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Abstract: Accurate snow cover monitoring is greatly significant for research on the hydrology
model and regional climate variation, especially in Northeast China where forests cover almost forty
percent of the total area. However, effectively monitoring snow cover under the forest canopy is still
challenging with either in situ or remote sensing observations. The global SNOWMAP algorithm
pertinent to the fixed normalized difference snow index (NDSI) threshold is, therefore, no longer
applicable in a typical forested region of Northeast China. In order to achieve the goal of improving
the accuracy of monitoring snow cover in areas with forest, utilizing MOD09GA and MOD13A1
products, a new approach of snow mapping was developed in this study, and it exploits the fusion
and coupling of spectral features by integrating and analyzing the normalized difference forest snow
index (NDFSI), the normalized difference vegetation index (NDVI), and the NDSI index. Then,
Landsat 8 OLI images of high resolution were used to evaluate snow cover mapping precision. The
experimental results indicated that the NDFSI index combined with the NDVI index showed great
potential for extracting the snow cover distribution in forested regions. Compared with the snow
distribution obtained from the Landsat 8 images, the average bias and FAR (false alarm ratio) values
of snow cover mapping obtained by this algorithm were 1.23 and 13.54%, which were reduced by
1.98 and 29.36%, respectively. The overall accuracy of 81.31% was reached, which is improved by
20.19%. Thus, the snow classification scheme combining multiple spectral features from MODIS data
works effectively in improving the precision of automatic snow cover mapping in typical forested
areas of Northeast China, which provides essential support and significant perspectives for the next
step of establishing a runoff model and rationally regulating forest water resources.

Keywords: snow cover; remote sensing; multi-spectral integration; feature coupling; multi-index analysis

1. Introduction

Seasonal snow cover, as one of the most critical components of the Earth’s chemical,
climate, and biological cycling systems, can dominate the global radiation budget balance
and general circulation effects of the atmosphere because of its high surface reflectance of
solar radiation and low thermal diffusivity. In addition, snow cover has a significant impact
on future climate, biogeochemical, and hydrological cycles [1,2]. Meltwater from seasonal
snow and permanent glaciers provide the main supplies of fresh water for nearly 20 percent
of the total human population on Earth [3]. In particularly, snowmelt accounts for over
70 percent of the runoff supply in alpine forests in desert climate regions of northwest
America [4]. Thus, the accurate and timely retrieval of the spatial distribution pattern of
seasonal snow cover is of crucial significance to agriculture, hydropower energy production,
water resource management, and even human activities [5,6].

Generally, there are two methods to measure snow information. Traditional in situ
measurements are based on a limited number of meteorological stations. However, this
method cannot provide detailed information about snow cover at a regional scale. Follow-
ing several decades of development, satellite-based remote sensing technology has shown
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great efficiency and is a reliable alternative to the near-real-time inspection of seasonal snow
cover variation at the global and regional scales. A large number of remote sensing products
were developed to estimate snow cover and snow water equivalent (SWE) information in
the past few decades, such as products from the scanning multichannel microwave radiome-
ter (SMMR), special sensor microwave/imager (SSM/I), advanced very high-resolution
radiometer (AVHRR), advanced microwave scanning radiometer-earth observing system
(AMSR-E), Microwave Radiation Imager-FY3B (MWRI), moderate-resolution imaging spec-
troradiometer (MODIS), interactive multi-sensor snow and ice mapping system (IMS),
microwave radiation imager-FY3B (MWRI), and so on [7–11]. Passive microwave re-
mote sensing is limited by its low spatial resolution and can only be applied to global-
or hemispherical-scale snow detection. The spatial resolution and misjudgment rate are
often a problem in forested regions, especially in mountainous areas—coarser-resolution
products can capture less of the environmental variation in a relatively heterogeneous
environment. Among the products mentioned above, the MODIS remote sensing product
has become one of the main dataset sources for monitoring snow cover at the regional and
basin scales because of its high spatial resolution of 500 m, temporal resolution of one day,
global coverage, and convenience of use in most snow-covered areas. Numerous studies
have demonstrated that MODIS data have good performance in detecting snow and can
achieve high overall accuracy around the world [12–14].

Snow cover information has been detected through different algorithms, of which
the most widely and internationally used one is the threshold method based on NDSI.
Snow cover exhibits relatively strong spectral reflectance characteristics in the visible and
near-infrared (NIR) bands and weak reflectance characteristics in the shortwave infrared
(SWIR) band, while that of vegetation shows a rapid increase from the red band to the near-
infrared band [10]. According to the above reflection characteristics of snow, the reflectance
of the fourth (0.55–0.57 µm) and sixth band (1.63–1.65 µm) of MODIS data is utilized to
calculate the NDSI value to identify snow cover from numerous land surface feature types.
It is noteworthy that, when retrieving snow cover mapping through satellite-based optical
images, there is always a challenge in vegetation-covered areas, especially in areas with a
large proportion of forests. The detection of snow under forest is seriously affected by the
canopy, leading to an underestimation of snow cover [15]. When snowfall occurs in forest
regions, the vegetation canopy will partially block the radiation signals received by satellite
sensors from the land surface, thereby changing the observed reflectivity characteristics.
When the snowfall is heavy, it may even completely block the signal [16]. When the snowfall
continues to increase, snow falling on the canopy will slide to the ground surface. At this
time, surface snow cover information will be obscured by the vegetation canopy, resulting
in the sensor receiving a mixed spectral information of snow cover and canopy. Snow
detection only using NDSI is, therefore, not accurate enough under the forest canopy [17,18].
Studies have shown that, excluding the influence of terrains, the misjudgment rate of snow
cover mapping may approach 1% in areas with a relatively small forest coverage, while it
can reach 15% in areas with a relatively large forest coverage [19].

To handle snow-covered areas mixed with forest, a lot of effort has been put into
reducing the misjudgment rate of snow cover mapping. Through analyzing snow spectral
characteristics under the shadow of the forest canopy, Klein, et al. [20] believed that the
NDSI threshold should be decreased to the range between 0.l and 0.4 when identifying
snow pixels in areas with higher NDVI values. SAITO and YAMAZAKI [21] proposed
the S3 index to reduce the influence of the vegetation canopy on snow pixels by using the
reflectance of the red, NIR, and SWIR bands, which estimated snow cover more accurately.
In small watersheds covered by dense forests in Norway, a sub-pixel linear spectral mixture
model was developed to classify snow pixels, which comprehensively considered the snow
interception of the wind and vegetation canopy, as well as the influence of terrain and
forest on snow redistribution. However, these input variables that the model needs cannot
be obtained by remote sensing technology [22]. Based on the imagery from multi-angle
imaging spectroradiometer (MISR) data, Wang, et al. [23] used the difference between the
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multi-angle information in winter and summer to conduct snow cover mapping in the
Tianshan forest area, but the low resolution of MISR data itself makes it difficult to extract
high-precision snow cover. The artificial neural network (ANN) method has been used
in an attempt to extract fractional snow cover (FSC) from IKONOS multispectral images
in alpine-forested areas and achieved very low error values of 0.0002. Nevertheless, the
process of machine learning is complicated and there is always an overfitting problem [24].
In alpine regions of the Altai Mountains in China with a large proportion of forests, Wang
et al. [25] found that the near-infrared band instead of the visible band is more suitable for
snow cover mapping and proposed NDFSI. Recent studies have also shown that optimizing
the NDSI threshold can improve the accuracy of snow cover mapping in forested areas
in specific regions [26,27]. This algorithm mainly uses empirical observation values to
formulate universal rules and is a prior knowledge-driven method [28]. Using the FY-4A
remote sensing image from high-altitude forested areas in Xinjiang, Zhang, et al. [29]
proposed an FSC estimation method based on a multi-scale feature fusion network, while
the model accuracy and generalization ability are not high. Luo, et al. [30] utilized time-
lapse photography and machine-learning technology to map under-canopy snow cover
with an accuracy of 67%, and the results also indicated that the model performance is
highly sensitive to changes in forest coverage and solar conditions.

Here, taking Northeast China as an example, this work primarily aims to reduce the
misjudgment rate of snow cover mapping in regions with a large proportion of forests
based on the MODIS reflectance product and to validate the method with Landsat 8 OLI
images. Section 2 elaborates on the research area and data source description. In Section 3,
the specific methodology is explained in detail. The results are reported and discussed in
Section 4. Lastly, the main conclusions obtained from this study are outlined in Section 5.

2. Research Area and Data
2.1. Research Area

Seasonal snow cover in Northeast China (from 38◦40′ to 53◦34′ N and from
115◦05′ to 135◦02′ E) lasts for a long time and the region has a large annual snowfall
in winter. The other two widely distributed stable snow cover areas are located in Xin-
jiang and the Tibetan Plateau, respectively [31]. A high-latitude location makes it one of
the coolest areas in China with a severe and long winter. In northern regions, seasonal
snow may cover the ground surface for as long as six months [32], which also increases
the possibility of winter snow disasters and spring floods caused by sudden snowmelt
runoffs. In addition, there is also a large area of forests distributed in Northeast China (the
Northeast, Southwest, and Southern Forest are the three major forest regions in China).
The area of forests can account for forty percent of Northeast China, making it the most
abundant vegetation type of the land surface in this region [33]. The typical forested areas in
Northeast China are mainly located in the Changbai Mountains, the Lesser Khingan Range,
and northern areas of the Greater Khingan Range. According to the IGBP classification
rules, there are five main forest types in the study area comprising evergreen needle leaf,
evergreen broadleaf, deciduous broadleaf, deciduous needle leaf, and mixed forest. The
distribution of snow in forest has typical regional characteristics, which makes Northeast
China an ideal research area for developing snow monitoring algorithms in regions with a
large proportion of forests.

2.2. Data
2.2.1. Landsat 8 OLI Data

Four Landsat 8 images of 30 m spatial resolution were downloaded in this research.
All downloaded Landsat data are level 1-TP and are in UTM/WGS84 projection. The cloud
cover information of each image is shown in Table 1. The five scene images selected in this
study are mainly distributed in a typical forested area of Northeast, China (Figure 1). Of
these five images, one (S2) was used for the development of the snow monitoring algorithm
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in the forested area, and the other four (S1, S3, S4, and S5) were used to validate and
compare it with cloud-free snow products.

Table 1. The information of Landsat 8 OLI data.

Number Path Row Acquisition Date Cloud Cover (%)

S1 122 24 16 March 2018 0.55
S2 117 27 28 October 2014 5.17
S3 116 30 16 March 2016 1.61
S4 118 31 12 January 2017 3.68
S5 116 28 22 March 2018 3.98
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Figure 1. Land cover type distribution in Northeast China through Landsat 8 OLI images.

2.2.2. MODIS Products

The MODIS MOD09GA surface reflectance product from the same period and area as
the Landsat OLI data was collected. The MOD13A1 data from the closest period of Landsat
8 OLI data were also selected as the MOD13A1 vegetation index product has a 16-day
temporal resolution. In addition, the MOD10A1/MYD10A1 snow products were applied
in the generation of the cloud-free snow cover product for a comparison with the results
of this study. It is worth noting that version 006 MOD10A1/MYD10A1 products have
changed significantly compared with version 005 products. In version 006 products, only
NDSI is available. This update gives the product greater operability, as users can generate a
binary snow product through NDSI values according to specific needs. The specific coding
information of MOD10A1/MYD10A1 products has been provided in the user guide [34].
All four products (Version 006) of 500 m spatial resolution were obtained from a NASA
website (https://earthdata.nasa.gov/, accessed on 6 October 2022). The MOD09GA was
used to extract the daily surface reflectance of various bands of MODIS for computing
NDSI and NDFSI. And the MOD13A1 product was used to extract NDVI values.

2.2.3. IGBP Land Cover Type Data

The MCD12Q1 data provide the annual global distribution of land cover types with
a resolution of 500 m. The International Geosphere-Biosphere Program (IGBP) is one of
eight land cover classification schemes (https://earthdata.nasa.gov/, accessed on 12 June

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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2022). The data are obtained through the supervised classification of reflectance data from
MODIS’s Terra and Aqua satellites, and further optimized for specific categories through
post-processing and auxiliary data. This product divides global land cover into 17 types
consisting of 11 natural vegetation types, 3 developed and anthropogenic types, and 3
non-vegetation types [35]. In this study, the MCD12Q1 data from 2018 were reclassified
into the four major categories of forested areas, non-forested areas, water, and permanent
snow and ice.

3. Methodology
3.1. Landsat OLI Snow Cover Mapping

The Landsat 8 OLI data were used to produce a binary snow cover map. First, we
processed the OLI images by using the radiation calibration and FLAASH atmospheric
correction model in ENVI 5.5 software. Then, the third (green band) and sixth (shortwave-
infrared band) bands of the OLI images were utilized to calculate NDSI based on the
SNOWMAP algorithm [36]. Based on the reflection characteristics of water bodies in the
visible light and SWIR bands, the classification rule of an NDSI value no less than 0.4 and
a fifth band higher than 11% can effectively extract snow pixels and reduce the impact of
water body pixels. Last, NDFSI was introduced to improve the identification accuracy of
snow in forested areas [25]. Thereby, a binary Landsat snow image with a spatial resolution
of 30 m, which can represent the true distribution of snow cover on the surface, was
generated and then upscaled to a grid size of 500 m in ENVI 5.5. Only when the output
pixel value is greater than 0.5 will this pixel be defined as snow.

3.2. Snow Cover Mapping Based on Multi-Spectral Feature Fusion and Coupling

There are still various limitations in using remote sensing technology to map snow
cover in areas with a large proportion of forests, mainly as it is driven by a high vegetation
canopy and climatic conditions. Passive microwave sensors can penetrate clouds and
obtain ground snow information without being affected by adverse weather conditions.
And the spatial resolution and misjudgment rate are often a problem in forested regions.
Exploring a multi-spectral feature fusion and coupling approach using optical satellite
spaceborne data instead of a microwave-based one demonstrates enormous potential for
mapping snow cover in areas with a large proportion of forests [25].

When using optical remote sensing satellite technology, the forest occlusion effect has
always been one of the main factors affecting snow recognition. In forested areas in winter,
the canopy may intercept the falling snow due to the blocking effect of the branches and
leaves of the trees [37]. At this time, the sensor receives a mixed spectral information of
snow cover and canopy in the snow-covered forest. Meanwhile, the intercepted snow on
the canopy increases albedo, resulting in larger NDSI values and smaller NDVI values [38].
Thereby, it is worth noting that the sensitivity of NDVI to snow distribution still supports
it as a suitable canopy index despite the existence of many other vegetation indices [39].
In addition, it has been proven that the near-infrared band can more effectively detect
snow distribution in forest areas than the visible light band [25]. In order to obtain a more
accurate distribution pattern of snow cover in areas with a large proportion of forest, the
green band was replaced with the near-infrared band, and NDFSI values were calculated
for snow cover mapping in forest regions [25]. Furthermore, NDVI was also introduced to
eliminate interference from vegetation.

In this study, the reclassified MCD12Q1 product was first applied to distinguish the
forest areas and areas without forests in Northeast China. Then, the Landsat OLI image S2
was chosen to develop snow-mapping algorithms in forest areas. Zones L1 and L2 were
used to extract the spectral band ratio (NDFSI and NDVI) in typical forest areas with snow
and forest areas without snow, respectively (Figure 1). Feature information of Green, SWIR,
and NIR was extracted for the further establishment of the algorithm scheme, coupled
with the determination of the existence of large-scale snow cover in forested regions, which
assists in reducing the interference of noise data. Multi-spectral feature bands are fused
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and coupled with snow cover where a qualitative relationship exists between the feature
bands and snow cover. A specific correlation intensity can be determined empirically and
semi-analytically to some extent, and, thus, the obtained information from multiple feature
bands is integrated to determine the snow cover, reducing the computational cost and
averting a complex model architecture design. Therefore, snow pixels in forest areas were
recognized based on the threshold value of NDFSI and NDVI. In areas without forests, the
NDSI threshold value was selected to be 0.4 to identify snow. NDSI [19], NDFSI [25], and
NDVI [40] were calculated as suggested by previous papers, as follows:

NDSI =
Green − SWIR
Green + SWIR

(1)

NDFSI =
NIR − SWIR
NIR + SWIR

(2)

NDVI =
NIR − Red
NIR + Red

(3)

where NIR, SWIR, Green, and Red are all or part of the atmospheric corrected surface
reflectance in the near-infrared band, shortwave-infrared band, green, and red visible
band, respectively.

3.3. Cloud-Free Snow Cover Product Development

The cloud-free snow cover product is used for a comparative analysis with the map-
ping results obtained in this study. This product is created by the first author of this
article [13] and has been proven to be of great application value in the field of snow remote
sensing [41,42]. Due to the fact that the 006 version of the product only includes NDSI
values and does not have a binary snow cover, the MOD10A1 and MYD10A1 first need to
be converted into binary products based on the NDSI value. The traditional NDSI critical
value of 0.4 was selected to develop the binary snow data [19]. When the NDSI of a pixel is
between 40% and 100%, this pixel is identified as snow; otherwise, this pixel is identified as
snow-free. Lastly, according to the cloud removal algorithm, binary snow cover distribution
images (500 m spatial resolution) were generated and compared with the mapping results
obtained in this study.

3.4. Accuracy Assessment

Landsat 8 images with a high resolution were selected as the surface observation
truth to measure the accuracy and precision of snow cover mapping based on the multi-
spectral feature fusion and coupling approach in forest areas, and the cloud-free snow
cover product was compared with the results in this research. Three kinds of evaluations
were generally used in previous research, including overall accuracy (OA), bias (BIAS), and
false alarm ratio (FAR) [26,43,44]. OA represents the overall detection precision, which is
the proportion of pixels that are completely correctly identified (snow to snow and snow-
free to snow-free). BIAS means the ratio between the quantity of snow pixels detected
in this study and the quantity of snow pixels detected in the Landsat reference images,
which can represent the underestimation of the tested images for snow (BIAS value < 1),
overestimation (BIAS value > 1), and no deviation (BIAS value = 1). FAR is defined as
the fraction of false snow pixels recognized as snow by tested images, but not actually
covered by snow in the Landsat OLI images. The higher the FAR value, the greater the
serious misjudgment rate. Below are the calculation formulae for the OA [43], BIAS [44],
and FAR [26] metrics as suggested by previous papers, and the confusion matrix is shown
in Table 2.

OA =
a + d

a + b + c + d
(4)

BIAS =
a + c
a + d

(5)
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FAR =
c

c + d
(6)

Table 2. Confusion matrix for binary snow cover obtained in this study versus Landsat 8 OLI images.

Tested Image: Snow Tested Image: Snow-Free

Landsat 8 OLI: snow a b
Landsat 8 OLI: snow-free c d

Note: a, b, c, and d represent numbers of pixels. For example, a represents the number of pixels that are detected
as snow in this study and Landsat OLI images; b represents the number of pixels that the tested images classified
as snow-free while Landsat indicates them as snow; c represents the number of pixels that the tested images
classified as snow while Landsat indicates them as snow-free; and d means the numbers of pixels that both the
tested images and Landsat indicate as snow-free.

4. Results
4.1. Snow Cover Detection Based on NDFSI, NDVI, and NDSI

Based on the MCD12Q1 product and Landsat S2 (Zone L1 and L2) images, the ex-
perimental statistical results of the NDFSI-NDVI value in forest areas without snow and
forest areas with snow are shown in Figure 2. Compared with the traditional NDSI for
detecting snow, NDFSI has more distinguishable spectral characteristics between forest
areas with snow and forest areas without snow. As can be seen from the scatter plot, the
NDFSI values of the pixels in forest areas with snow are significantly higher than those in
forest areas without snow, while NDVI is completely different. The pixels of forest areas
with snow have lower NDVI values compared with those of forest areas without snow. As
shown in Figure 2, dots of the same color are clustered while dots of different colors are
separated, whereby the featuring information of NDFSI and NDVI can be combined to
distinguish forest areas without snow and forest areas with snow. The green line in Figure 2
can approximately locate the thresholds of NDFSI and NDVI, which are around 0.35 and
0.25, respectively.

Atmosphere 2024, 15, x FOR PEER REVIEW  8  of  14 
 

 

Therefore, the thresholds of NDFSI and NDVI are eventually selected to be 0.35 and 0.25, 

respectively.   

In this study, the integrated multi-spectral feature information from the three indices, 

NDFSI, NDVI, and NDSI, were used to detect snow cover information in northeast China. 

The specific snow classification scheme is shown as follows: (1) for areas without forests, 

if the NDSI value > 0.4 and NIR > 0.11, this pixel will be recognized as snow; (2) for areas 
with forests, if the NDFSI value > 0.35 and the NDVI value < 0.25, this pixel will be recog-

nized as snow in forest; and (3) if none of the above conditions are met, this pixel will be 

recognized as no snow. 

 

Figure 2. The distribution of NDFSI-NDVI scatter plots in the snow-free and snow-covered forest 

areas. 

 

Figure 3. The optimal threshold distribution for distinguishing between snow-free and snow-cov-

ered forest areas. 

   

Figure 2. The distribution of NDFSI-NDVI scatter plots in the snow-free and snow-covered
forest areas.

According to the scatter plot distribution of the NDFSI-NDVI value, it is found that,
when NDFSI is between 0.25 and 0.4 and NDVI is between 0.1 and 0.25, there is a significant
difference between snow-free and snow-covered forest areas. Therefore, when the NDFSI
is greater than 0.25–0.4 and the NDVI is less than 0.1–0.25, the area is classified as a
snow-covered forest, and vice versa—the reverse condition is classified as a snow-free
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forest. In order to further determine the thresholds more objectively and scientifically, the
NDFSI values from 0.25 to 0.4 were divided into four intervals with a step size of 0.05,
and the NDVI values from 0.1 to 0.25 were divided into four intervals with a step size
of 0.05. This can generate 16 corresponding combinations. For example, when NDFSI
> 0.25 and NDVI < 0.1, it is determined that there is a snow-covered forest area; when
NDFSI < 0.25 and NDVI > 0.1, it is determined that there is a snow-free forest area; and the
combination is carried out in sequence. Finally, the OA and FAR values corresponding to
the 16 combinations were obtained. When the OA value is close to 1 and the FAR value is
close to 0, the corresponding NDFSI and NDVI are the optimal thresholds. From Figure 3,
it can be seen that the OA and FAR values corresponding to the optimal threshold are
0.99 and 0.03, respectively. Therefore, the thresholds of NDFSI and NDVI are eventually
selected to be 0.35 and 0.25, respectively.
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forest areas.

In this study, the integrated multi-spectral feature information from the three indices,
NDFSI, NDVI, and NDSI, were used to detect snow cover information in Northeast China.
The specific snow classification scheme is as follows: (1) for areas without forests, if the
NDSI value > 0.4 and NIR > 0.11, this pixel will be recognized as snow; (2) for areas with
forests, if the NDFSI value > 0.35 and the NDVI value < 0.25, this pixel will be recognized as
snow in forest; and (3) if none of the above conditions are met, this pixel will be recognized
as no snow.

4.2. Results of Snow Detection

In order to verify the effectiveness of snow extraction, this new approach is applied
to four different regions, S1, S3, S4, and S5 in Figure 1. These four areas are all located in
typical forested regions of Northeast China. The Landsat OLI binary snow cover images
are shown in Figure 4a–d. Figure 4e–h are the corresponding cloud-free snow cover
distribution. The results of snow detection through our proposed classification scheme in
Section 4.1 are shown in Figure 4i–l. From the perspective of visual effects, the cloud-free
snow-cover images seriously overestimate the actual snow coverage. However, the maps of
snow detection estimated based on NDFSI, NDVI, and NDSI are more consistent with the
corresponding snow distribution on the Landsat 8 OLI images, and capture more detailed
snow variation information in the forest areas. Although there are some overestimations in
the snow map estimated using the multi-spectral feature fusion and coupling approach, the
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snow cover in forest areas can be well-detected using this algorithm. As shown in Figure 4,
the yellow parts represent the snow in forest areas.
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4.3. Accuracy Assessment

To quantitatively show the snow detection ability in a typical forested area of Northeast
China, the three indices of OA, BIAS, and FAR were adopted to estimate the accuracy of the
snow distribution obtained from multi-spectral feature fusion and coupling. Meanwhile,
the cloud-free snow cover product was used for a comparative analysis with the mapping
results obtained by means of this algorithm. Table 3 provides the pixel statistics of the
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confusion matrix. And the accuracy statistics of these two types of snow cover products in
the verification areas are presented in Table 4.

Table 3. Pixel statistics of confusion matrix.

Cloud-Free Snow Cover Product Algorithm for This Study

Landsat 8 OLI Snow Snow-Free Snow Snow-Free

S1
Snow 18843 3799 8841 13801

Snow-free 54855 72655 12670 114840

S3
Snow 18947 2330 10876 10401

Snow-free 66612 46180 13146 99646

S4
Snow 21021 3820 17677 7176

Snow-free 46266 63653 23558 86349

S5
Snow 10903 4986 8204 9987

Snow-free 34253 90668 13635 108984

Table 4. Accuracy statistics of different snow cover products in the verification area.

Cloud-Free Snow Cover Product/Algorithm for This Study

OA (%) BIAS FAR (%)

S1 61.94/82.37 3.25/0.95 43.02/9.94
S3 48.58/82.44 4.02/1.12 59.06/11.66
S4 62.83/77.19 2.71/1.66 42.10/21.43
S5 72.13/83.22 2.84/1.20 27.42/11.12

According to Tables 3 and 4, many snow-free pixels in the cloud-free snow cover
product are incorrectly identified as snow, resulting in an average FAR of 42.90% in the
four verification areas of S1, S3, S4, and S5. The overall larger BIAS value (far greater than
1) also indicates that the snow distribution extracted using cloud-free snow cover products
is higher than the actual situation, and the average OA value is only 61.12%. However,
based on NDFSI, NDVI, and NDSI, the proposed snow-cover-mapping method identifies
the snow pixels in forested areas more accurately, with a lower average FAR of 13.54%.
And the average BIAS value of 1.23 is also closer to 1, which is much lower than that of
the cloud-free snow cover product. This is because using NDSI alone makes it difficult
to map the snow distribution of forest areas affected by a vegetation canopy. As is well
known, the sensitivity of NDVI to the distribution of snow makes it an effective canopy
index. After introducing a vegetation-based index, the accuracy of snow extraction in forest
areas can be significantly improved. Research has shown that multi-band spectral feature
fusion and coupling methods are reliable for snow cover mapping in forest areas. In this
work, taking the forested areas of Northeast China as a typical research area, the average
OA value reaches 81.31% and more snow pixels can be correctly classified using the fusion
of featuring information from NDFSI, NDVI, and NDSI in the proposed algorithm.

5. Discussion

In the field of snow monitoring through optical remote sensing, a great challenge
exists involving forest because a tall vegetation canopy can overlap with snow cover on the
land surface. Therefore, using only a single and fixed NDSI for detecting snow distribution
areas is no longer applicable in forest areas, as the effects of the forest are not embedded in
NDSI itself. Some researchers believed that more snow pixels can be identified through
reducing the NDSI threshold in areas with higher NDVI values, but the overall accuracy is
still not satisfactory [20]. While Vikhamar and Solberg [22] applied the sub-pixel spectral
mixture model to extract the snow cover distribution in areas with forest, the fact that
the variables required by the model can only be obtained through on-site measurement
makes it very difficult for large-area snow cover mapping. In recent years, more and more
methods and data are used to develop a snow-mapping algorithm in forested-type areas,
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such as SCAmod [16], a machine-learning method [24], and a multi-index method [25].
However, the spatial resolution of data cannot meet the needs of regional water resource
management in Northeast China.

In this study, based on the characteristics of complex surface cover types and high for-
est coverage, the northeast region of China is divided into forested and non-forested areas,
which serve as the research area for the development of snow-cover-mapping algorithms
in forested areas. According to the actual condition that the reflectance of the green band
in forest areas with snow is usually much lower than pure snow, NDSI is, therefore, low
and not applied in the forested area [45]. We investigated the multi-spectral reflectivity
characteristics in typical forest areas with snow and forest areas without snow based on
the MOD09GA product, because MODIS-retrieved snow cover mapping is one of the best
data sources in forest areas at various scales with long-term and continuous records. This
provides the possibility for long-term and large-scale snow detection in forest areas, and
supports the next steps of forest water resource assessment, atmospheric circulation, and
climate evolution analysis.

As can be seen from Figure 2, NDFSI has good statistical characteristics to extract snow
pixels in forested areas. Moreover, in order to eliminate the interference of high NDFSI
values that may be caused by the high reflectivity effect of forests in the near infrared band,
NDVI is also introduced. Then, a new approach of snow cover mapping combining NDFSI,
NDVI, and NDSI is presented in this study. Compared with the snow-cover-mapping
algorithm mentioned above, the algorithm of this study has the characteristics of simplicity
and computational frugality. Although the proposed multi-spectral feature fusion and
coupling approach has shown good snow detection performance in forested areas, there
are still some inadequacies that need improvement. Factors such as the slope, aspect, and
surface temperature have varying degrees of influence on the accumulation and melting
of snow. However, in the northeastern region with a high forest coverage, the forest
canopy has the greatest impact on snow cover mapping. Therefore, in this study, the forest
occlusion effect is considered the most important factor affecting snow cover mapping,
without considering terrain and temperature factors. Perhaps, better snow cover mapping
can be achieved by incorporating new terrain-derived factors (such as slope, aspect, and
elevation) and surface temperature data in the near future.

Additionally, cloud contamination for snow cover mapping using MODIS and other
optical images in the forested region is another large problem. In this study, only Landsat
OLI images where land cloud cover is less than 6% were collected, which means that
the MODIS images are also close to cloudless on the same day. In fact, most optical
remote sensing is easily influenced by clouds because clouds prevent optical sensors from
receiving land surface information. This limitation once again demonstrates the difficulty
of accurately mapping snow cover distribution in areas with forest. In recently years,
research on cloud removal algorithms based on optical remote sensing products such as
MODIS data have matured, including the multi-day composited algorithm [46], the Snow
Line (SNOWL) algorithm [47], and multi-source remote sensing fusion algorithms [13,48].
Further work is needed to combine the cloud removal algorithm and the snow-mapping
algorithm in forests to identify snow-covered areas in forested regions automatically and
in a larger-scale manner.

6. Conclusions

Seasonal snow melt water is one of the most vital sources of freshwater in Northeast
China. The runoff generated by spring snowmelt can account for 10–15% of the total river
runoff throughout the year. However, due to the significant proportion of forests in the
seasonal snow-covered areas of Northeast China, monitoring snow cover distribution in
areas with forest through remote sensing technology is facing great challenges.

This study integrates and couples multi-spectral feature information commonly ob-
tained by optical remote sensing sensors to investigate the potential of snow detection
in areas with forest. Based on MODIS data, a semi-analytical approach of snow cover
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mapping in forest areas with the integration of feature information from NDFSI, NDVI,
and NDSI is presented. Landsat 8 OLI data with a high resolution are used to validate the
snow cover mapping results. The following conclusions are obtained in this research:

(1) NDFSI has good potential to detect snow cover in areas with forest combined with
NDVI. The threshold value of NDFSI and NDVI is selected to be 0.35 and 0.25, respec-
tively.

(2) Compared with the snow cover measured by Landsat 8 OLI images, the average BIAS
and FAR values of these results are 1.23 and 13.54%, which are reduced by 1.98 and
29.36%, respectively. An overall accuracy of 81.31% is reached, which is improved
by 20.19%.

(3) Snow monitoring based on the multi-spectral feature fusion and coupling approach
has shown good snow detection performance and can effectively reduce the misjudg-
ment rate of snow recognition in areas with forest. The snow classification scheme
combining NDFSI, NDVI, and NDSI based on MODIS data used in this work is simple
and very efficient in improving automatic snow cover mapping in typical forested
areas of Northeast China. This makes large-scale snow detection in forested areas
possible and provides support for the next step of establishing a runoff model and
rationally regulating forest water resources.
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