, . . . , Hm]. The
third step feeds the results of mapped features and enhanced nodes into the output layer
to obtain

Y =
[
Z1, . . . , Zn

∣∣ξ(Znωh1 + βh1

)
, . . . , ξ(Znωhm + βhm)

]
ωm

= [Z1, . . . , Zn|H1, . . . , Hm]ωm

= [Zn|Hm]ωm
⇒ ωm = [Zn|Hm]†Y = A†Y
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2.2. SSBLS

A semi-supervised BLS was introduced because the BLS algorithm did not achieve the
expected prediction due to the large amount of missing valuable information contained
in the dataset and the lack of data labels. The smoothing assumption underlies the semi-
supervised algorithm. In [29], the smoothing assumption is imposed on the sample by
minimizing Equation (1).

Lm =
1
2∑

i,j
ωi,j
∥∥P(t|xi )− P

(
t
∣∣xj
)∥∥2

2 (1)

where ωi,j is the pairwise similarity coefficient between xi and xj. However, in practice,
it is difficult to calculate the conditional probability densities, so Equation (1) can be
optimized as

L̂m =
1
2∑

i,j
ωi,j
∥∥yi − yj

∥∥2
2 (2)

where yi and yj in the formula are the predicted results corresponding to samples xi and xj.
In [29], Equation (2) can be further simplified as

L̂m = Tr
(

YT LY
)

(3)

where Tr(•) represents the trace of the matrix and L = D −W denotes the graph Laplacian.

D denotes the diagonal matrix whose diagonal elements are Dii =
l+u
∑

j=1
ωij, and W denotes

the similarity matrix of W =
[
ωi,j
]
. The samples with and without labels in the dataset are
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denoted as {Xl , Yl} = {xi, yi}l
i=1 and Xu = {xi}u

i=1. Then, the loss function is used (3) to
adjust the objective function:

min
ω

1
2∥ω∥2

F +
1
2

l
∑

i=1
C∥ei∥2

2 +
λ
2 Tr
(

FT LF
)

a(xi)ω = yT
i − eT

i , i = 1, . . . , l

f (xi) = a(xi)ω, i = 1, . . . , l + u

(4)

where F ∈ R(l+u)×m is the output matrix of the sample, where the element of the ith
row is denoted as f (xi). λ and C denote the weight parameters, and e represents errors.
Substituting the constraints into (4) yields the following:

min
ω

1
2
∥ω∥2

F +
1
2

∥∥∥C
1
2 (Y − Aω)

∥∥∥2

F
+

λ

2
Tr
(

ωT AT LAω
)

(5)

where A is the output matrix of the middle layer. The weight is

ω = CAT
(

Il+u + CAAT + λLAAT
)−1

Y

where Il+u denotes a unit matrix of (l + u) × (l + u). The SSBLS structure diagram is
shown in Figure 2.
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2.3. Regularized Correntropy Criterion (CC)

Since outliers can affect experimental results, the correlated entropy [28] is applied
to solve such problems. If two arbitrary variables A and B are given, the relevant entropy
expression is as follows:

V(A, B) = E[⟨Φ(A), Φ(B)⟩H]
= E[κ(A, B)]

(6)

where E(·) denotes the mathematical expectation, κ(·, ·) the Mercer kernel function, and
Φ(·) a nonlinear function from the Hilbert space H of functions. In this paper, the Gaussian
kernel function G(·) is used, and its expression is as follows:

κ(a, b) = κσ(a − b) = G(a − b) = e−
(a−b)2

2σ2 (7)
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where σ represents the nuclear bandwidth. The correlation entropy loss function C-Loss
C(A, B) is defined as follows:

C(A, B) = 1
2 E
(
∥φ(A)− φ(B)∥2

H

)
= 1

2 E[2κσ(0)− 2κσ(A − B)]
= E[1 − κσ(A − B)]

(8)

The expression shows that the correlation entropy loss function is similar to the mean
square error criterion, but the correlation entropy is in kernel space.

2.4. CC-SSBLS

Semi-supervised broad learning based on the mean square error criterion is not effec-
tive when encountering datasets containing large outliers. Therefore, a regularization-based
correlation entropy criterion is introduced to replace the original calculation criterion. For
the CC-SSBLS algorithm, the objective function is described as follows:

max
ω

[
− 1

2∥ω∥2
F +

C
2 V(Yl , Alω)− λ

2 Tr
(
ωT AT LAω

)]
V(Yl , Alω) = E[κ(Yl , Alω)] ≈ 1

l

l
∑

i=1
κ
(
yT

i , aiω
) (9)

The Gaussian kernel G(·) on the correlation entropy is used, so the objective function can
again be rewritten as follows:

max
ω

[
−1

2
∥ω∥2

F +
C
2

l

∑
i=1

G
(

yT
i − aiω

)
− λ

2
Tr
(

ωT AT LAω
)]

(10)

To maximize Equation (10), the gradient descent method is used. Deriving ω from the
above equation and then making it equal to 0 yields the following:

C
2

l

∑
i=1

G(ei)

σ2 aT
i

(
yT

i − aiω
)
− ω − λAT LAω = 0 (11)

where G(ei) = e−
∥eT

i ∥2
2

2σ2 is the Gaussian kernel, and eT
i = yT

i − aiω denotes the amount of
error associated with the ith training sample. By further organizing the above equation, it
can be concluded that(

C
2

l

∑
i=1

G(ei)

σ2 aT
i ai + I + λAT LA

)
ω =

C
2

l

∑
i=1

G(ei)

σ2 aT
i tT

i (12)

To facilitate the representation, φ(ei) is used to denote G(ei)
σ2 . Therefore, the above equation

is written in matrix form as follows:

ω =

(
ATΛA +

2
C

I +
2λ

C
AT LA

)−1
ATΛY (13)

Equation Λ denotes the diagonal matrix, which can be expressed as [Λii] = φ(ei). The
structure diagram of the CC-SSBLS algorithm is shown in Figure 3. The pseudo code for
the CC-SSBLS algorithm is shown in Algorithm 1.
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Algorithm 1: CC-SSBLS pseudo codes.

1 Given
2 A dataset with label {Xu, Yu} = {xi, yi}

u
i=1, an unlabeled dataset Xv = {xi}v

i=1, where N = u+ v;
3 The number of nodes per window of mapped features N1;
4 The number of enhancement nodes N3, the activation function g(·);
5 The regularization parameters C and λ;
6 Bandwidth of the Gaussian kernel function σ;
7 Number of iterative windows N2;

➀ Calculate the graph Laplacian L and similarity matrix W by Equations (2) and (3);

➁ Randomly generate the weights and biases {ωei , βei},
{

ωhj
, βhj

}
, i, j = 1, . . . , n of

the feature and enhancement nodes;
➂ Generate the final output of the input layer A;
➃ For N2 = 1,. . .,N;

(a) Calculate the error eT
i = yT

i − aiω
N2−1, i = 1, . . . , u;

(b) Calculate the diagonal matrix [Λii] = φ(ei);
(c) Calculate the final output pseudo-inverse

ω =
(

ATΛA + 2
C I + 2λ

C AT LA
)−1

ATΛY;

(d) IF N2 < N, then go back to step (a) and repeat optimization (a)~(d);
Else end.
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3. Data and Experiments
3.1. Data

In recent years, the development and use of various clean energy sources have effec-
tively alleviated the problem of air pollution. However, air pollution caused by vehicle
emissions and various means of energy consumption in daily life remains a concern that
people must address. The data for this paper were obtained from the China Meteorological
Data website. Four cities in China, including Xuzhou, Nanjing, Beijing, and Changchun,
were selected as the dataset to validate the effectiveness of the proposed model. The Beijing
dataset was selected because Beijing is the capital of China, which can better reflect factors
such as economic and geographical location. Similarly, Changchun, Jilin, is located in the
north of China, which can better reflect the geographical location. The Nanjing and Xuzhou
regions are located in the middle of China, and their economic and geographical location
factors are the reasons for choosing the dataset in this region. These datasets span from
1 January 2018 to 31 December 2021, with data collected at one-hour intervals, and contain
air pollutants as well as meteorological parameters. In this article, 80% of the dataset is the
training set and 20% is the test set. The data information in the dataset is shown in Table 1
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below, where T stands for temperature, H stands for dew point temperature, WS stands for
wind direction, and WD stands for wind speed. The missing value and outlier information
of the four datasets are described as follows: Missing values account for 70% of the Xuzhou
dataset, and outlier information accounts for 40%. The experiments involved in this paper
were all developed on the Python 3.9.7 platform. These experiments were conducted on a
computer with a Win10 64-bit operating system running on an Intel Core (TM) i7-11800H @
2.30 GHz with 16 GB of RAM.

Table 1. Dataset partial data information.

Data Time T (◦C) H (◦C) WS (◦) WD
(m/s)

CO
(mg/m3)

NO2
(µg/m3)

SO2
(µg/m3)

O3
(µg/m3)

PM10
(µg/m3)

PM2.5
(µg/m3) AQI

1/1/2018 11 8 0 100 6 2.4 95 21 33 373 288 338
1/1/2018 12 8 −0.7 110 6 2.19 91 22 53 363 275 325
1/1/2018 13 9 −1 110 7 1.79 77 20 71 331 248 298
1/1/2018 14 9 −1 110 6 1.48 64 18 85 310 217 267
1/1/2018 15 7.2 −1.7 110 4 1.4 59 17 92 290 184 234

3.2. Experimental Analysis

The BLS and SSBLS algorithms were compared to the CC-SSBLS method described in
this section to show its efficacy, and the three algorithms were experimentally confirmed
using the four datasets gathered. The dataset mentioned above was initially used to
validate the BLS method. The experimental parameters were first established before the
experiment’s start. The regularization coefficient c is 2−30, the number of nodes N3 of the
augmentation layer is 300, and the number of windows N2 of the feature mapping layer
is {5,6,7. . .,35}. The BLS algorithm processes the dataset’s data in three stages: first, the
data are fed into the model, and the feature layer maps the data’s features; second, the
augmentation layer adds nodes to the data; and third, the output data are solved pseudo
inversely. We gather data for every iteration and use the final results to assess the efficacy
of the model suggested in this research. We will use a number of evaluation measures
to confirm the BLS algorithm’s performance. For this algorithm, its performance will be
further verified through the following kinds of evaluation metrics: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
R-square (R2), and their expressions are as follows:

RMSE =

√√√√1
l

l

∑
i=1

(yi − ŷi)
2, MAE =

1
l

l

∑
i=1

|yi − ŷi|, MAPE =
1
l

l

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, R2 = 1 −

l
∑

i=1
(ŷi − yi)

2

l
∑

i=1
(yi − yi)

2

where yi and ŷi denote the true and predicted values, respectively. The outcomes of the
BLS algorithm’s evaluation metrics for each iteration window are displayed in Figure 4.
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(c) MAE, and (d) R2.

The distribution of violins is depicted in the above figure. Each violin stands for
the range of outcomes from the BLS model’s assessment metrics on a dataset, and by
comparing each violin, one can determine the stability of the BLS model across all datasets.
The evaluation metrics presented in Figure 4 demonstrate that the variation in the RMSE of
the BLS algorithm on the four datasets is around 5 µg·m−3, the MAPE is approximately
0.4%, the MAE is approximately 4 µg·m−3, and the R2 is approximately 0.1. It is evident
from the above results in the figure that the prediction effect is unstable and the BLS
algorithm exhibits significant upward and downward variations on the four datasets.
Based on the experimental findings, it is evident that out of all the iteration windows,
the BLS algorithm performs optimally on the four datasets on windows 17, 12, and 17,
during which the corresponding RMSEs are 20.61 µg·m−3, 15.76 µg·m−3, 12.67 µg·m−3,
and 15.31 µg·m−3. It is evident from the findings of multiple evaluation indices that the
BLS algorithm has a poor prediction effect. The prediction effect of the BLS algorithm for
the Xuzhou dataset is displayed in Figure 5, which contains upper and lower sets of data
graphs, with the upper set indicating the prediction curves for the whole dataset and the
lower set indicating the localized prediction curves. This is achieved through the above
experimental analysis, using the Xuzhou dataset as an example of air quality prediction at
the optimal window.
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In the BLS prediction effect diagram, in order to better verify the prediction effect of
the model, we selected 1000–1200 and 4600–4800 sample data for local verification. The BLS
method produces inadequate prediction results on all four datasets, as shown in Figure 5,
and there is a significant difference between the anticipated and actual values. We also
included a semi-supervised approach to address the issues of low prediction accuracy and
an unacceptable stability effect of the BLS algorithm due to missing values in the datasets.
We first established the settings of the SSBLS algorithm before running trials with it. The
feature mapping layer has a number of windows N2 of {5,6,7. . .,35}, the enhancement layer
has a number of nodes N3 of 300, and the regularization parameter C is selected from
{10−5,10−3,10−1,101,103,105}; through experimental analysis, C is set to 101 in this section;
the weighting parameter λ is selected from {10−5,10−3,10−1,101,103,105}, and λ is set to 10−1

in this section. For every iteration, we gather data once, and the final data are used to assess
the impact of the model that is suggested in this work. Comparably, the SSBLS algorithm is
validated using four assessment metrics, and the resulting graph of the evaluation metrics
is displayed in Figure 6.
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As can be observed from the evaluation metrics in Figure 6, there is a difference of
approximately 3 µg·m−3 between the up and down fluctuations of the RMSE of the SSBLS
algorithm on the four datasets; the MAPE fluctuates up and down by approximately 0.3%;
the MAE fluctuates up and down by approximately 3 µg·m−3; and the R2 fluctuates up
and down by approximately 0.09. Compared to the BLS algorithm with the four datasets,
the stability of the prediction results of the four assessment metrics of the SSBLS algorithm
exhibited less upward and downward variation. The SSBLS algorithm performs optimally
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for the four datasets across all iteration windows at window numbers 31, 17, 17, and 17,
where the RMSE values are 15.28 µg·m−3, 14.53 µg·m−3, 10.43 µg·m−3, and 13.64 µg·m−3.
It can be seen from the results of several evaluation indicators that the prediction effect of
the SSBLS algorithm is significantly improved compared with the BLS algorithm. When
compared to the BLS algorithm, the SSBLS method successfully increases prediction accu-
racy and provides a more effective solution for missing data. Based on the experimental
analysis above, Figure 7 illustrates the prediction effect of the SSBLS algorithm on the
Xuzhou dataset. This dataset is used as an example of air quality prediction at the optimal
window and consists of upper and lower sets of data graphs, where the upper set shows
the prediction curves for the entire set of data and the lower set shows the prediction curves
for the localized data.
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In the SSBLS prediction effect diagram, in order to better verify the prediction effect
of the model, we selected 3000–3200 and 3800–4000 sample data for local verification.
The results of Figure 7 demonstrate that the SSBLS algorithm performs better in terms of
prediction on all four datasets, with a relatively small divergence between the expected
and actual values. Additionally, the SSBLS approach performs better when addressing
the issue of missing data. Processing the missing values in the datasets further improves
the algorithm’s stability and prediction accuracy. To address the data outliers, the rele-
vant entropy requirement is added to the SSBLS algorithm as the dataset we collected
contains outlier information. An experimental investigation of the CC-SSBLS algorithm
is presented below. Prior to confirming the CC-SSBLS algorithm’s efficacy, the pertinent
algorithmic parameters were established. Of them, the weight parameter λ is selected
from {10−5,10−3,10−1,101,103,105}, and λ is set to be 10−3 in this section through exper-
imental analysis; the Gaussian kernel bandwidth σ is selected from {1,3,5,7,9}, and σ is
set to 1 through experimental analysis in this section. Furthermore, the regularization
parameter C is chosen from {10−5,10−3,10−1,101,103,105}, and C is set to be 101 in this
section through experimental analysis. The following aspects will be separated into the
steps of this experiment: Initially, the gathered dataset will be fed into the feature mapping
model, and concurrently, the number of nodes in each window of the mapping layer will
be adjusted in the feature mapping process (N1); subsequently, the enhancement nodes
will be added, with the number of enhancement nodes being set to 300 in the experiments;
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finally, the output layer of the model will be fed with the results of both the mapping and
enhancement layers. Subsequently, the output layer of the network receives the inputs from
the mapping and enhancement layers. The pseudo-inverse is solved using the correlation
entropy criterion rather than the mean square error criterion to produce the final output.
{5,6,7,. . .,35} is the number of iteration windows (N2) of the algorithm. We gather data for
every iteration, and the final data are what we use to assess how effective the model this
paper proposes is. The outcomes of the CC-SSBLS algorithm’s evaluation metrics on the
Xuzhou dataset, using it as an example, are displayed in Figure 8 below.
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Figure 8 shows that the RMSE of the CC-SSBLS method for the four datasets has an
up-and-down difference of about 2 µg·m−3, the MAPE has an up-and-down difference of
approximately 0.1%, the MAE has an up-and-down difference of approximately 2 µg·m−3,
and the R2 has an up-and-down difference of approximately 0.08. The upward and down-
ward fluctuations of the evaluation indexes of the CC-SSBLS algorithm for the four datasets
are further reduced compared to the SSBLS algorithm, and the stability of the prediction
results is further improved. The best results are obtained with the CC-SSBLS method for the
four datasets at iteration windows 18, 18, 20, and 35, where the RMSEs are 11.94 µg·m−3,
8.68 µg·m−3, 8.75 µg·m−3, and 11.73 µg·m−3, respectively. From the results of several
evaluation indicators, it is obvious that the prediction effect of CC-SSBLS algorithm is better
than that of the SSBLS algorithm. Figure 9 illustrates the prediction effect of the CC-SSBLS
algorithm for the four datasets for air quality prediction at the optimal window through
the above experimental analysis, using the Xuzhou dataset as an example. The upper and
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lower sets of data graphs show the prediction curves for the entire dataset, while the lower
set shows the localized prediction curves.
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Figure 9. Prediction results of the CC-SSBLS algorithm on the Xuzhou dataset are plotted.

In the prediction effect diagram for the CC-SSBLS algorithm, in order to better verify
the prediction effect of this model, we selected 2000–2200 and 6000–6200 sample data for
local verification. The CC-SSBLS method has a better prediction effect for the four datasets,
as shown in Figure 9, and there is not a noticeable difference between the anticipated and
actual values. The CC-SSBLS algorithm predicts air quality more accurately than the BLS
and SSBLS algorithms together. After a thorough analysis of the three algorithms mentioned
above, it can be concluded that the CC-SSBLS algorithm has a better prediction effect and
has more stable prediction impact during iteration than the BLS and SSBLS algorithms.
Table 2 displays the three methods’ parameter configurations for the four datasets.

Table 2. Parameter settings for BLS, SSBLS, and CC-SSBLS.

Dataset Model N1 N2 N3 C λ σ

XuZhou Dataset
BLS 15 18 300 — — —

SSBLS 13 31 300 101 10−1 —
CC-SSBLS 15 18 300 101 10−3 1

NanJing Dataset
BLS 10 17 300 — — —

SSBLS 15 17 300 101 10−1 —
CC-SSBLS 5 18 300 101 10−3 1

BeiJing Dataset
BLS 9 12 300 — — —

SSBLS 7 17 300 101 10−1 —
CC-SSBLS 8 20 300 101 10−3 1

ChangChun Dataset
BLS 5 17 300 — — —

SSBLS 16 17 300 101 10−1 —
CC-SSBLS 12 35 300 101 10−3 1

— Indicates that this parameter does not exist in the algorithm.
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Table 3 shows that the N3 of BLS, SSBLS, and CC-SSBLS are consistent. Based on
this, we primarily alter the N1 and N2 parameters during the experiment to maximize
the prediction effect of the algorithm. Figure 10 displays a comparison chart of the best
evaluation indexes for the three algorithms based on the findings of our experimental
investigation of the evaluation indexes of the three algorithms on the four datasets.
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Figure 10. Optimal evaluation metric values for the three algorithms on the four datasets. (a) Graph
representing the RMSE optima of the three algorithms on the four datasets. (b) Graph representing
the MAPE optima of the three algorithms on the four datasets. (c) Graph representing the MAE
optima of the three algorithms on the four datasets. (d) Graph representing the R2 optima of the three
algorithms on the four datasets.

Table 3. Comparison of evaluation indicators for several models.

Dataset Model RMSE
(µg·m−3)

MAE
(µg·m−3) MAPE (%) R2

XuZhou Dataset

RF 21.8 17.44 1.39 0.74
V-SVR 21.03 16.04 1.34 0.76

BLS 20.61 14.04 0.40 0.77
SSBLS 15.25 9.19 0.32 0.90
ANN 20.03 14.02 0.31 0.81
RNN 20.17 14.06 0.32 0.81

CC-SSBLS 11.94 6.89 0.24 0.92
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Table 3. Cont.

Dataset Model RMSE
(µg·m−3)

MAE
(µg·m−3) MAPE (%) R2

NanJing Dataset

RF 21.51 12.77 1.34 0.66
V-SVR 20.26 12.22 1.33 0.70

BLS 15.76 9.91 0.52 0.85
SSBLS 14.53 9.32 0.48 0.89
ANN 15.86 10.78 0.60 0.79
RNN 15.80 10.67 0.57 0.80

CC-SSBLS 8.68 5.26 0.24 0.90

BeiJing Dataset

RF 17.89 12.67 1.35 0.65
V-SVR 16.92 11.03 1.33 0.68

BLS 12.67 8.48 0.40 0.80
SSBLS 10.43 7.29 0.32 0.86
ANN 15.11 11.56 0.56 0.78
RNN 14.88 11.04 0.57 0.76

CC-SSBLS 8.75 5.66 0.25 0.94

ChangChun Dataset

RF 21.86 12.4 1.44 0.65
V-SVR 20.57 12.17 1.43 0.69

BLS 15.31 9.12 0.72 0.80
SSBLS 13.63 8.41 0.57 0.86
ANN 15.41 9.46 0.76 0.79
RNN 15.82 9.57 0.79 0.79

CC-SSBLS 11.73 6.81 0.34 0.91

As seen in Figure 10, the three algorithms BLS, SSBLS, and SSBLS exhibit decreasing
trends for the four datasets for RMSE. They also exhibit decreasing trends for MAPE
and MAE, and they exhibit increasing trends for R2. The CC-SSBLS model outperforms
the other two models in every assessment index shown in the picture, showing superior
fitting and prediction abilities. Therefore, it can be inferred that the CC-SSBLS model has a
superior prediction effect and a more stable prediction result by examining the variations
in the values of the evaluation index results of the three models stated above.

3.3. Results and Analysis

We carried out comparative tests to better illustrate the prediction effect of the
CC-SSBLS model. As we discovered in the previous part, the CC-SSBLS model has a
greater prediction effect than the BLS and SSBLS models. For this reason, we compare
the CC-SSBLS model with the prediction models from the RF, V-SVR, BLS, SSBLS, ANN,
and RNN methods in this section. In order to reflect the prediction effect of different
models on AQI, in this section, we use four datasets to conduct experimental verification
of several models. The comparison result plots of multiple models are displayed in
Figures 11–14, and each plot comprises upper and lower sets of data plots, where the
upper set represents the prediction curves for all the data, and the lower set represents
the local prediction curves.

In contrast to the RF, V-SVR, BLS, SSBLS, ANN, and RNN models, the CC-SSBLS
model has the best prediction impact for the dataset, as shown by a comparison of the
prediction effect graphs in Figures 5, 7, 9 and 11–14. All of the models mentioned above
have been compiled and analyzed, and Table 3 below displays the findings of each model’s
evaluation index.

Using the Xuzhou dataset as an example, it can be seen from the table that the CC-
SSBLS model value for RMSE is 11.94 µg·m−3, which is the lowest value among multiple
models and 3.31 µg·m−3 less than that of SSBLS. The CC-SSBLS model value for MAE
is 6.89 µg·m−3, the lowest of various models and 2.30 µg·m−3 less than that of SSBLS.
The CC-SSBLS model for MAPE had a value of 0.24%, the lowest of multiple models and
0.08% less than SSBLS. The greatest value among several models for R2 is 0.92 for the
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CC-SSBLS model, which is 0.02 more than the value for SSBLS. Thus, the CC-SSBLS model
outperforms multiple alternative models for each assessment criteria. In the same way, the
CC-SSBLS model performs better than the other models for the following three datasets.
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models and 3.31 µg.m−3 less than that of SSBLS. The CC-SSBLS model value for MAE is 
6.89 µg.m−3, the lowest of various models and 2.30 µg.m−3 less than that of SSBLS. The CC-
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4. Conclusions

Outliers in the data are discovered to result in less-than-ideal model predictions when
air quality prediction is performed. Considering that correlation entropy is more effective
in addressing the issue of data outliers, the predictive air quality model CC-SSBLS is
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suggested. The model modifies the pseudo-inverse solution technique and substitutes
the correlation entropy criterion for the mean square error criterion in the broad learning
system. The experimental findings validate the efficacy of the model.

The following summary applies to the CC-SSBLS model proposed in this paper:

(1) Through validation on the four datasets gathered for this paper, it is demonstrated
that the correlation entropy criteria performs better when handling dataset outliers.
In terms of predictive efficacy, the CC-SSBLS model performs better than the CART-
SSBLS model and a number of other comparison models that are discussed above;

(2) The efficacy of the model is validated by using the four datasets gathered in this study
for validation. These datasets demonstrate that the stability of the prediction results
of CC-SSBLS is superior to that of BLS;

(3) For the model in this paper, only the prediction effect for the data is analyzed in detail,
but the time analysis of model training is ignored. At a later stage, the training time of
the model can be further studied to reduce the time consumed by the training model
and improve the efficiency of the model.

(4) As for the prediction effect for the AQI, the broad learning system should be further
studied in the future to further strengthen the prediction effect. For the broad learning
system, subsequent studies can be conducted on many aspects, such as the feature
layer, the enhancement layer and the pseudo-inverse solving principle, so as to further
improve the prediction effect of the model, reduce the training time and improve the
prediction efficiency of the model.
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