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Abstract: The most frequently used boundary-layer turbulence parameterization in numerical
weather prediction (NWP) models are turbulence kinetic energy (TKE) based-based schemes.
However, these parameterizations suffer from a potential weakness, namely the strong dependence on
an ad-hoc quantity, the so-called turbulence length scale. The physical interpretation of the turbulence
length scale is difficult and hence it cannot be directly related to measurements or large eddy simulation
(LES) data. Consequently, formulations for the turbulence length scale in basically all TKE schemes
are based on simplified assumptions and are model-dependent. A good reference for the independent
evaluation of the turbulence length scale expression for NWP modeling is missing. Here we propose
a new turbulence length scale diagnostic which can be used in the gray zone of turbulence without
modifying the underlying TKE turbulence scheme. The new diagnostic is based on the TKE budget:
The core idea is to encapsulate the sum of the molecular dissipation and the cross-scale TKE transfer into
an effective dissipation, and associate it with the new turbulence length scale. This effective dissipation
can then be calculated as a residuum in the TKE budget equation (for horizontal sub-domains of different
sizes) using LES data. Estimation of the scale dependence of the diagnosed turbulence length scale using
this novel method is presented for several idealized cases.

Keywords: turbulence length scale; gray zone of turbulence; large eddy simulation

1. Introduction

The parametrization of turbulence processes in the Atmospheric Boundary Layer (ABL) is an essential
component of numerical weather prediction (NWP) and global circulation (GC) models.

The parametrizations are based on broad physical understanding from observations, as well as on the
statistical properties of resolved-turbulence flows from finer-scale model simulations. The grid spacing
determines the extent to which the turbulent motions are resolved. In the traditional NWP and GC models
all turbulent motions are sub-grid and turbulence needs to be fully parametrized. Large Eddy Simulation
(LES) models have a smaller grid spacing and therefore, resolve a part of the turbulent motions, namely the
large energy-containing anisotropic turbulent eddies. Therefore, only the smaller isotropic eddies need to
be parametrized in LES. Between the range of grid-sizes of classical NWP/GC models and LES lies the
gray zone of turbulence [1–3], where turbulence parametrization is more difficult, because the anisotropic
turbulent eddies are only partly resolved and the other part of their impact needs to be parametrized.
Until recently, there was no need for such a gray-zone representation of turbulence. However, increases in
computational power and the assumption that higher resolution models produce better forecast push the
NWP/GC models towards the need for a representation of the gray zone of turbulence.
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Presently, the most used turbulence schemes in NWP models are those based on the turbulence kinetic
energy (TKE) closure (see e.g., [4]). The TKE schemes are relatively simple compared to other higher order
closure schemes (see e.g., [5–7]), therefore the TKE schemes incur a relatively low numerical cost and imply
better tractability. Moreover, the TKE schemes have a relatively good forecasting skill, because they employ
a prognostic equation for the sum of the second order moments (variances of momentum), which enables
the modeling of the temporal and spatial evolution of turbulence. However, the standard parametrizations
based on the TKE equation suffer from a potential weakness, namely the strong dependence on a single
quantity, the so-called turbulence length scale [8].

The role of the turbulence length scale, L, in these schemes is two-fold: (i) first, it is used to model
the molecular dissipation, and secondly, (ii) it is used to compute the vertical turbulent fluxes, which are
the primary quantities of interest produced by the turbulence parametrization in an NWP/GC model [9].
These fluxes are, in turn, also the main components of the shear and buoyancy production/destruction
terms in the TKE equation. The determination of the turbulent fluxes is usually based on a down-gradient
approach, where the turbulent flux is proportional to, and acts against, the gradient of the prognostic
variable (see e.g., Stull, 1988). To ensure the realizability of the parametrization (always getting physically
sound solutions), a local equilibrium in the TKE equation can be assumed no tendency and no transport of
the TKE (see e.g., [10,11]). In this case, the two aspects of the length scale, the molecular dissipation of TKE
and the turbulence fluxes, are directly linked, resulting in a single independent turbulence length scale.

There is yet another implicit influence of the turbulence length scale on the TKE scheme, hidden
in the shape of the so-called stability functions (see e.g., [10,11]). The stability functions are derived by
assuming steady state conditions for prognostic equations of all (co-)variances of the prognostic variables
(usually all wind components and two conservative scalars, such as the liquid water potential temperature
and the total specific water content). In these diagnostic equations, the turbulence length scale is used for
the parametrization of all molecular dissipation terms. Hence, the resulting stability functions are also
connected to the turbulence length scale via the parametrization of these dissipation terms.

The purpose of the turbulence length scale in a TKE scheme is to express turbulent fluxes and the loss
of TKE via dissipation; however its own physical interpretation is difficult and cannot be directly related
to measurements or LES data. Therefore, the turbulence length scale is mostly assessed via its influence
on the mean prognostic variables [12,13], or alternatively on the turbulent fluxes, the TKE, and the TKE
dissipation rate [14–16]. As a consequence, formulation for the turbulence length scale in basically all TKE
schemes are based on simplified assumptions and are model-dependent.

The simplest formulations prescribe an algebraic height-dependent equation for the length scale (see
e.g., [17,18]). Near the surface, this length scale is assumed to be proportional to the distance from the
surface (see e.g., [9,19,20]) and above the surface the length scale is limited by a quantity proportional
to the ABL height. In this case, the turbulence length scale is loosely interpreted as the characteristic
size of turbulent eddies. The length scale can also be determined from the local TKE (calculated on
the same level as the length scale) and made dependent on the local stratification, and the presence of
clouds [21–24]. Ref. [25] further developed a non-local relationship for the length scale that is based on
the consideration how far a parcel with an initial kinetic energy equal to the TKE can travel before being
stopped by buoyancy effects. To represent different ABL regimes, combinations of the above formulations
are often used [16].

The above formulations neglect the time evolution and the transport of the length scale. To address
this issue, a prognostic equation for the length scale has been stipulated by analogy to the TKE equation
(see e.g., [8,26]). However, unlike the TKE equation, the prognostic equations for the length scale (or a
derived variable such as the dissipation time scale, or the TKE multiplied by a power of the length scale)
has little physical basis and may have difficulties near the surface or experience too strong sensitivity to
certain conditions [23,26]. A compromise between prognostic and non-prognostic methods was proposed
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by [27], who use a prescribed length scale as a reference in a relaxation equation, which includes an
advection and a turbulent transport term.

Separately from the above approaches, the turbulence length scale can also be interpreted from the
perspective of the turbulence energy spectra (see e.g., [28]). The atmospheric turbulent kinetic energy
spectra can be divided into three distinct sections: the energy production range, the inertial sub-range,
and the dissipation range. In the energy production range, the TKE is generated by shear and generated or
reduced by buoyancy and it is, therefore, dominated by anisotropic large eddies. In the isotropic inertial
sub-range, the TKE is internally transported from larger eddies to smaller eddies. In the dissipation range,
the TKE of the smallest eddies is dissipated by viscous effects. In the quasi-steady inertial sub-range, the net
energy coming from the larger eddies is in equilibrium with the net energy cascading to smaller eddies,
resulting in a constant slope of the log-log energy spectrum [29]. Reference [30] relate the turbulence length
scale to a characteristic scale of the spectra. Some authors instead interpret the integral turbulence scale
(characteristic size of the most energy-containing turbulence eddies) or the grid scale as the turbulence
length scale [31,32].

Alternatively, the spectral form of TKE equation [4,33,34] can be used to estimate the turbulence
length scale. The length scale is then usually associated with TKE loss via molecular dissipation and can
be computed from the dissipation rate and the spectrally integrated TKE [15]. The dissipation rate can be
determined from the constant slope of the log-log TKE spectra in the inertial sub-range [35]. The transfer
of TKE across scales is though not considered, because it is either assumed that all turbulence motions
are sub-grid, as in the case of low resolution NWP/GC regime, and hence the net sub-grid cross-scale
transfer is equal to zero [28], or that the cross-scale TKE transfer is modeled explicitly, the case of the LES
regime [36]. However, in the gray zone of turbulence, the effect of the sub-grid cross-scale TKE transfer
should be accounted for and its influence could be included in the turbulence length scale.

The limitations of the TKE scheme in the gray zone can be partially solved by extending the TKE
scheme with influence of the 3D turbulence [37,38] or by TKE blending [39]. Other authors propose to stay
within the 1D TKE framework, and use a scale-dependent turbulence length scale. The turbulence scale is
obtained by pragmatic blending between the NWP/GC length scale and a small-scale 3D mixing length
scale [40–42]. The calibration of the blending is of critical importance in this approach.

In the present paper, we propose a new turbulence length scale diagnostic based on LES data
that contains the influence of the sub-grid cross-scale TKE transfer. In the procedure, the sum of the
molecular dissipation and the cross-scale TKE transfer are handled as an effective dissipation, which is
associated with the new turbulence length scale. The effective dissipation is expressed as a residuum in the
budget equations for the TKE and the scalar variances using LES data. The diagnosed turbulence length
scale is thus resolution-aware and may serve as a basis for the development of turbulence length scale
parameterizations for models operating in the gray zone of turbulence.

This paper is organized as follows. Section 2 gives an overview of the spectral TKE equation and the
formulation of the new turbulence length scale is derived. In Section 3 a LES-based diagnostic of the new
turbulence length scale is proposed. The diagnostic is evaluated in Section 4 on LES data from several
simulations. The results are discussed in Section 5.

2. Theoretical Framework

2.1. Spectral TKE Equation

To understand the role of the molecular dissipation and the transfer of kinetic energy across scales,
we look at the spectral representation of the TKE equation for horizontally homogeneous turbulence (see
e.g., [4,34]):
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∂Sek (k)
∂t

+ ADV = TT − Su′w′ (k)
∂u
∂z
− Sv′w′ (k)

∂v
∂z

+
g

θvr
Sw′θ′v

(k)

+τr (k)− 2νk2Sek (k) , (1)

where k is the wave number, ν is the molecular viscosity, Sx(k) are the cospectra of the corresponding
covariances or TKE, τr(k) is the convergence of TKE transport across the spectrum; and ADV and TT
are spectral representations of the vertical advection and turbulent transport, respectively. The averaged
quantities are marked by a bar and the fluctuations from the mean are marked by a prime symbol.
Integrating the TKE cospectra from some lower bound, kl , to infinity yields the sub-filter TKE:

es f
k (kl) ≡

∫ ∞

kl

Sek (k) dk. (2)

The cross-scale TKE transfer is obtained by integrating the convergence term (see e.g., upper panel of
Figure 5.16 in [4]):

Tr(kl) ≡
∫ ∞

kl

τr (k) dk. (3)

The convergence term, τr(k), is a gain term in the dissipation range, and is negligible in the inertial
sub-range (LES regime). The viscosity term in Equation (1) is significant only in the dissipation range and
can be neglected otherwise. In the energy production range, the buoyancy and shear terms are non-zero.
In this regime, τr(k) acts as a loss term and replaces the molecular dissipation as the main loss term in the
spectral TKE equation [28].

For NWP/GC models all turbulence motions are unresolved. Thus, the sub-filter TKE is equal to the
full TKE (including all turbulence scales):

ek = es f
k (kl = 0), (4)

and the classical TKE equation for NWP/GC models is obtained by integrating the spectral TKE equation
over the whole spectrum:

∫ ∞

0

(
∂Sek (k)

∂t
dk + ADV

)
=

∫ ∞

0

(
TT − Su′w′ (k)

∂u
∂z
− Sv′w′ (k)

∂v
∂z

+
g

θvr
Sw′θ′v

(k)
)

dk

−ε, (5)

where ε is the TKE dissipation rate:

ε ≡
∫ ∞

0
2νk2Sek (k) dk, (6)

The cross-scale TKE transfer Tr(kl) is equal to zero when computed over the whole
turbulence spectrum:

Tr(kl = 0) = 0, (7)

and equal to ε when integrated from a cutoff in the inertial sub-range, ki:

Tr(kl = ki) = ε. (8)
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For the gray zone of turbulence, the prognostic equation for the sub-filter TKE is obtained by
integrating Equation (1) from a cutoff scale in the energy production range, represented by a wave
number, kc:∫ ∞

kc

(
∂Sek (k)

∂t
+ ADV

)
dk =

∫ ∞

kc

(
TT − Su′w′ (k)

∂u
∂z
− Sv′w′ (k)

∂v
∂z

+
g

θvr
Sw′θ′v

(k)
)

dk

−ε̃c. (9)

Compared to Equation (5), the molecular dissipation rate is replaced by an effective dissipation rate,
ε̃c. The effective dissipation rate is then equal to the molecular dissipation rate minus the cross-scale TKE
transfer Tr(kc) at the cutoff scale:

ε̃c = ε− Tr(kc). (10)

As described above, Tr(kc) is by definition equal to zero when all turbulence motions are sub-grid, or it
is assumed to be modeled explicitly as part of the three-dimensional shear-production term in LES [36].
However, neither condition is met in the gray zone of turbulence for NWP/GC models. The cutoff
wave number is in the energy-containing range, hence Tr(kc) is non-zero. Also, the one-dimensional
(vertical direction) shear term parametrization in NWP/GC models is unable to fully model the complex
three-dimensional interactions between the different spatial scales, responsible for the cross-scale TKE
transfer [28]. Because Tr(kc) is always smaller than ε, the effective dissipation rate, ε̃c, is always positive,
representing a loss term in the TKE equation (−ε̃c < 0).

2.2. Formulation of the New Turbulence Length Scale

Our goal is to replace the parametrization of the dissipation rate in a standard TKE scheme for
NWP/GC models with a parametrization of the effective dissipation rate via modification of the turbulence
length scale. The Reynolds averaged TKE equation for NWP (assuming horizontal homogeneity) that
corresponds to Equation (5) is (see e.g., [4]):

∂ek
∂t

+ u
∂ek
∂x

+ v
∂ek
∂y

+ w
∂ek
∂z

= − ∂

∂z

(
u′2w′ + v′2w′ + w′3 +

1
ρ0

p′w′
)

−
(

u′w′
∂u
∂z

+ v′w′
∂v
∂z

)
+

g
θvr

w′θ′v − ε, (11)

where x, y, and z are horizontal and vertical coordinates; u, v and w are the corresponding components of
the wind velocity; t is the time, p is the atmospheric pressure, ek is the TKE:

ek ≡ 1
2

(
u′2 + v′2 + w′2

)
; (12)

θv is the virtual potential temperature; θvr is a reference virtual potential temperature; ρ0 is a reference
density; g is the gravitational field strength.

The first term on the right-hand side in Equation (11) represents the vertical turbulent transport
of TKE, including the pressure correlation term. The second term is the shear-production term,
representing kinetic energy transfer from mean to the turbulent scales. The third term is the buoyancy
production/destruction term.
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Following [29], the dissipation rate in the prognostic TKE equation is parametrized with the help of
the turbulence length scale or the corresponding time scale [9]:

ε =
e

3
2
k

Lε
Cε = 2

ek
τk

(13)

where Lε is the classical turbulence length scale, τk is the dissipation time scale for TKE and Cε is a
closure constant (see e.g., [10,43]).

Equations (11) and (13) are valid for coarse-resolution NWP/GC models.
In the gray zone, the size of the grid elements, lc, lies in the energy production range of the turbulence.

Hence, the turbulent flow is not anymore entirely sub-grid, but is partly resolved and partly sub-grid.
The resolved TKE is implicitly modeled via the dynamics and only the sub-grid (or sub-filter if block filter
is used) scale TKE needs to be parametrized. To underline this fact, we denote the average over a grid
element of size lc with the []lc operator, and the fluctuations from this average with ′′:

ψ = [ψ]lc + ψ′′, (14)

where ψ stands for any relevant quantity.
In LES, the cross-scale TKE transfer from the resolved scales to sub-grid scales is modeled together

with the kinetic energy transfer from mean to the sub-grid scales via the three-dimensional gradient
production term [36]. However, we intend to use the NWP/GC framework, where parametrizations are
computed in vertical columns without any unresolved horizontal transport. Thus, the shear-production
term for the sub-grid scale TKE is one-dimensional and contains only part of the cross-scale TKE transfer.
To account for the influence of the cross-scale transfer in the sub-grid scale TKE equation, the molecular
dissipation rate, ε, needs to be replaced with a reduced (by the one-dimensional resolved part of the
cross-scale transfer) effective dissipation rate, ε̃c (lc) (see Equation (10)).

For this purpose, we define a new turbulence length scale, valid also in the gray zone. In analogy
with the traditional turbulence length scale, Lε, defined by:

Lε ≡
e

3
2
k
ε

Cε, (15)

the new turbulence length scale, Lc, depends on the sub-gridscale TKE, elc
k , and the effective dissipation

rate, ε̃c (lc):

Lc ≡

(
elc

k

) 3
2

ε̃c (lc)
Cε, (16)

elc
k ≡ 1

2

([
u′′2
]lc

+
[
v′′2
]lc

+
[
w′′2

]lc
)

, (17)
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where elc
k is the sub-grid scale TKE corresponding to a grid of size lc. The corresponding sub-grid scale

TKE equation becomes:

∂elc
k

∂t
− [u]lc

∂elc
k

∂x
− [v]lc

∂elc
k

∂y
− [w]lc

∂elc
k

∂z
= − ∂

∂z

([
u′′2w′′

]lc
+
[
v′′2w′′

]lc
+
[
w′′3

]lc
+

1
ρ0

[
p′′w′′

]lc

)
−
[
u′′w′′

]lc ∂ [u]lc

∂z
−
[
v′′w′′

]lc ∂ [v]lc

∂z
+

g
θvr

[
w′′θ′′v

]lc

−ε̃c (lc) . (18)

The advantage of Equations (16) and (18) is that they account for the cross-scale TKE transfer (as
is the case in Equation (9), but formally do not modify the classical TKE equation for NWP/GC models
(Equation (11)).

3. Method and Data

3.1. Estimation of the New Turbulence Length Scale

We estimate the turbulence length scale influenced by cross-scale TKE transfer, Lc, using LES data.
The traditional turbulence length scale, Lε, can be diagnosed for different scales from LES data for a
specific NWP/GC model resolutions according to Equation (15):

Lε =
(ek (kc))

3
2

ε
Cε, (19)

where:

ek (kc) =
∫ ∞

ki

(
Sek (k)

)
dk +

∫ ki

kc

(
Sek (k)

)
dk = ek,i +

∫ ki

kc

(
Sek (k)

)
dk. (20)

Here ek(kc) is the TKE obtained by integrating the TKE cospectra from the smallest scales to the NWP
cutoff. ek,i is the TKE corresponding to wave numbers larger than ki (cutoff wave number in the inertial
sub-range, see Equation (8), and is equal to the sub-grid scale TKE in the LES model. The dissipation rate,
ε, is available directly from the LES data and the TKE cospectra can be computed from the velocity fields
via Fourier transformation.

The new scale-dependent length scale, Lc, (see Equation (16)) can in principle be estimated in a
similar way:

Lc (kc) =
(ek (kc))

3
2

ε̃c (kc)
Cε. (21)

It is, however, costly to compute the contribution of the cross-scale TKE transfer to the effective
dissipation rate in spectral space. Instead of integrating the TKE equation in spectral space (application
of a clean wave-cutoff filter), we use volume averaging (application of a box filter in physical space) to
compute the terms in the prognostic TKE equation (Equation (18)) and express the reduced effective
dissipation rate, ε̃lc , as the residuum (see e.g., [44]):



Atmosphere 2020, 11, 425 8 of 20

ε̃c (lc) = −
∂elc

k
∂t
− [u]lc

∂elc
k

∂x
− [v]lc

∂elc
k

∂y
− [w]lc

∂elc
k

∂z

− ∂

∂z

([
u′′2w′′

]lc
+
[
v′′2w′′

]lc
+
[
w′′3

]lc
+

1
ρ0

[
p′′w′′

]lc
)

−
[
u′′w′′

]lc ∂ [u]lc

∂z
−
[
v′′w′′

]lc ∂ [v]lc

∂z
+

g
θvr

[
w′′θ′′v

]lc . (22)

The terms on the right-hand side of Equation (22) are computed from the LES data. To focus on the
dependence of the length scale on horizontal resolution, the []lc operator is interpreted as averaging over a
rectangular horizontal sub-domain of size lc on each vertical model level.

Thus, the new scale-dependent length scale, Lc, is computed by averaging over all sub-domains with
size equal to lc (similar to [15]; see Figure 1 for TKE example):

Lc (lc) =

〈
elc

k

〉 3
2

〈ε̃c (lc)〉
Cε, (23)

where <> denotes the averaging operator over all sub-domains with size lc.
For comparison, the classical turbulence length scale is estimated in the same manner:

Lε (lc) =

〈
elc

k

〉 3
2

ε
Cε, (24)

where ε is assumed to be equal to the effective dissipation rate, ε̃c, estimated from Equation (22) for the
whole domain.

The number and the size of the sub-domains are chosen so that both samples are large enough to
ensure the representativeness of the resulting quantities.

Also, LES domain size is chosen large enough to include a sufficient number of sub-domains with
spatial scales above the energy production range of TKE. The smallest sub-domains have a spatial scale in
the gray zone of turbulence. In this way, the scale dependence of the diagnosed turbulence length scale
can be investigated from conventional to gray-zone resolutions.

To verify whether the sub-domains reach into the energy production range, their sizes are compared
with the longitudinal integral turbulence length scales (see e.g., [45]):

Lu,x
i (z) =

1

u′2

∞∫
0

u′ (x, y, z) u′ (x + r, y, z)dr, Lv,y
i (z) =

1

v′2

∞∫
0

v′ (x, y, z) v′ (x, y + r, z)dr, (25)

which is an estimate of the size of the most energetic turbulent eddies. The integral length scales are
computed from data of the whole domain, and the integration is done only up to the value where the
auto-correlation function falls off to 1/e [45].

3.2. LES Simulations

The new length scale diagnostic is tested on four idealized cases, all developed by the Global Energy
and Water Cycle Experiment (GEWEX): the drizzling stratocumulus case based on the first research flight
(RF01) of the second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study [46],
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the continental cumulus case based on measurements over the Atmospheric Radiation Measurement (ARM)
program Cloud and Radiation Testbed (CART) site in Oklahoma [47,48], the trade wind cumulus case based
on observations from the Barbados Oceanographic and Meteorological Experiment (BOMEX) [49], and the
fourth test case is based on the GEWEX Atmospheric Boundary Layer Study (GABLS1) project [50–52].

This relatively diverse set of cases is chosen to demonstrate the capabilities of the new turbulence
length scale diagnostic in different ABL regimes. The results can additionally indicate, to what extent the
turbulence length scale is case sensitive.

All simulations are performed with the MicroHH LES model [53,54]. MicroHH is setup and
run according to the description of the cases. Moist thermodynamics is employed in the simulations
for DYCOMS-II, ARM and BOMEX case. The GABLS1 simulation is run with dry thermodynamics.
Parametrization of radiation and microphysics is used only in the DYCOMS-II case. These processes are
deactivated in the remaining cases.

With the aim of gaining statistics for a wide range of horizontal scales, a relatively large horizontal
domain size and high horizontal resolution are used for the LES runs. This enables study of the influence
of the horizontal scale on the diagnosed turbulence length scale. The vertical domain size and resolution
follow the description and recommendation in their respective inter-comparison studies (while maintaining
a physically reasonable aspect ratio of the gird box). The resolutions, the sizes of the domain and the
integration time are summarized in Table 1.

Table 1. Horizontal and vertical domain size, horizontal and vertical resolution, and integration time for
the LES runs.

Case Hor. Domain Size Hor. Resol. Ver. Domain Size Ver. Resol. Integration Time

ARM 12.8 km × 12.8 km 12.5 m 1500 m 31.125 m 10 h
BOMEX 12.8 km × 12.8 km 12.5 m 3000 m 23.44 m 6 h

DYCOMS-II 12.8 km × 12.8 km 12.5 m 1500 m 2.93 m 4 h
GABLS1 800 m × 800 m 0.78125 m 400 m 0.78125 m 6 h

The turbulence length scale is diagnosed on data from rectangular horizontal sub-domains.
We construct the sub-domains by decomposing the whole domain into equal squares, with 1, 2, 4, 8,
16, and 32 sub-domains in each direction.

Example of sub-domains construction is displayed in Figure 2.
For the turbulence length scale diagnostic, the TKE budget terms are averaged over all the

sub-domains of the same size. The LES statistics are averaged over one hour in time.
All the MicroHH LES simulations reproduce the results of the respective LES inter-comparison studies.
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Figure 1. The TKE budget terms (a,d,g,j), the TKE (b,e,h,k) and the normalized differences in the
effective dissipation rate, ∆ε̃c (lc) /εmax = (ε̃c (lc)− ε)/ maxz(ε), (c,f,i,l) for four cases: ARM (first row),
BOMEX (second row), DYCOMS-II (third row), and GABLS1 (fourth row). The TKE budget terms are
displayed for the smallest sub-domain size, where side of the sub-domain is equal to 1/32 of the side of
the whole domain. The TKE and the differences in the effective dissipation rate are displayed for different
sub-domain side sizes, lc.
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Figure 2. Example of sub-domains construction.

3.3. Fit of Turbulence Length Scale

For demonstration, the diagnosed turbulence length scales are fitted with the following algebraic
height-dependent relationship [16,18] :

L f it =
(CK Cε)

1
4

CK

κz

1 + κz
λm

 1+exp
(
−am

√
z

Habl
+bm

)
βm+exp

(
−am

√
z

Habl
+bm

)
 , (26)

where κ = 0.4 is the von Kármán constant, CK = 0.0882 and Cε = 0.871 are closure constants, Habl is the
ABL height; and am, bm, βm and λm are shape constants. The length scales are fitted with the least-squares
method implemented in the scipy Python package. Habl and the shape constants are used as fitting
constants. The bounds and the value of the first guess for the fitting constants are presented in Table 2.

Table 2. First guess and bounds for the fitting constants in Equation (26).

Fitting Constant First Guess Minimal Value Maximal Value

Habl 1000 m 0 m 2000 m
λm 350 m 0 m 1000 m
am 5.5 0 100
bm 3.0 0 100
βm 0.02 −0.2 0.5
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3.4. Computation of Turbulence Fluxes

For illustration, the diagnosed turbulence length scales are used to compute the turbulence fluxes for
the GABLS1 case, following the local down-gradient NWP turbulence parametrization of [11]:

w′θ′ = −C3CKφ3Ri f L
√

ek
∂θ

∂z
, (27)

u′w′ = −CKχ3Ri f L
√

ek
∂u
∂z

, (28)

v′w′ = −CKχ3Ri f L
√

ek
∂v
∂z

, (29)

Ri f = −
g

θvr
w′θ′v(

u′w′ ∂u
∂z + v′w′ ∂v

∂z

) , (30)

where C3 is a closure constant. The flux Richardson number, Ri f , the TKE, the potential temperature θ,
and the wind components are obtained by time averaging the corresponding LES data. The turbulence
length scale L stands for either the diagnosed turbulence length scale, Lc, or the parametrized turbulence
length scale, LB, according to Equation (18) in [16]. LB is computed as a minimum of an algebraic [18] and
a TKE-based [25] turbulence length scale relationship:

LB = min
(

L f it, LBL

)
, (31)

LBL =

(
L−4/5

up + L−4/5
down

2

)−5/4

, (32)

where LBL is given by the balance between TKE and local stability. Lup and Ldown are upward and
downward free paths, respectively.

3.5. Gravity Waves

The velocity fluctuations in the LES data are caused by both turbulent motions and by gravity
waves [15]. The effect of gravity waves is particularly strong above the ABL in the convective cases
(BOMEX and ARM). Since it is difficult to separate the TKE from the wave kinetic energy in this region,
the estimation of TKE from the LES data is inaccurate. Therefore, we avoid this problematic region in
the fitting procedure, and perform the fitting only on data below the cloud top. Cloud top and cloud
base are defined in this paper as layers above/under the cloud, where the cloud fraction becomes smaller
than 0.005.

4. Results

Results of the turbulence length scale diagnostic for the four idealized cases are presented next.
We start with the input parameters to the diagnostic: the TKE and the effective dissipation rate
(see Equation (23)). The vertical profiles of the sub-gridscale TKE, elc

k , and the normalized differences
in the effective dissipation rate between the sub-domain and the whole domain, ∆ε̃c (lc) /εmax =

(ε̃c (lc)− ε)/ maxz(ε), are presented in Figure 1. The first column in Figure 1 also shows the TKE budget
terms for the smallest sub-domain. The changes in the size of the sub-domain are interpreted as changes
in the corresponding horizontal grid resolution in an NWP model (see Section 3).

The TKE dissipation rate, ε, is set to the value of the effective dissipation rate of the whole domain,
whose scale is assumed to be above the energy-containing range. The LES data is sampled every 60 s.
The LES statistics are obtained by averaging over the last hour of the integration for the ARM, BOMEX,
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and DYCOMS-II cases. For GABLS1, the LES statistics are obtained by averaging over 45 min after 5 h of
integration. To avoid division by zero in the following length scale diagnostic, ε̃c is limited by a minimal
value of 5× 10−5 m2 s−3, much smaller than the typical values of ε̃c.

We can see in Figure 1 that the TKE, elc
k , gradually decreases with the decreasing size of the sub-domain

throughout the entire vertical profile. In comparison, there is more vertical variability in the changes
in the effective dissipation rate, because these are dictated by the budget of the TKE. Higher values of
source terms and transport terms are usually correlated with stronger changes in ε̃c. Among the four cases,
the GABLS1 case manifests the weakest scale dependence due to relatively low intensity of the TKE source
terms. The remaining cases show a similar vertical pattern with increasing horizontal grid resolution for
an NWP model: increase of ε̃c near the surface layer, strong decrease of ε̃c under the cloud base and under
the cloud top, and low scale dependence around the middle of the cloud layer.

The longitudinal integral length scales (see Equation (25)), Lu,x
i and Lv,y

i , the diagnosed turbulence
length scale, Lc, its fit according to Equation (26), L f it, and the parametrized turbulence length scale
according to Equation (31), LB, are presented in Figure 3. The scale dependence of the classical length
scale, diagnosed from ε, Lε (lc) (see Equation (24), black and gray lines in Figure 3), is determined solely
by changes in TKE. Therefore, the changes in Lε mirror the changes in TKE and are thus relatively uniform
with height. Lε is, as expected, a monotonous function of the sub-domain size that converges linearly
with e3/2

k to zero (see Equation (24)) for very small sub-domains. The behavior of the new length scale
Lc (lc) (see Equation (23)) is more complicated, because it depends on two factors, the TKE and ε̃c. With an
increase in resolution, the decrease of ε̃c increases Lc in comparison with Lε. This effect can even lead
to a growth of Lc with increasing resolution. The dependence of Lc on the sub-domain size is thus not
always monotonous and can result in local maxima of Lc for a specific resolution within the gray zone.
Of course, Lc should ultimately converges to zero for very small sub-domains. Reflecting the changes of ε̃c,
the resolution-dependence of Lc changes with height. Obviously, the biggest differences between Lc and
Lε are in the regions where the magnitude of ∆ε̃c is large: just below the cloud base and the cloud top in
the three cloudy cases.

The changes in ε̃c start to have a significant impact on the turbulence length scale diagnostic from
a sub-domain size of 1.6 km × 1.6 km for the cloudy cases and at a sub-domain size of 50 m × 50 m for
GABLS1. This can be interpreted as the beginning of the gray zone of turbulence. The largest impact of
ε̃c changes are to be expected at sub-domain sizes around the longitudinal integral length scale, which
is approximately 200 m to 400 m for ARM and BOMEX, 100 m to 300 m for DYCOMS-II and 10 m to
30 m for GABLS1. For all cases, the smallest sub-domain sizes are slightly larger than the integral length
scales. Hence, all sub-domain sizes are in the upper part of the energy-containing range of TKE, or above
it. The setup of the sub-domain is thus suitable for the scale dependence analysis of the upper part of the
gray zone.

The influence of ε̃c makes Lc more variable than Lε, resulting sometimes in atypical vertical profiles
compared to a classical turbulence length scale formulation. This is demonstrated via the fitting of Lc with
an algebraic height-dependent relationship (see Equation (26)). The fit works very well for the GABLS1
case, where Lc and Lε are very similar. In the cloudy cases, the curvature of the vertical profile of Lc

increases with resolution, especially under the cloud base. This strong curvature cannot be completely
fitted with the prescribed algebraic formulation.

Additionally, it would be impossible to fit a second peak in the vertical profile of Lc with the chosen
algebraic formulation, because the formulation implicitly implies a single-peaked vertical distribution.
However, the existence of a second peek under the cloud top in our data is disputable. The presence
of gravity waves near the top of the ABL in ARM and BOMEX, make the estimation of TKE and ε̃c

unreliable there (see Section 3.5). The proper resolution of this issue would be to separate the velocity
fluctuations caused by gravity waves from the turbulence fluctuations and diagnose Lc arising only from



Atmosphere 2020, 11, 425 14 of 20

the turbulence part of the flow. This is however beyond the scope of this paper. Therefore, we opt for
a pragmatic approach, and we fit only the data under the cloud top for the ARM and BOMEX case.
Concerning the DYCOMS-II case, it is well known that most LES models have difficulties in modeling
stratocumulus cases, especially near cloud top [55,56]. This is also seen in our simulations. Hence the TKE
budget analyses for the DYCOMS-II case near the cloud top is also not reliable. Data from runs with an
enhanced LES code could improve the diagnostic of Lc for this case.

The estimation of both Lc and Lε near the cloud top is strongly affected by inaccuracies in the data,
because in this region the turbulence length scale is estimated as the ratio of two small numbers. To avoid
this problem, the effective dissipation rate or the dissipation rate could be fitted/parametrized in a different
way (e.g., direct parametrization without the need for a length or time scale ). This would, however,
require a modification of the classical TKE scheme, which is beyond the scope of this paper.

To verify whether the diagnosed turbulence length scale is usable in a NWP turbulence scheme, it is
compared with the parametrized turbulence length scale, LB (see Equation (31)). The diagnosed turbulence
length scale for the larger sub-domains has a similar magnitude as LB. This confirms the validity of
the turbulence length scale diagnostic for the NWP scales. There are differences in the shape between
Lc and LB, especially for the GABLS1 case. It is expected that the performance of an NWP turbulence
parametrization would improve if Lc or its fit would be used instead of LB for the computation of the
turbulence fluxes (see Equations (27)–(29)). It must be however noted that the turbulence length scale
is only one factor in the computation of the turbulence fluxes. The calibration of the closure constants,
the shape of the stability functions, the choice of the stability parameter, and the parametrization of
non-local effects also influence the quality of the turbulence scheme. Hence, the turbulence scheme
should be tested as a whole and should be adjusted if a new turbulence length scale formulation is used.
Such modifications are, however, beyond the scope of this paper.

For illustration, and instead of testing the fit of Lc in an NWP parametrization, Lc is used for
the computation of the local down-gradient turbulence fluxes according to Equations (27)–(29) directly
from the LES data. These fluxes are then compared with the turbulence fluxes computed using LB and
with fluxes obtained directly from LES (see Figure 4) for the GABLS1 case. The cloudy cases are no
included, because they would involve an additional parametrization of the non-local turbulence fluxes.
The comparison in Figure 4 shows that the fit of Lc and Lε outperforms the parametrized LB in GABLS1.
The turbulence fluxes computed with Lc are in good agreement with the LES fluxes and show a similar scale
dependence. As expected, the computed turbulence fluxes are getting smaller for smaller sub-domains,
because both the TKE and the turbulence length scale are getting smaller. From the perspective of the NWP
parameterization, this corresponds to the increase of the horizontal resolution, where larger turbulence
eddies are being resolved. To avoid double counting, the computed sub-grid scale turbulent fluxes should
become smaller. The difference between Lc and Lε for the smaller sub-domain (for larger sub-domains
they are basically identical) shows that for Lε the decrease of the turbulence fluxes is stronger than for Lc.
This is the direct consequence of accounting for the cross-scale TKE transfer in the turbulence length scale
diagnostic, which results in a smaller effective dissipation rate weaker in comparison to the dissipation rate.

When compared with the LES results, the scale dependence of the turbulent fluxes is too strong for
both Lε and Lc. However, the scale dependence caused by Lc is smaller than the scale dependence cause
by Lε and is thus closer to the LES results. Quantification of scale dependence is important for future
development of a scale-dependent turbulent length scale formulation.
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Figure 3. As in Figure 1, but comparison of the longitudinal integral turbulence length scales
(see Equation (25)) for the zonal wind, Lu,x

i , and the meridional wind, Lv,y
i is computed for the period one

hour before the end of the simulation (a,d,g,j); diagnosed turbulence length scales computed from the
effective dissipation rate, Lc (lc) (see Equation (23)); and the dissipation rate, Lε (lc) (see Equation (24)),
(b,e,h,k); and their respective fits with the relationship in Equation (26) (c,f,i,l). The parametrized turbulence
length scale according to Equation (18) in [16], LB, is also presented (c,f,i,l). The fits for the ARM and
BOMEX cases are done only with data below the cloud top (indicated by horizontal line).
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Figure 4. The turbulent heat flux (a) and the turbulent momentum fluxes (b,c) for GABLS1. The turbulent
fluxes are computed according to the local down-gradient formulation (see Equations (27)–(29)) using
the fit of the diagnosed turbulent length scale, Lc, (cyan lines), fit of Lε (green lines), or the parametrized
turbulence length scale according to Equation (18) in [16], LB, (red lines) for two sub-domain sizes (dashed
lines versus solid lines). The turbulent fluxes acquired directly from LES are plotted with blue lines.

5. Discussion

We have derived and presented a new turbulence length scale diagnostic based on LES data that
contains the influence of the sub-grid (in an NWP context) cross-scale TKE transfer. Differently from
the classical turbulence length scale, Lε [15], (see Equation (15)) the new turbulence length scale, Lc,
is computed from the effective TKE dissipation rate, ε̃c (lc), instead of the TKE dissipation rate, ε.
The effective dissipation rate takes into account the influence of the cross-scale transfer of TKE from
the resolved to the sub-grid scales, which is non-zero in the gray zone of turbulence.

The effective dissipation rate is estimated from the TKE budget (see Section 2). The diagnostic of
the associated turbulence length scale, Lc, thus aims directly at the role of the turbulence length scale:
parametrization of the TKE loss via dissipation and cross-scale TKE transfer. Thanks to this, Lc does not
require other simplified, limiting assumptions, compared to other formulations of the turbulence length
scale (see Section 1). Consequently, our new approach offers a better reference for the parametrization of
the turbulence length scale in the gray zone of turbulence, where neither the classical NWP or the LES
assumptions are applicable. The new diagnostic can thus be used as a basis for a new scale-dependent
turbulence length scale formulation suitable for the gray zone of turbulence.

The influence of the cross-scale TKE transfer in the upper part of the gray zone of turbulence on ε̃c

is presented in Section 4 for four LES cases: ARM, BOMEX, DYCOMS-II, and GABLS1. The differences
between ε̃c and ε basically indicate the largest scales at which the gray zone of turbulence starts to be
significant, which in itself could be useful for gray zone detection.

Results in Section 4 show the shape of the vertical profile of Lc varies more strongly with the horizontal
scale than the shape of the Lε profile, due to the influence of ε̃c on Lc.

In the gray zone, the vertical profiles of Lc have thus a rather atypical shape and cannot be fitted with
the usual algebraic height-dependent relationships.

To fit the diagnosed Lc values a modification of the algebraic formulations would be required, such as
an increase in curvature and possibly the addition of a secondary maxima. We plan to propose a new
height-dependent algebraic formulation based on our results in future research. We must however
point out that finding a generally valid algebraic formulation, might prove to be difficult, because the
properties of Lc are case sensitive. Therefore, this will require a considerable effort and the analyses of
more simulations. Another possibility is to use a TKE dependent, or prognostic turbulence length scale
formulations [21–25,27] (see Section 1), which correspond better to the actual state of the turbulent flow.
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In the gray zone, the turbulence length scale should be a function of the grid resolution. One approach
is the blending of an NWP/GC turbulence length scale and a small-scale 3D mixing length scale
(see Section 1) [40–42]. These methods deliver a turbulence length scale that is a monotonous function
of the resolution. The blending is also a height independent procedure. We have shown in Section 4
that the classical turbulence length scale, Lε, is a monotonous function of the resolution and that its scale
dependence does not change with height. These two properties are not always valid in the gray zone,
as demonstrated by our new turbulence length scale, Lc. This finding should be considered in the design
of a new turbulence length scale parametrization in the gray zone of turbulence.

Our method of diagnosing the turbulence length scale for the purpose of NWP parameterization is
universal, and should work for any turbulent flow. Nonetheless, the quality of the method is affected by
the accuracy of the LES data. Above all, sufficiently large samples need to be used in the computation of
the TKE budget terms. For this reason, relatively large horizontal domains and high horizontal resolutions
are needed for the LES runs. Reliability of the diagnostic can be additionally affected by gravity waves,
as has been discussed in Section 4. Separation of turbulence and gravity waves at the same scale is difficult,
but, if possible, this would address the problem of the diagnostic of the turbulence length scale near cloud
top for shallow convective cases. It should also be mentioned that LES models have their own inherent
limitations. For example modeling of stratocumulus cases is not satisfactory with most LES models. There
are proposals to mitigate this problem [55,56], and we would like to test data produced with such an
enhanced LES code.

We have demonstrated that the fit of the diagnosed turbulence length scale has similar magnitudes as
the parametrized turbulence length scale according to [16] (see Figure 3) and it performs well in a local
down-gradient turbulence flux computation (see Figure 4). However, to assess the added value of the new
turbulence length scale formulations, it needs to be tested in a full NWP parametrization.
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