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Abstract: Photospheric motions are believed to be the source of coronal heating and of velocity
fluctuations detected in the solar corona. A numerical model, based on the shell technique applied on
reduced magnetohydrodynamics equations, is used to represent energy injection due to footpoint
motions, storage and dissipation of energy in a coronal loop. Motions at the loop bases are simulated
by random signals whose frequency-wavenumber spectrum reproduces features of photospheric
motions: the p-mode peak and the low-frequency continuum. Results indicate that a turbulent
state develops, dominated by magnetic energy, where dissipation takes place in an intermittent
fashion. The nonlinear cascade is mainly controlled by velocity fluctuations, where resonant modes
are dominant at high frequencies. Low frequency fluctuations present a power-law spectra and a
bump at p-mode frequency; similar features are observed in velocity spectra detected in the corona.
For typical loop parameters the energy input flux is comparable with that necessary to heat the
quiet-Sun corona.

Keywords: solar corona; turbulence; numerical modeling

1. Introduction

The solar corona is the most external, rarefied and hottest part of the Sun’s atmosphere, which
is formed by a plasma at an average temperature of the order of or larger than T ∼ 106 K.
It is permeated by a strongly inhomogeneous magnetic field which is generated by the dynamo
mechanism [1–7] operating in the solar convection zone. Among coronal magnetic structures, coronal
loops represent a common configuration. The problem of elucidating the physical mechanisms which
are responsible for the energization of the solar corona and its consequent heating has been widely
studied from a theoretical point of view. One of the possible sources of energy for the corona is
represented by mechanical motions in the photosphere, which is the lowest and most dense part of
the solar atmosphere. The energy associated with these motions, after crossing the chromosphere [8],
would be partially transferred to the rarefied corona through the magnetic field which is rooted
in the photosphere and ubiquitously fills the corona. Two important issues still under debate are
the following: (i) in which form and at which timescales does the energy of photospheric motions
reaches the corona? (ii) How is this energy moved to the very small scales where it can be dissipated?
This paper aims to give a contribution to both points.
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Concerning the first question, models of coronal heating have been traditionally classified into
two groups: “direct current” (DC) or “alternating current” (AC). In the former case, slow photospheric
motions are considered, with timescales longer than the Alfvén crossing time tA, which is the time a
perturbation takes to cross a closed magnetic structure propagating at the Alfvén velocity. In that case,
coronal structures continuously re-arrange through a sequence of quasi-equilibrium states. Magnetic
energy increases in time until reaching a threshold when it is suddenly dissipated, while the kinetic
energy remains at a much lower level. In contrast, AC heating models consider perturbations at
timescales comparable to or shorter than tA, essentially belonging to the Alfvén branch, where kinetic
energy is of the order of magnetic energy. Indeed, quasi-periodic plasma velocity fluctuations have
been ubiquitously detected in corona, propagating along the magnetic field with velocities compatible
with the Alfvén speed [9–11]. The frequency f of such fluctuations spans a wide range, going from
f ' 10−4 Hz� t−1

A to f ' 2× 10−2 Hz . t−1
A . The frequency range of detected photospheric motions

is as much as wide [12,13]. Observations also suggest the existence of velocity fluctuations in the
corona at much higher frequencies, based on measurements of non-thermal broadenings of coronal
lines [14]. Therefore, the distinction between AC or DC mechanisms appears to be quite artificial,
since both kind of processes are probably at work at the same time [15]. In the present paper we will
consider a situation where the frequency range of excited fluctuations covers both kind of phenomena.

Energy injected in the corona needs to be transferred to small dissipative scales in order to
be converted into heat. Concerning this second question, different possibilities have been studied
about the involved mechanism. Some of them are related to spatial inhomogeneities of the coronal
structures that generate small scales in the perturbations propagating inside them, both within a fluid
approach [16–26] and taking into account kinetic effects [27,28]. These models consider the coupling
between perturbations and a nonuniform background. In contrast, nonlinear couplings among
perturbations are at the base of turbulence models, which describe the formation of an energy cascade
that transfers fluctuation energy to small dissipative scales [29–39]. Evaluations of energy balance
between injected flux and spectral transfer has also been carried out in direct simulations [40–42]. More
recently, models taking into account both turbulence and inhomogeneities have been proposed [43].
Related to the heating problem, other aspects have also been considered in the dynamics of a coronal
loop, such as the complexity of magnetic topology induced by motions at its ends [44], or kink
and Alfvénic torsional mode interactions [45–47].

Some of the above-cited papers are concerned with direct numerical simulation of
magnetohydrodynamic (MHD) equations, and based on first principles. However, due to numerical
limitations, the wide range of spatial scales of coronal turbulence is not adequately described.
This problem can be circumvented using “reduced” models of turbulence, like the so-called shell
models [30,31,48], in which the dynamics of turbulence is represented in a simplified Fourier space.
In a coronal context, hybrid shell models have been developed [33,37], based on Reduced MHD
(RMHD) [49,50]. In such models the spatial dependence on the coordinate along the background
magnetic field is retained, which allows one to impose boundary conditions at the coronal base.
This approach is more appropriate with respect to classical shell models, since it is believed that
the energization of the coronal structures is due to motions at the coronal base. Hybrid shell models
have successfully reproduced statistical properties of coronal energy release events [33], as well as
the energy flux [38,39] necessary to maintain the corona at the observed temperature [51]. Moreover,
they predict fluctuating velocity enhancements associated with loop resonance [38,39], which can be
related to increases of the spectral energy flux [39] and to triggering of solar flares [34,35].

In references [33,35] a time dependent velocity has been imposed at the loop bases at the largest
transverse scales, with a correlation time of the order of tcorr = 300 s, corresponding to the typical time
of photospheric p-modes. In the present study we perform numerical simulations of turbulence in
a coronal loop, by means of the same hybrid shell model as in [33,35], but using different boundary
conditions. In particular, the presently adopted boundary conditions try to give a more realistic
representation of the spatial and temporal dependence of photospheric motions. They are based
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on detailed space-time measurement of the photospheric velocity field [12,13]. Beside p-modes,
the corresponding frequency spectra display also oscillations at much lower frequencies, with different
contributions at different spatial scales. The aim of the present study is to elucidate to which extent
a more realistic representation of photospheric motions driving coronal loop oscillations can affect
the results, in terms of loop frequency spectra, resonance triggering, level of oscillations and incoming
energy flux. These results are relevant in the perspective of obtaining a more realistic modeling of
the turbulence dynamics in a coronal loop.

2. Modelling Turbulence and Boundary Motions in a Coronal Loop

In this section we briefly describe the model we adopted to represent the turbulence in a coronal
loop, and how boundary conditions at the loop bases have been implemented. More details on
the numerical model can be found in reference [33].

2.1. The Hybrid Shell Model

We consider a simplified representation of a coronal loop, where the loop curvature is neglected.
We use a Cartesian reference frame in which the x axis is parallel to the loop axis, and we represent
the loop as an elongated parallelepiped, with longitudinal length L|| and perpendicular width L⊥, equal
in both transverse y and z directions, such that L|| � L⊥. The numerical model is based on RMHD
equations. In this context it is assumed that the loop is permeated by a strong uniform longitudinal
magnetic field B0 = B0ex, with B0 constant and ex indicating the unit vector in the parallel direction.
Small-amplitude magnetic field perturbations δB are superposed on the background magnetic field
B0: δB � B0. Moreover, the longitudinal spatial scale `|| of perturbations is assumed to be much
larger than the perpendicular scale: `|| � `⊥. Under these assumptions the RMHD equations can be
derived [49,50]. They can be written in the following dimensionless form:

∂Z±

∂t
∓ ∂Z±

∂x
+
(
Z∓ · ∇⊥

)
Z± +∇⊥p = χ∇2

⊥Z± , (1)

∇⊥ · Z± = 0 , (2)

where Z± = v⊥ ± b⊥ are the Elsässer variables; v⊥ and b⊥ are the transverse components of velocity
and magnetic field normalized to cA and B0, respectively; cA = B0/(4πρ0)

1/2 is the Alfvén velocity
and ρ0 is the background uniform mass density; p is the total (kinetic + magnetic) pressure, normalized
to B2

0/4π. Lengths are normalized to the loop longitudinal size L||, time t is normalized to the Alfvén
crossing time tA. The dissipation coefficient is χ = µ/(cAL||) where the magnetic diffusivity µ has
been assumed equal to the kinematic viscosity ν. Equation (2) implies that transverse motions are
non-compressive, while Equation (1) indicates that propagation take place in the longitudinal direction
at the Alfvén speed.

The above equations are the basis to derive the hybrid shell model [33]. First, Equations (1) and
(2) are Fourier-transformed with respect to the transverse coordinates, while the dependence on the
longitudinal coordinate x is kept. The underlying assumption is that the turbulent fluctuations are
statistically homogeneous in the transverse directions. In particular, the transverse structuring of the
loop is neglected in the present simplified model. Then, the k⊥ plane is divided into concentric shells
of exponentially growing radius. For each shell a single scalar value kn = k02n of the wavevector
and a scalar complex value Z±n (x, t) of the transformed Elsässer variables are defined, where k0 =

2π(L||/L⊥) = 2π/R is the fundamental dimensionless wavevector, R = L||/L⊥ is the loop aspect ratio,
n = 0, ..., nmax, with nmax + 1 the number of shells. Convolution products corresponding to nonlinear
terms in Equation (1) are represented by products between variables Z±n (x, t) belonging to nearest or
next nearest neighbor shells. Finally, the coefficients of such products are determined by imposing
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that nonlinear terms conserve the 2D quadratic invariants: total energy, cross-helicity and squared
magnetic potential [30]. The final form of the hybrid shell model equations is the following [33]:(

∂

∂t
∓ ∂

∂x

)
Z±n = ikn

(
13
24

Z±n+2Z∓n+1 +
11
24

Z∓n+2Z±n+1 −
19
48

Z±n+1Z∓n−1 −
11
48

Z∓n+1Z±n−1

+
19
96

Z±n−1Z∓n−2 −
13
96

Z∓n−1Z±n−2

)∗
− χk2

nZ±n , (3)

where i is the imaginary unit and the asterisk indicates complex conjugate. The expression
(3) represents a system of coupled partial differential equations. We used an initial condition
corresponding to an unpertubed loop: Z±n (x, t = 0) = 0. Boundary conditions must be given at
the two loop ends: x = 0 and x = 1. Since Equation (3) describe the propagation of Z−n (Z+

n ) along
the positive (negative) x direction, at each boundary only the value of the “incoming” variable can be
imposed. On the other hand, at boundaries we want to impose the value of the (transverse) velocity,
which represents how photospheric motions solicitate the two loop ends. This is done by expressing
the velocity in terms of the Elsässer variables; therefore, the expression of incoming variables at the two
boundaries are:

Z−n (x = 0, t) = 2uL,n(t)− Z+
n (x = 0, t) , (4)

Z+
n (x = 1, t) = 2uR,n(t)− Z−n (x = 1, t) , (5)

where the complex functions uL,n(t) and uR,n(t) represent the velocity perturbation of the n-th
shell at the boundaries x = 0 (left) and x = 1 (right), respectively, and will be specified later.
The Elsässer variables Z±n corresponding to perturbations leaving the spatial domain are determined by
the evolution Equation (3) inside the domain. We notice that the value of magnetic field fluctuation at
the two boundaries can be expressed as a combination of the velocity and of the “outcoming” Elsässer
variable: bn(x = 0, t) = Z+

n (x = 0, t) + uL,n(t) and bn(x = 1, t) = uR,n(t)− Z−n (x = 1, t). While
we impose uL,n(t) and uR,n(t), we cannot impose anything about the outcoming Elsässer variables.
Therefore, in our case the magnetic field fluctuation at boundaries is partially determined by the
velocity and partially by the internal dynamics.

The system (3) of 2(nmax + 1) coupled partial differential equations, with complex unknowns Z±n
depending on x and t, has been numerically solved using a second-order centered finite-difference
scheme in space and a second-order Runge-Kutta method in time. Since perturbations propagate along
x with velocity ±cA (with cA = 1 in normalized units), the size ∆x of spatial grid has been chosen such
that ∆x � cAtnl(kmax), where kmax = k02nmax and the nonlinear time tnl(k) can be estimated assuming
that fluctuations follow a Kolmogorov spectrum: t±nl(kmax) = 1/(Z±0 k1/3

0 k2/3
max). Being Z±0 ' b⊥0 < B0

(see below), we finally set the value of ∆x satisfying the condition ∆x � cA/(B0k1/3
0 k2/3

max). The time
step ∆t has been chosen such as to fulfil the CFL stability condition.

An energy balance equation can be derived from (3):

dE
dt

= P(t)−W(t) , (6)

where E(t), P(t) and W(t) are the total energy, the net power incoming through the boundaries
and the total dissipated power, respectively:

E(t) = ∑
n

∫ 1

0

[
|Z+

n (x, t)|2 + |Z−n (x, t)|2
]

4
dx , W(t) =

χ

2 ∑
n

∫ 1

0
k2

n

[
|Z+

n (x, t)|2 + |Z−n (x, t)|2
]

dx , (7)

P(t) =
1
4 ∑

n

[
|Z−n (0, t)|2 − |Z+

n (0, t)|2 + |Z+
n (1, t)|2 − |Z−n (1, t)|2

]
. (8)
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We consider a configuration where the loop width is L⊥ = 104 km; the aspect ratio is R = 30/(2π),
corresponding to a loop length L|| = 4.77× 104 km; the Alfvén velocity is cA = 3.18× 103 km/s
(corresponding to a crossing time tA = 15 s), the background density is ρ0 = 1.67× 10−16 g cm−3.
Correspondingly, the value of the background magnetic field is B0 = cA/(4πρ0)

1/2 = 14.5 G. The loop
sizes are slightly larger than those in Ref. [33] to adapt L⊥ to the wavelengths in photospheric data
(see below), while both R and tA are the same as in [33]. The normalizing factors for energy and power
are: EN = ρ0c2

AL3
||/R2 = 8.05× 1028 erg and WN = ρ0c3

AL2
||/R2 = 5.37× 1027 erg/s, respectively. The

shell technique allows to describe a very extended spectrum with a relatively small computational
effort. We set nmax = 11, corresponding to a spectral width kmax/k0 = 211 = 2048, and χ = 10−7.

2.2. Data Analysis

In the motions of the solar photosphere the convective dynamics coexists with the contribution of
global solar oscillations. Among the latter, p-modes are acoustic oscillations in the frequency range
(1− 5)× 10−3 Hz, whose contribution in k−ω Fourier spectra appears as a sequence of discrete ridges
(e.g., ref. [12]). At lower frequencies another contribution is found, in form of a continuum, commonly
attributed to the solar turbulent convection. However, there are indications, based on numerical
simulations, that the low-frequency continuum can arise from the interaction between convection
and g-mode global oscillations [52].

In order to set more realistic boundary conditions for the hybrid shell model, we consider a data
analysis of the photospheric velocity field [12,13] performed over a dataset obtained from images
acquired by the Michelson Doppler Imager (MDI) instrument mounted on the Solar and Heliospheric
Observatory (SOHO) spacecraft. Images have a spatial resolution of ' 0.6 arcsec, corresponding to
' 435 km on the Sun’s surface, a time resolution of∼ 60 s and the time series spans a period of duration
' 5.32× 104 s. The corresponding frequency range is 1.9× 10−5 Hz . f . 1.6× 10−2 Hz. In the typical
turbulence setup, energy is injected into the system at large spatial scales, denoted as “injection scales”.
In our case, the mechanism supposed to inject energy into the corona are photospheric motions. We
consider three distinct bands of wavelength λ in photospheric motions, which represent the injection
scales of our model: band B0, corresponding to 7000 km ≤ λ ≤ 14,000 km; band B1, corresponding
to 3500 km ≤ λ ≤ 7000 km; band B2, corresponding to 1750 km ≤ λ ≤ 3500 km. Motions in these
bands are used to setup the boundary conditions at the loop bases in the first three shells: u0L,R,
u1L,R, u2L,R are determined by motions in B0, B1, B2, respectively. We notice that the transverse
wavelenght (in physical units) corresponding to the shell n = 0 is λ0 = (2π/k0)L|| = L⊥ = 10,000 km;
therefore, λ0 is approximately located in the center of the length interval corresponding to band B0.
Similarly, the wavelengths corresponding to the shells n = 1 and n = 2 are λ1 = λ0/2 = 5000 km and
λ2 = λ0/4 = 2500 km, that are approximately located in the center of length intervals corresponding
to bands B1 and B2, respectively.

In Figure 1 the frequency spectra Un( f ), n = 0, 1, 2 derived from the dataset, corresponding
to the three spatial bands, are plotted. Each spectra is divided by the integrated energy UT =∫

∑n Un( f )d f , and the frequency f is normalized to t−1
A . In each band a peak is present, centered at

a f ∼ 0.05 and corresponding to the p-mode contribution, as well as the low-frequency continuum.
The frequency-integrated energy decreases going from larger (B0) to smaller (B2) spatial scales;
moreover, the p-modes to continuum contribution ratio also decreases from B0 to B2.
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Figure 1. Upper panel: the spectra U0( f ) (purple line) and F0(2π f ) (dashed line); middle panel:
the spectra U1( f ) (green line) and F1(2π f ) (dashed line); lower panel: the spectra U2( f ) (light blue
line) and F2(2π f ) (dashed line). Each spectra is divided by the integrated energy UT and is plotted as
a function of the normalized frequency f .

2.3. Boundary Conditions

To setup boundary conditions, we consider the following differential equation:

du
dt

= Ωu + µ(t) , (9)

where u(t) is a complex function of time; Ω = −1/T ± iω1 is a complex frequency, with T and ω1

real constants; and µ(t) = µR(t) + iµI(t) is a complex function. Performing the Fourier transform of
Equation (9) we find û(ω) = µ̂(ω)/ [1/T − i (ω±ω1)], where the “hat” indicate the Fourier transform.
Therefore, the power spectrum of the solution of Equation (9) is given by:

|û(ω)|2 =
|µ̂(ω)|2

(ω∓ω1)
2 + 1/T2

= L(ω)|µ̂(ω)|2 , (10)

where L(ω) is a Lorentzian function of width 1/T, centered at the frequency ±ω1. In our case,
we choose µR(t) and µI(t) as random signals with null autocorrelation time, which have a flat power
spectrum corresponding to a white noise. Approximating such a spectrum with a constant, it follows
that the power spectrum |û(ω)|2 of the solution has a Lorentzian shape, given by L(ω). Equation (9)
is numerically solved by a finite-difference second-order scheme, and at each time step ti the values
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µR(ti) and µI(ti) are random numbers extracted from a uniform distribution. This procedure allows
us to obtain a complex signal u(t) with an approximately Lorentzian spectrum, whose parameters
(center frequency and width) can be tuned by choosing the values ω1 and T.

For each of the three spatial bands B0, B1, B2, and for each boundary (left and right) we solve
three equations of the form (9): for two of them we use opposite values of the central frequency
(±ω1); this is intended to reproduce the contribution of p-modes in the spectrum, in the form of a
Lorentzian-shaped peak. For the third equation we set ω1 = 0, corresponding to a Lorentzian spectrum
centered at the null frequency; it models the low-frequency component of the photospheric spectrum.
The three functions obtained in this way are superposed at each time step with different amplitudes,
finally getting the signals: uL,n(t) and uR,n(t) for the left and right boundary, respectively, which give
the velocity imposed at the two loop ends for the first three shells. These are used in Equations (4)
and (5). Since the single solutions are statistically independent, the power spectrum of these signals is
given by the superposition of the three Lorentzian spectra. Therefore, the power spectrum of uL,n(t)
and uR,n(t) has the following form:

Fn(ω) = N2

{
a2

n,0

ω2 + 1/T2
n,0

+ a2
n,1

[
1

(ω−ωn,1)
2 + 1/T2

n,1

+
1

(ω + ωn,1)
2 + 1/T2

n,1

]}
, (11)

where, for each band n, T−1
n,0 and T−1

n,1 are the widths of the Lorentzian functions; an,0 and an,1 are
the corresponding amplitudes; ωn,1 is the frequency of the peak and N is a normalization factor.
The difference between the signals on the left and right boundary is only in the choice of the random
number seeds which determine the random functions µ(t). Since we used different random seeds
for the three shells and for the two boundaries, all the functions uL,n(t) and uR,n(t), n = 0, 1, 2, are
completely uncorrelated.

The values of the above parameters are reported in Table 1. They are chosen in a way to
approximately reproduce the shape of the three spectra plotted in Figure 1. Correspondingly, the RMS
value of the velocity at each end of the loop is uRMS =

[
∑n〈|uL,n(t)|2〉t

]1/2
=
[
∑n〈|uR,n(t)|2〉t

]1/2
=

1.25× 10−3 in dimensionless units (angular parentheses indicate time average), corresponding to
uRMS cA = 2.5 km/s, which is of the order of typically observed photospheric velocities. In Figure 1
the multiple Lorentzian spectra Fn (dashed lines) are plotted along with the spectra of photospheric
motions (full lines), for the three spatial bands B0, B1 and B2. We can see that multiple Lorentzian
spectra approximately fit the corresponding photospheric velocity spectra. In Figure 2 the spectrum
ev( f ) = ∑n=2

n=0 |ûR,n( f )|2 of the velocity imposed at the boundary x = 0 is shown as a function of the
frequency f . The velocity spectrum at the other boundary x = L is very similar and is not shown. The
presence of the peak at f = 0.05 is clearly visible, as well as the low-frequency component. Such a
spectrum is more noisy than the Lorentzian model (11) because the function µ(t) is obtained using
a random-number generating routine which gives a signal with a spectrum that is flat on average,
but with a certain amount of noise superposed.

Table 1. Values of the parameters of the multiple Lorentzian spectrum.

Band an,0 T−1
n,0 an,1 T−1

n,1 ωn,1/(2π) N

B0 3.84 0.010 9.70 0.030 0.05 10−4

B1 6.21 0.015 6.58 0.030 0.05 10−4

B2 6.58 0.020 2.33 0.030 0.06 10−4
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Figure 2. Power spectrum of the velocity v imposed at the boundary x = 0, as a function of
the normalized frequency f .

The above-described method to generate boundary conditions is a generalization of that used in
Ref. [33]. In that paper only the boundary at x = 0 was excited with a given velocity field at the first
three shells: uL,n(t) 6= 0 , n = 0, 1, 2, while a vanishing velocity was imposed on the other boundary:
uR,n(t) = 0. Moreover the frequency spectra of uL,n(t) were all Lorentzian fuctions with center at
ω = 0 and width corresponding to the p-mode frequency (' (300 s)−1). Those spectra can be obtained
from the expression (11) by setting an,1 = 0 and Tn,0 = π/10. It is clear that in the present case the
spectra are much more similar to the photospheric velocity spectra than those used in Ref. [33].

3. Results

Due to the velocity imposed at the boundaries, energy is continuously injected into the domain in
form of velocity and magnetic field fluctuations. The dynamics of such fluctuations is also determined
by their propagation along the loop and by nonlinear interactions which move energy towards small
scales, where it can be dissipated. In the top panel of Figure 3 the time dependence of the total energy
E is plotted. It can be seen that the model does not predict a stationary level for the total energy E of
the fluctuating fields inside the loop. On the contrary, E erratically varies during the time, reaching
higher values E ∼ (2− 4)× 1028 erg in the time interval 60 h . t . 95 h, and a much lower level,
roughly E ∼ 5× 1027 erg, during the interval 220 h . t . 320 h. This is due to the fact that the system
is characterized by different dynamical regimes, that we will describe later in this section.

In consequence of intermittency—a peculiar feature of this system [53]—the dissipated power
W displays abrupt bursts during the time (Figure 3) which are a signature of the fragmentation of
dissipative structures taking place at small scales. The average value of the dissipated power is
〈W〉t = 5.44× 1023 erg/s. Bursts of W can be identified as energy release events taking place in
the solar corona. Indeed, it has been shown that some statistical properties of dissipative events in
the hybrid shell model, namely, the distributions of peak intensity, duration time, released energy
and waiting times between subsequent events, positively compare with the same distributions found
for coronal energy release events [33].
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Figure 3. The total energy E (upper panel), the dissipated power W (middle panel) and the net
incoming power P (lower panel) are plotted as functions of time t.

The incoming power P varies on a very short time scale, assuming both positive and negative
signs. In fact, the value of P depends on both inward and outward propagating modes (Equation (8)),
i.e., P is determined not only by the boundary conditions but also by the internal dynamics. However,
the average value 〈P〉t = 5.60× 1023 erg/s is positive, indicating that, on average, motions imposed at
the loop boundary have introduced energy inside the loop. We notice that 〈P〉t ' 〈W〉t, indicating
that the incoming power is almost balanced by the dissipated power. A perfect balance is not reached
because the energy E contained inside the loop is not stationary in time.

We calculated the normalized cross-helicity σc = (E+ − E−)/(E+ + E−), where
the pseudo-energies are defined by E± = (1/4)∑n

∫ 1
0 |Z

±
n |2dx. The normalized cross-helicity satisfies

the condition |σc| ≤ 1; in particular, it is σc ∼ 1 (σc ∼ −1) when Z+ (Z−) fluctuations dominate on
Z− (Z+) fluctuations. In Figure 4 (upper panel) the normalized cross-helicity is plotted as a function
of time. It can be seen that σc is quite close to zero during almost all the simulation time, indicating
that the level of Z+ fluctuations is comparable with that of Z− fluctuations. Indeed, we will show
that the most energetic fluctuations are low-frequency magnetic fluctuations, where |vn| � |bn| (in
dimensionless units), this latter condition corresponding to |Z+

n | ∼ |Z+
n |. Therefore, the dominance

of magnetic fluctuations is compatible with low |σc| values. During a short interval around t ' 280
h, σc displays fast oscillations where it changes sign on a short time scale, reaching values sensibly
different form zero. During this phase of the time evolution the dominance of magnetic perturbations
is temporarily suppressed, as testified by the particularly low value of the total energy E (Figure 3).
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Figure 4. The normalized cross helicity σc = (E+ − E−)/(E+ + E−) (upper panel) remains quite close
to zero during the simulation time, except around t ' 280 h, while the mean-square magnetic potential
HA =< ∑nmax

n=0(|bn|/kn)2 >x (lower panel) has the same profile of the total energy as functions of
the time t.

The squared magnetic potential, defined as H = (1/2)∑n
∫ 1

0 |bn/kn|2dx, is plotted as a function
of time in the lower panel of Figure 4. Comparing with the total energy plotted in Figure 3 we see that
H and E have a very similar time behaviour. This is again due to the dominance of large-scale magnetic
fluctuations in determining E and to the fact that the major contribution to H comes from magnetic
fluctuations at low kn values. We notice that both cross-helicity Hc = E+ − E− and squared magnetic
potential H are ideal invariants of 2D shell models, i.e., they are exactly conserved by nonlinear terms
in Equation (3). However, in the hybrid shell model H and Hc are not conserved, both because of the
driving imposed at boundaries x = 0 and x = 1, and in consequence of dissipation.

In order to see how velocity and magnetic field fluctuations are on average distributed along
the longitudinal extension x of the loop, we calculated the RMS of the velocity and magnetic field
fluctuations as function of x, as in the following:

vRMS(x) =

[
nmax

∑
n=0
〈|vn(x, t)|2〉t

]1/2

, bRMS(x) =

[
nmax

∑
n=0
〈|bn(x, t)|2〉t

]1/2

(12)

where vn = (Z+
n + Z−n )/2 and bn = (Z+

n − Z−n )/2. These quantities are plotted in Figure 5, where
time average has been performed over different intervals of time. In particular, we consider the RMS
of both velocity and magnetic field fluctuations computed by considering the whole simulation time
(black solid lines in Figure 5), for the interval 0 ≤ t . 54 h (grey dot-dashed lines) and for the interval
58 h . t . 116 h (magenta dashed lines), respectively.

From Figure 5 we see that the velocity and magnetic field fluctuation levels averaged over
the whole simulation are vRMS ∼ 5 × 106 cm s−1 and bRMS ∼ 5 G, respectively. We notice that
bRMS/B0 ' 0.33, which is sufficiently consistent with the assumptions of RMHD. The RMS values
corresponds to fluctuating kinetic and magnetic energy densities: εk = ρ0v2

RMS/2 ' 2× 10−3 erg cm−3

and εm = b2
RMS/(8π) ' 1 erg cm−3. Therefore, the fluctuating magnetic energy is much larger than

the kinetic one. This property is peculiar to models describing the DC coronal heating. Comparing
the profiles in the two time intervals [0 h, 54 h] and [58 h, 116 h], we see that velocity fluctuations are
larger when the total energy E is lower. Indeed, it has been shown [34,38] that a higher level of velocity
fluctuations corresponds to a more efficient energy transfer from larger to smaller transverse scales.
Therefore, the higher energy level in the interval [58 h, 116 h] can be interpreted as due to a lower
velocity fluctuation level that partially inhibits the nonlinear cascade, allowing the energy—mostly
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magnetic energy—to accumulate at large scales. It is interesting to note that the velocity fluctuations in
time interval [58 h, 116 h] are slightly lower than the average value computed on the whole simulation
but certainly lower than those calculated in time interval [0 h, 54 h]. This highlights the high sensitivity
of this system with respect to the velocity field fluctuations as regards the development of the nonlinear
cascade and, consequently, of the intermittency. Moreover, since most of the energy E is of magnetic
origin, it is not surprising that larger E corresponds to higher bRMS values. Finally, we observe that
the spatial profile bRMS(x) is essentially flat, with small-amplitude modulations along x, while the
vRMS(x) profile starts from values of the order of a few km/s at the two boundaries x = 0 km and
x = 3× 104 km, rapidly reaching vRMS ' 50–60 km/s inside the loop. The latter values are compatible
with velocity measurements deduced by the nonthermal broadening of coronal spectral lines [14].
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Figure 5. The RMS velocity vRMS (left panel) and magnetic field bRMS (right panel) fluctuations are
plotted as functions of x for the whole simulation time (black solid lines), for the interval 0 ≤ t . 54 h
(grey dot-dashed lines) and for the interval 58 h . t . 116 h (magenta dashed lines).

Analyzing the system in terms of input—embodied by the forcing velocity—and of output,
i.e., the response of the system embodied by dynamically developed energy features, we examine
the spectral kinetic and magnetic energies with their properties. These quantities are defined by

ev(ω) =
nmax

∑
n=0

∫ L

0

dx
L
|v̂n(x, ω)|2 , eb(ω) =

nmax

∑
n=0

∫ L

0

dx
L
|b̂n(x, ω)|2 , (13)

where vn(x, t) = ∑ω v̂n(x, ω) exp(−iωt) and bn(x, t) = ∑ω b̂n(x, ω) exp(−iωt). They have been
computed in two dynamically different time intervals, namely 0 h ≤ t ≤ 54 h and 58 h ≤ t ≤ 116 h.

The kinetic energy imposed at the boundaries through the forcing velocity displays the same
features as observed in the data of the photospheric velocity (input of the system). In particular,
a bump centered at frequency f = 0.05, corresponding to (300 s)−1, is reproduced in the frequency
spectrum (see Figure 2). Correspondingly, the system responds by forming energy spectra with peculiar
characteristics (see Figures 6 and 7): a well-defined spike is present both in kinetic and magnetic spectra,
centered at the fundamental resonant frequency f = 0.5, i.e., inverse of the Alfvén crossing time tA,
as well as subsequent spikes corresponding to the higher harmonics, at frequencies multiples of the
fundamental one ( f = 1, 1.5, 2, 2.5, 3, 3.5, 4). Resonant modes are standing Alfvénic fluctuations which
are excited by the broad-band spectrum of the boundary velocity [38,39]. All these spikes are very
sharp and slender. The resonance phenomenon is related to partial reflection of fluctuations taking
place at both boundaries x = 0 and x = 1. Of course, since the net incoming flux P takes both positive
and negative signs in time (Figure 3), the reflection is not total, otherwise no energy could enter or
leave the spatial domain.
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Figure 6. The kinetic spectra ev (black lines) vs. frequency f = ω/2π display resonance spikes
and peaks, clearly detectable both in semi-log scale (left panels) and log scale (right panels), as well
as a power-law range at low frequencies (the magenta line indicate a fitting in the frequency interval
0.001 < f < 0.1). The kinetic energy spectrum does not seem to significantly change when computed
at diverse time intervals: 0 ≤ t ≤ 54 h (upper panels) and 58 h ≤ t ≤ 116 h (lower panels)).
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Figure 7. The magnetic spectra eb (black lines) plotted vs. frequency f = ω/2π display resonance
spikes, broader peaks and a power-law range at low frequencies, clearly observable when plotted both
in semi-log scale (left panels) and log scale (right panels). The power-law (magenta line) fitting the
spectra in the frequency interval 0.001 < f < 0.1 changes index when calculated in the time intervals
0≤ t ≤ 54 h (upper panels) and 58 h≤ t ≤ 116 h (lower panels), showing the accumulation of magnetic
energy at large scales in the second time interval.

Another feature which is present both in kinetic and magnetic spectra is a broader peak centered
at frequency f = 0.05, corresponding to the analogous peak in the forcing velocity spectrum (Figure 2),
which represents the contribution of p-modes. Therefore, the model predicts that a clear signature
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of this particular photospheric frequency should be found in the spectrum of plasma velocity up
in the corona. We also verified that such frequency is present in the body of the loop, far from
the boundaries: indeed, even including only the central part of the loop in the integration domain (see
Equation (13), the peak at f = 0.05 in the resulting spectra is still present.

A relevant feature of kinetic and magnetic frequency spectra is the existence of power-law ranges
at low frequencies. Considering the kinetic spectrum, we find a power law dependence in the interval
of frequencies [0.001, 0.02], corresponding to 6.6× 10−5 Hz . f . 1.3× 10−3 Hz, in physical units.
A fitting procedure gives a spectral index b = −1.0± 0.2 when the spectrum is calculated in the time
interval [0 h, 54 h]. The index value slightly increases in absolute value when the time series considered
for computing the spectrum is in the interval [58 h, 116 h], though this variation remains within
the error bar. The existence of a power-law ranges in spectra of velocity measured in corona has been
pointed out by [9–11], in the frequency range 2× 10−4 Hz . f . 10−2 Hz. The spectral index varies
according to the considered region within the corona, but it is around b ' −1 in quiet-Sun regions [11].
Therefore, the power-law range found in our result is in good accordance with measures of velocity
fluctuations in quiet-Sun regions.

Considering magnetic spectra (Figure 7), the power law is steeper and much more energy is
accumulated mostly at low frequencies with respect to kinetic spectra. Moreover, the difference in
the spectral index is significant (out of the error bar) when the spectrum is computed for the time
series considered in time interval [0 h, 54 h] (b = −2.4 ± 0.2) and the time interval [58 h, 116 h]
(b = −2.8± 0.2). This actually indicates that in the latter time interval, where the velocity fluctuation
level is lower, nonlinear interactions are significantly less efficient than in the former. In conclusion,
our results indicate that a higher level of velocity fluctuations corresponds to a lower level of fluctuating
energy (mainly magnetic), a higher value of dissipation and a shallower magnetic spectrum. All these
features are related with a larger spectral energy flux associated with the nonlinear cascade.

In Figure 8 the transverse kinetic and magnetic spectra, defined by εv = 〈|vn(x, t)|〉 and εb =

〈|bn(x, t)|〉, respectively, are plotted as functions of the transverse wavenumber kn. Angular
parentheses indicate space average in the domain 0 ≤ x ≤ 1 and time average over a given interval T.
The left and right panel refer to the time intervals T1 = [0, 54 h] and T2 = [58 h, 116 h], respectively. At
large transverse scales magnetic energy largely dominates over kinetic energy. However, there the
magnetic spectrum is steeper and reaches the level of kinetic spectrum at intermediate wavenumbers,
where a short range is present, with a kinetic-magnetic energy quasi-equipartition. The kinetic
spectrum have a power-law range with a spectral index quite close to the Kolmogorov value (full line).
Comparing the spectra in the two periods, we see that the of level of magnetic energy is larger in T2

than in T1, consistently with larger total energy E (Figure 3); kinetic energy shows the opposite trend
in the two periods.
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4. Conclusions

In this paper we have presented a numerical simulation describing the long-term behaviour of
turbulence in a coronal loop, which is continuously solicited at its bases by photospheric motions.
The simulation covers a time interval of few thousand hours, which is much longer than any involved
dynamical time. The possibility of representing such a long interval of the time evolution with an
acceptable computational effort is due to the employment of the Hybrid Shell Model [33]. On the other
hand, in order to avoid exceedingly longer computational times, a smaller spectral width has been
used than, for instance, in [38]. This has given a less detailed description of the perpendicular kinetic
and magnetic spectra. An important feature of the model is the possibility to implement boundary
conditions at the loop bases, which represent a key aspect of the present work. In contrast, no boundary
conditions can be specified in other kinds of shell models [30] which have been applied to represent
the turbulence dynamics in the solar corona [31].

With respect to previous works [33–35], the present simulation includes a more realistic
representation of plasma motion soliciting the loop. In particular, we have considered frequency
spectra of photospheric motions, calculated at different spatial scales from a dataset of the SOHO/MDI
instrument [12,13]. Such spectra show two different contributions: a peak at frequency ∼ (300 s)−1,
corresponding to global p-mode oscillations, and a continuum at lower frequencies. The latter can be
interpreted as due to the interaction between global gravity modes and the velocity pattern associated
with convection. Indeed, numerical simulations have shown that the presence of the convective layer
allows gravity modes, otherwise vanishing, to reach the photosphere and to appear as low-frequency
oscillations at a spatial scale comparable with that of convection [52]. The relative contribution of
p-modes and of low-frequency continuum is different at the various spatial scales.

In our model we have set up boundary conditions which emulate the above properties of
photospheric motions. We have built up a numerical procedure which generates random motions at
the loop bases at three different spatial scales. The associated velocity has multiple-Lorentzian spectra,
whose parameters have been chosen in a way to fit the observed photospheric spectra. Such boundary
conditions allow energy to enter the loop at different spatial and temporal scales, though the incoming
power is determined by the interplay between boundary motions and internal dynamics [38,39].
For the considered parameters, we have found a net average incoming power 〈P〉t ' 5.60× 1023 erg s−1,
corresponding to a incoming energy flux Φin = 〈P〉t/L2

⊥ ' 5.6× 105 erg s−1 cm−2. Such a value
compares well with the energy flux required to keep the quiet-Sun corona at the observed temperature
against radiative and conductive losses [51]. In the model we have assumed that the spectral properties
of photospheric motions can be directly used to define boundary conditions at the loop bases. This
assumption neglects the presence of the chromosphere and of the transition region, located between
the photosphere and the corona. Those strongly inhomogeneous layers can affect the transmission
of motions from the photosphere to the corona; modelling in a realistic way their effects represents a
difficult task, even if steps in that direction have been done (e.g., [54,55]). On the other hand, one can
expect that motions at the coronal base are somehow related to motions in the photosphere. In this line
of ideas, our model represents a step toward increasing realism with respect to a series of previous
similar models [33–39], always bearing in mind its own limitations. In particular, the above estimation
of the incoming energy flux Φin could be affected by the lack of the atmospheric layers between the
photosphere and the corona.

Concerning the boundary condition, it might be interesting to compare the dynamics here
described with that obtained using “open” boundary conditions, which have been considered in
another model [55] based on the same equations as the hybrid shell model. In open boundary
conditions the incoming Elsässer variable is specified at boundaries, instead of velocity. In that
model is has been found that an energy leakage is present for open boundary conditions, which
modifies the dynamics, e.g., sensibly lowering the level of turbulent fluctuations [55]. In our case, the
choice of imposing the velocity at the boundaries (“line-tying” boundary conditions) is based on the
consideration that, due to the much larger density of lower atmospheric layers, the inertia of the fluid
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underlying the corona is much higher than that of the coronal plasma. As a consequence, the velocity
in low layers drives motions at the coronal base. We also notice that a certain level of energy leakage is
also present in our model. In fact, we have found an amount of outcoming power which is of the same
order as the incoming power (Figure 3).

The fluctuating energy inside the loop is mainly magnetic, indicating that frequencies lower
than t−1

A are mainly responsible for the loop energization, similar to what happens in classical DC
heating mechanims. However, though the kinetic energy level is much lower than magnetic energy,
velocity fluctuations play an important role in controlling the turbulent cascade, and consequently
dissipation and heating. In fact, in our simulation we observed that a higher level of velocity
fluctuations corresponds to a larger dissipated power and a lower level of fluctuating energy. This is
in accordance with previous numerical results [34], as well as analytical predictions [38,39] showing
that the energy flux along the spectrum is larger for higher levels of fluctuating velocity. Therefore,
in our model both DC and AC phenomena are important: while DC phenomena seem to regulate
the net energy input and determine the predominance of magnetic with respect to kinetic energy,
AC phenomena regulate the energy flux along the spectrum and, indirectly, dissipation and heating.
The model results indicate a time-averaged velocity fluctation inside the loop ranging between ∼45
and∼60 km/s. These values are of the order of typical fluctuating velocities of coronal plasma deduced
from measures of nonthermal broadenings of coronal lines [14].

The fluctuating velocity inside the loop is one order of magnitude larger that the velocity imposed
at the loop bases. This growth of velocity amplitude in the loop body indicates kinetic energy storage,
due to a resonance effect. The phenomenon of loop resonance is confirmed by the presence of
well-defined resonance lines in the higher frequency part of both kinetic and magnetic energy spectra.
A signature of the peak at frequency f ∼ 3.3× 10−2 Hz in the spectrum of boundary condition is
found both in the kinetic and magnetic spectrum. Another relevant feature is localized in the lower
frequency part of the kinetic energy spectrum, namely, a power-law range, with spectral index ' −1
in the frequency range 6.6× 10−5 Hz . f . 1.3× 10−3 Hz. It compares well with frequency spectra of
velocity measured in coronal structures [9,11]. Indeed, in such spectra power-law ranges are found for
2× 10−4 Hz ≤ f ≤ 10−2 Hz, with a spectral index which is ' −1 in quiet-Sun regions [11]. Magnetic
reconnection in complex magnetic configurations, like in the quiet-Sun corona, has been considered as
an additional source of Alfvén waves [56]. However, magnetic reconnection cannot be described by
our model, due to the lack of spatial dependence on transverse coordinates.

In conclusion, our numerical model, with the implementation of more realistic boundary
conditions, is able to reproduce several observational features of coronal structures in quiet-Sun
regions, with particular regard to velocity spectra. In the next future we plan to improve the realism
of the model by including a longitudinal stratification of the density, in order to reproduce possible
effects of gravity, such as partial reflection of parallel-propagating perturbations.
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