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Abstract: Trauma triggers a rapid innate immune response to aid the clearance of damaged/necrotic
cells and their released damage-associated molecular pattern (DAMP). Here, we monitored the
expression of EMR2/ADGRE2, involved in the functional regulation of innate immune cells, on circu-
lating neutrophils in very severely and moderately/severely injured patients up to 240 h after trauma.
Notably, neutrophilic EMR2 showed a uniform, injury severity- and type of injury-independent
posttraumatic course in all patients. The percentage of EMR2+ neutrophils and their EMR2 level
increased and peaked 48 h after trauma. Afterwards, they declined and normalized in some, but
not all, patients. Circulating EMR2+ compared to EMR2− neutrophils express less CD62L and more
CD11c, a sign of activation. Neutrophilic EMR2 regulation was verified in vitro. Remarkably, it
increased, depending on extracellular calcium, in controls as well. Cytokines, enhanced in patients
immediately after trauma, and sera of patients did not further affect this neutrophilic EMR2 increase,
whereas apoptosis induction disrupted it. Likely the damaged/necrotic cells/DAMPs, unavoidable
during neutrophil culture, stimulate the neutrophilic EMR2 increase. In summary, the rapidly in-
creased absolute number of neutrophils, especially present in very severely injured patients, together
with upregulated neutrophilic EMR2, may expand our in vivo capacity to react to and finally clear
damaged/necrotic cells/DAMPs after trauma.

Keywords: EMR2; adhesion G-protein coupled receptor; neutrophils; polytrauma; DAMP; severe
injured patient

1. Introduction

Injuries, both unintentional and violence-related, take the lives of five million people
worldwide each year and constitute 10% of all deaths (https://www.who.int; accessed on 19
August 2023). Tens of millions more people suffer non-fatal injuries each year. Polytrauma
results in an imbalanced pro- and anti-inflammatory/resolving immune response leading
to immune dysfunction [1,2]. It is triggered by the tremendous release of damage-associated
patterns (DAMPs) from damaged, dying or dead cells and inflammatory mediators such
as complement and cytokines [2–4]. Innate immune cells, especially neutrophils, become
activated and assume the first line of immune defense against DAMPs (reviewed in [5]).

Adhesion/class B2 G protein-coupled receptors (aGPCRs) are a structurally separate
class of GPCRs [6–8]. They have an extended N-terminal extracellular domain (ECD) that
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contains various protein folds, facilitating cellular adhesion to and interaction with other
cell surface receptors or extracellular matrix constituents, and the GPCR autoproteolysis
inducing domain (GAIN), covering its internal GPCR proteolysis site (GPS). The receptors
are self-cleaved at the GPS into two non-covalently associated fragments (reviewed in [9]).

Of the 33 aGPCR members in humans, 8 are present on hematopoietic stem, progen-
itor and/or mature cells [10]. All family ‘E’ members, compromising EMR1/ADGRE1,
EMR2/ADGRE2, EMR3/ADGRE3 and CD97/ADGRE5 in humans, are expressed in innate
immune cells. They possess N-terminal repetitive, alternatively-spliced epidermal growth
factor (EGF)-like adhesive folds. Their number and sequence determine the adhesion of
these receptors to several binding partners [11].

The expression of EMR2 on myeloid cells such as granulocytes and monocytes/macro-
phages [10,12,13] suggests that this aGPCR is involved in the regulation of the innate
immune response. Indeed, the activation of EMR2 by monoclonal antibody (mAb) ligation
regulates neutrophil responses by potentiating the effects of pro-inflammatory media-
tors [14], and changes the cytokine secretion profile and survival of lipopolysaccharide
(LPS)-treated neutrophils [15]. In blood-derived monocytes, the EMR2 mAb ligation or
EMR2 binding of a complex consisting of factor H-related protein 1 (FHR1)/necrotic-type
cells triggers the phospholipase C (PLC)-pathway and the assembly of the NLPR3 in-
flammasome [16,17]. This signaling cascade finally leads to caspase 1-dependent release
of pro-inflammatory cytokines IL-1β and IL-18. NLPR3 represents the principal inflam-
masome activated in innate immune cells through DAMP recognition, finally leading to
pyroptosis [18].

In contrast to the well-clarified signaling cascades following EMR2 activation, there are
very little data on what regulates EMR2 expression in innate immune cells. Under which
(patho)physiological conditions EMR2 is up- or downregulated and what the potential
stimuli or suppressors for EMR2 expression are remains unclear. Clinical data indicate that
EMR2 increases in circulating neutrophils in patients with non-infectious systemic inflam-
matory response syndrome (SIRS) compared to healthy controls [14,19], but neutrophilic
EMR2 had been quantified only once in these patients.

Here, we examined the posttraumatic course of EMR2 expression in circulating neu-
trophils in traumatized patients with a wide range of injury severity scores (ISSs) to calculate
the effects of the traumatic event on EMR2. The data, obtained at six defined time points up
to 10 days after trauma, were related to time-matched clinico-pathological parameters of
the patients. Finally, we verified in vitro the stimuli/conditions upregulating neutrophilic
EMR2 after trauma.

2. Materials and Methods
2.1. Ethics Statement and Clinical Study of Traumatized Patients

The prospective study was approved by the local ethics committee at the Leipzig
University (reference number 188-17lk). Samples and data were collected with informed
written consent of patients or their legal representatives and of uninjured volunteers.
Patients were excluded if one or more of the following criteria were fulfilled: age < 18 years,
time between trauma and hospital admission > 1 h, life expectancy < 24 h, participation in
other trials, cardiopulmonary reanimation at scene of the accident, dying immediately after
hospital admission, known or suspected pregnancy, and radio- or chemotherapy within the
last 3 months. We included 34 trauma patients; their median age was 54.0 (34.0–71.5) years
and 73.5% were male. The ISS was estimated after whole-body computed tomography
and was confirmed retrospectively after hospital discharge. It varied from 9 to 66 (33.5,
21.3–41.5), that is, from moderate to very severely injured. By definition, an ISS of 1–8
is considered minor, 9–15 moderate, 16–24 severe, and 25 and higher very severe [20].
The patients were divided into two groups: ISS < 25 (9–24, n = 9) moderately/severely
injured and ISS ≥ 25 (n = 25) very severely injured; patients’ main characteristics are shown
in Table 1; for information concerning the type of injury see Table S1. All body regions,
classified based on the abbreviated injury scale (AIS) [21], were involved in injuries.
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Especially in patients with an ISS < 25, daily scores such as the Sequential Organ Failure
Assessment (SOFA) score could not be generated in all cases after 24 h because patients
often left the intensive care unit (ICU), and thus the parameters of such scores were not
further evaluated. The study included five volunteers who underwent the same time course
in blood taking as the patients but experienced no injury and were not hospitalized. The
median volunteer group age was 51.0 (41.0–60.0) years, and three of the participants were
male. Blood was taken once from a further 16 uninjured volunteers for in vitro experiments.

Table 1. Patient characteristics according to the ISS.

ISS < 25 ISS ≥ 25 p-Value *

patients (n) 9 25

ISS 17 (10.5–18.0) 38 (30.5–44.0) <0.001

age (years) 65.0 (39.0–74.0) 53.0 (32.5–68.0) 0.355

sex, female (n) 2 8 0.673

days at ICU (n) 2.0 (1.5–3.34) 11.0 (5.0–15.5) <0.001

days in hospital (n) 15.0 (11.0–28.0) 19.0 (13.0–35.5) 0.335

death in hospital (n) 2 2 0.489

surgery between 1–8 h (n) 5 21 0.216

SOFA score # at 24 h 1.0 (0–3.0) 6.0 (2.0–10) 0.003

* Mann–Whitney U test; # Sequential Organ Failure Assessment (SOFA).

2.2. Blood Sample Preparation and Determination of Parameters

Blood was obtained at 1, 8, 24, 48, 120, and 240 h upon admission to the hospital.
Tolerance for blood taking was ±10%/time span. Leukocytes were prepared within 15 min
after blood draw. 2.5 mL EDTA-treated blood was added to 22.5 mL Schwinzer red blood
cell lysis solution [22] and incubated for 10 min at 4 ◦C. The cells were washed twice
with PBS (pH 7.4) at 300× g. For patients, the full leukocyte cell count was determined in
EDTA-blood in an automatic blood cell analyzer (XN-9000 Sysmex GmbH, Norderstedt,
Germany) at each time point. To obtain serum or EDTA-plasma, the respective Monovette
(Sarstedt AG, Nümbrecht, Germany) was centrifuged at 2000× g for 10 min at 20 ◦C. The
supernatants were transferred into encoded cryotubes, stored at −80 ◦C, and thawed
only once for analysis. IL-6, IL-8, and CCL2 (MCP-1) were quantified in sera using the
human IL-6, IL-8, and MCP-1 BD OptEIA ELISA kits (Becton Dickinson GmbH, Heidelberg,
Germany). C-reactive protein (CRP) was quantified in sera by immunoturbidimetry and
procalcitonin (PCT) in plasma using TRACE technology (Roche Deutschland Holding
GmbH, Grenzach-Wyhlen, Germany).

2.3. CFHR1 Genotype Assessment

The copy number variation (CNV) analysis of CFHR1/CFHR3 was carried out using
multiplex ligation-dependent probe amplification (MLPA) with the P236-B1 probe mix,
according to manufacturer’s instructions (MRC Holland, Amsterdam, The Netherlands).
Fragment analysis was carried out on a Genetic Analyzer ABI3500 (Thermo Fisher Scientific,
Darmstadt, Germany) and Gene Mapper Software 5.0. Data analysis was performed using
the MLPA module of JSI SequencePilot (JSI Medical Systems, Ettenheim, Germany).

2.4. Flow Cytometric Analysis of Patients’ Leukocytes

Each Ab (Table S2) was titrated for optimal concentration to establish a multi-color
Ab-panel, not shown completely, for circulating myeloid cells. To prevent unspecific Ab
binding, the Fc-blocking agent (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) was
added 10 min before Ab staining. Two leukocyte samples were prepared at each time point.
The first contained all Abs, and the second was a fluorescence minus one (FMO) control,
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in which the interesting Abs were replaced by isotype-specific controls labeled with the
respective fluorophores. The Ab-panel was applied for 30 min at 4 ◦C, the cells were washed
three times and analyzed immediately using flow cytometry. Before each measurement, the
flow cytometer (BD LSRFortessaTM X-20 Cell Analyzer; Becton Dickinson) was calibrated
using Sphero™ Rainbow Calibration Particles (Becton Dickinson). The datasets of all
individuals were analyzed using FlowJo Software 10 (FlowJo LLC, Ashland, OR, USA). For
quality control of the fluorescence measurements over a long time, the FlowClean plugin
was applied.

The main gating and analysis strategy for neutrophils is shown in Figure S1a,b. Gran-
ulocytes were separated from monocytes, dendritic, natural killer (NK), and T/B-cells via
CD14, CD56, HLA-DR, and CD3/CD19/CD20 Ab staining. Using CD16/CD45, we sepa-
rated neutrophils from eosinophils, which are CD16− CD45high. Mature granulocytes are
CD16high CD45mid. The CD16low CD45mid subset contains immature granulocytes [23,24].
Both neutrophil subsets were analyzed for the percentage of EMR2+ cells, and the median
fluorescence intensity (MFI) of EMR2 expression (Figure S1b). To verify the quality of
our flow cytometric analyses, we compared the percentage of leukocyte subsets among
all leukocytes quantified either via flow cytometry or the automatic blood cell analyzer.
The percentages of neutrophils and eosinophils correlated strongly between both meth-
ods (Figure 1a). Thus, the relative percentage of EMR2+ cells can be related to absolute
cell numbers.
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Figure 1. Posttraumatic course of leukocyte blood counts.(a) Correlation of the percentage of subsets
within all leukocytes (set 100%) quantified via flow cytometry (flow) or an automatic blood cell ana-
lyzer (auto); n = 32 patients, n= 186 time points; Spearman’s correlation coefficient r and p values are
shown. (b–d) Absolute numbers of circulating leukocytes (b), mature (c), and immature neutrophils
(d) in patients 1–240 h after trauma, determined using an automatic analyzer. Comparison between
patient groups ISS < 25 (9–24) and ISS ≥ 25, t-test (leukocytes, mature neutrophils), U-test (immature
neutrophils); comparison between consecutive time points in one patient group: ANOVA; only
significant changes related to the previous time point are shown; * p < 0.05, ** p < 0.01, *** p < 0.001.

2.5. Leukocytes and Neutrophils for In Vitro Experiments

To investigate in vitro the conditions/stimuli upregulating neutrophilic EMR2 in
trauma patients, we initially compared methods for leukocyte isolation and neutrophil
enrichment. Cell purity and viability were quantified through side- (SSC-A) and forward
(FSC-A) scatter analyses and staining with the Fixable Viability Dye BV605 (Becton Dickin-
son) in flow cytometry. The loss of CD16 in isolated or enriched cells was quantified as an
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indicator for programmed cell death induction in neutrophils [25]. A 1 g sedimentation
over 50 min and two washing steps at 20 g for 20 min [26] preserved viability and CD16high

surface expression over 17 h in vitro as in leukocytes isolated via red blood cell lysis,
but this method took more time. To enrich neutrophils, density gradient centrifugation
at 550 g/30 min using Polymorphprep was used (Serumwerk Bernburg, Germany), but
yielded insufficient purity. A multistep protocol including the removal of platelets and a
two-time density gradient of histopaque 1119 and 1077 (Sigma-Aldrich GmbH, Taufkirchen,
Germany) at 700 g/45 min centrifugation [27] avoided the release of cell debris via red
blood cells lysis. However, damaged/dying cells and cell debris were still present, as seen
through unbiased scatter analysis in flow cytometry; thus, neutrophils were truly enriched
only up to ~70%. Partly, these cells lost CD16 early in vitro. Overall, high g-forces and
centrifugation times have a paralytic impact on neutrophils [26]. Finally, we decided to use
leukocytes after red blood cell lysis.

2.6. In Vitro Experiments

To verify whether a patient’s circulating EMR2− and EMR2+ neutrophils differ in
their activation status, isolated leukocytes were either left untreated or stimulated with
10 ng/mL TNFα (ImmunoTools GmbH, Friesoythe, Germany) for 20 min, stained for CD45,
EMR2, CD62L, CD11b, and CD11c and analyzed using flow cytometry.

To investigate EMR2 upregulation in vitro, the wells for leukocyte incubation (37 ◦C,
5% CO2) were either pre-coated with 5 µg/mL FHR1 (Sigma-Aldrich) or bovine serum
albumin (BSA) for 1 h. Each 5 × 105 leukocytes of uninjured volunteers were incubated for
0.5 up to 17 h either in RPMI1640/10% FCS (control) or in 10% human serum or plasma
taken from patients 24 h after trauma or from uninjured volunteers. Amounts of 1 mM
EDTA and 10 µM BAPTA-AM (Cayman Chemical, Ann Arbor, MI, USA) were added
to chelate calcium. Amounts of 2 ng/mL rh IL-1b, 10 ng/mL rh IL-6, 2 ng/mL rh IL-8,
2 ng/mL rh IL-17b, 10 ng/mL rh CCL2 (MCP1), 10 ng/mL rh TNFa (all Immunotools), or
1 mM LPS (Sigma-Aldrich) were added to verify the role of cytokines and LPS, respectively.
The impact of intrinsic and extrinsic apoptosis was quantified with 1 µM staurosporin
(Hycultec GmbH, Beutelsbach, Germany) and 5 ng/mL TNFα/10 µg/mL cycloheximide
(Biozol GmbH, Eching, Germany), respectively. A total of 20 mM Z-VAD-FMK (ENZO
Life Sciences, Lörrach, Germany) was used to examine the role of caspases induced during
apoptosis. Necrotic leukocytes were generated via three-time repeated freeze/thaw cycle
of 2 min liquid nitrogen and 4 min 37 ◦C or via heat (65 ◦C, 5–45 min) [16,28]. The
5 × 105 necrotic cells and their released components were added to 5 × 105 leukocytes.
Force was applied via orbital shaking (300 rpm). The cells were stained first with the
Viability Dye, afterwards blocked for Fc-receptor binding, stained for EMR2 and other cell
surface receptors and analyzed via flow cytometry.

2.7. ADGRE2 qRT-PCR Analysis

The 4 × 106 leukocytes were homogenized in 300 µL RLT Buffer (Qiagen, Hilden,
Germany) and total RNA was isolated according to the manufacturer’s instructions. For
cDNA synthesis, 0.1 µg RNA was transcribed using the SuperScript™ IV First-Strand
Synthesis System (Thermo Fisher Scientific). The relative levels of cDNA were quantified
using a Rotor-Gene RG3000 (Qiagen, Hilden, Germany) with the ∆∆Ct method. The
expression of specific genes was normalized to RLP27. Primer sequences can be provided
upon request.

2.8. Statistics

Normally distributed continuous variables were presented as mean ± standard error
of mean (SEM), non-normally distributed as median and the interquartile range (25th–75th
percentile). Data were analyzed using SPSSv27 (IBM, Armonk, NY, USA) and GraphPad
Prism10 (GarphPad Software, Boston, MA, USA). p values were two-sided and α < 0.05
was used for hypothesis testing.
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3. Results
3.1. Higher Absolute Blood Counts for Neutrophils in Very Severely Injured Patients

First, we compared moderately/severely with very severely injured patients for basic
diagnostic data. The leukocyte count was higher in very severely injured patients at most
posttraumatic time points (Figure 1b), confirming that leukocytosis after trauma is related
to injury severity [29]. Consistent with this is the higher neutrophil count at many time
points in these patients (Figure 1c), underscoring that neutrophilia is one of the first changes
following trauma [5]. The typical early posttraumatic increase in the immature neutrophil
count [5] was seen especially in the very severely injured patients (Figure 1d). In total, we
confirmed well-established clinical data and, importantly, both patient groups differ in the
absolute number of (immature) neutrophils.

3.2. Uniform Posttraumatic Course of EMR2 Expression on Neutrophils in Injured Patients

The percentage of mature EMR2+ (CD16high CD45mid) neutrophils and EMR2 expres-
sion level in these cells showed a characteristic, uniform posttraumatic course in all injured
patients (Figure 2a–c). Both parameters were low from 1 to 8 h after trauma. Afterwards,
they increased, reaching the maximum at 48 h. At 120–240 h after trauma, the percentage
of EMR2+ neutrophils and their EMR2 expression level declined but remained at a higher
level 120–240 h compared to 1–8 h after trauma. Surprisingly, the posttraumatic course
of EMR2 was seen in all patients and was not associated with injury severity and type
of injury.

In CD16low CD45mid neutrophils, mainly comprising immature neutrophils, we ob-
served a similar posttraumatic course of EMR2 expression (Figure 2d,e). However, the
percentage of EMR2+ CD16low neutrophils 24–240 h after trauma was lower and imma-
ture neutrophils expressed less EMR2 compared to mature ones (Figure 2b,e). Indeed,
neutrophil maturation and differentiation are paralleled by increased ADGRE2 levels, as
reanalyzed published data [30] show (Figure 2f).

In healthy people, EMR2 expression on neutrophils is low [19,31,32]. To verify how
EMR2 varies over 240 h, the same period as for injured patients, we examined uninjured,
non-hospitalized volunteers (Figure S2a,b). The percentage of EMR2+ neutrophils varied
between them but remained constant for single individuals (Figure S2c). Interestingly,
several volunteers showed repeatedly increased neutrophilic EMR2 levels compared to
others (Figure S2c).

In summary, EMR2 was upregulated in mature and immature neutrophils after trauma.
To verify whether this is caused by protein synthesis, we quantified ADGRE2 in the post-
traumatic course (Figure 2g). Because very little blood could be taken from injured patients,
leukocytes were analyzed. ADGRE2 mRNA increased at 8 h and remained high at 120–240 h
in trauma patients but not in uninjured volunteers.

3.3. Circulating EMR2+ Neutrophils Express Less CD62L and More CD11c Compared to EMR2−

After trauma, a subset of mature (CD16high) and a subset of CD16low neutrophils ex-
pressed EMR2. We quantified EMR2− and EMR2+ mature neutrophils for activation-related
molecules (Figure 3a,b). TNFα, a strong neutrophil activator and used as a positive control,
left EMR2 unchanged but lowered CD62L and enhanced CD11b and CD11c (Figure 3b),
confirming well-known data [33]. Untreated or TNFα-stimulated EMR2+ neutrophils ex-
pressed less CD62L and more CD11c compared to EMR2− neutrophils, but CD11b was not
changed (Figure 3b). Thus, EMR2+ compared to EMR2− neutrophils were more activated
or primed for activation.

Not shown in detail, the EMR2− and EMR2+ cells in each mature and immature neu-
trophils neither represent the CD16high CD62low or the CD16lowCD62Lhigh subset present
in healthy volunteers and changed in their percentages among all neutrophils in trauma
patients [23].
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Figure 2. Posttraumatic course of EMR2 in circulating neutrophils. (a,b) Percentage of EMR2+ mature
(CD16high) neutrophils (a) and median fluorescence intensity (MFI) of EMR2 (b) in these cells. (c) Time
course of EMR2 expression on neutrophils of one typical patient. The percentage of EMR2+ cells is
indicated in the graph; the MFI of EMR2+ cells (at 1 and 8 h isotype control) is shown in the upper right
corner. (d,e) Percentage of CD16low EMR2 neutrophils (d) and their EMR2 MFI (e). (a–e) Comparison
between patient groups ISS < 25 (9–24) and ISS ≥ 25: t-test; comparison between consecutive time
points in one patient group: ANOVA, only significant changes related to the previous time point are
shown; * p < 0.05, ** p < 0.01, *** p < 0.001. (f) The expression of ADGRE2, encoding EMR2, during the
maturation of myeloid cells. RNA sequencing data were derived from [30]. ADGRE2 is upregulated
during the maturation of neutrophils. ADGRE1, encoding EMR1, is present only in circulating
eosinophils [19]. Thus, it decreased after the immature stage. FPKM, fragments per kilobase per
million mapped reads; PMNC, peripheral blood polymorphonuclear cells; imm, immature; seg,
segmented neutrophils. (g) Quantitation of ADGRE2 via qRT-PCR in circulating leukocytes in the
posttraumatic course; n = 5 injured patients (1/5 patient only 1–48 h), n = 4 uninjured volunteers (1/4
only 1–48 h); mean ± SEM.
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and EMR2+ neutrophils were separately analyzed for (b) CD62L, CD11b, and CD11c; mean ± SEM,
paired t-test, ** p < 0.011.

3.4. Posttraumatic Levels of EMR2 Expression on Neutrophils and C-Reactive Protein
(CRP) Correlate

At 240 h after trauma the EMR2 level on neutrophils was still high in many patients
compared to uninjured volunteers. In correlation analyses, EMR2 was most related to
CRP and IL-6 (Figure 4a,b). The posttraumatic course of measurable CRP was similar
to that of EMR2 expression on neutrophils and was also seen in all patients: after a lag
phase of several hours, the measurable CRP increased, peaked at 48 h, and decreased
(Figure 4c). Very severely injured patients had higher CRP levels at 48–240 h after trauma
(Figure 4c). Interestingly, the function of CRP entails the recognition, disposal, and clearance
of dying/dead cells and their products [34]. Each surgical intervention increases CRP [35].
Indeed, patients operated on between 120–240 h after trauma showed a ~3-fold higher
CRP compared to patients who did not undergo surgery and tended to also display higher
neutrophilic EMR2 (Figure 4d).

3.5. Extracellular Calcium-Dependent Increase in EMR2 Expression on Neutrophils In Vitro

To identify the stimuli upregulating EMR2 expression on patient’s neutrophils in vivo,
leukocytes were investigated in vitro up to 17 h after isolation. Table 2 gives an overview
of conditions/stimuli tested. First, we examined whether serum or plasma, taken from pa-
tients 24 h after trauma, contained the stimuli upregulating EMR2 expression on neutrophils
in the posttraumatic course. Unexpectedly, EMR2 expression on neutrophils already in-
creased in the control, medium with 10% fetal calf serum (FCS), with lengthening culture
time (Figure 5a). A total of 10% serum from patients, but also from volunteers, increased
neutrophilic EMR2 expression to the same extent (Figure 5b). A total of 10% plasma from
both donor groups upregulated neutrophilic EMR2 less, indicating the role of Ca2+ in this
process. Indeed, the addition of 1 mM EDTA, an extracellular calcium chelator, but not
of 1 µM BAPTA-AM, a cell-permanent intracellular Ca2+ chelator (Figure 5c,d), inhibited
the neutrophilic EMR2 increase. In all experiments, the previous removal of monocytes
from leukocytes through adherence to a plastic surface for 60 min at 37 ◦C did not alter the
results concerning neutrophilic EMR2, excluding monocyte-induced EMR2 regulation.
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Table 2. Overview of conditions, stimuli, and substances tested to regulate EMR2 at neutrophils
in vitro.

Serum/
Plasma (10%) Stimulus/Condition To Examine Effect of Neutrophilic

EMR2 #

FCS - control #

human
serum

uninjured volunteers,
patients 24 h after trauma

stimuli present in
patient’s sera -

human plasma uninjured volunteer,
patient 24 h after trauma

stimuli present in
patient’s plasma

inhibition compared to
serum

FCS 1 mM EDTA extracellular Ca2+

chelator
inhibition

FCS
rh IL-1b, IL-6, IL-8,

IL-17b; CCL2 (MCP1),
TNFα

role of cytokines
upregulated after

trauma and/or
inducing hepatic CRP

-

FCS 10 µM BAPTA-AM intracellular Ca2+

chelator
-
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Table 2. Cont.

Serum/
Plasma (10%) Stimulus/Condition To Examine Effect of Neutrophilic

EMR2 #

FCS 1 mM LPS PAMP -

FCS force mechanotransduction -

inactivated FCS - complement -

FCS/human
serum necrotic cells DAMP -

FCS/human
serum immobilized FHR1 FHR1 -

FCS/human
serum

immobilized FHR1 +
necrotic cells FHR1 + DAMP -

- serum withdrawal growth factors in
serum -

- serum withdrawal +
20 mM Z-VAD-FMK role of caspases -

FCS 1 µM staurosporin induction intrinsic
apoptosis

no EMR2 increase,
death neutrophils

FCS 5 ng/mL TNFα/
10 µg/mL cycloheximide

induction extrinsic
apoptosis

no EMR2 increase,
death neutrophils

# leukocytes were cultured in RPMI/10% fetal calf serum (FCS); under these conditions, neutrophilic EMR2 increased.
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added. EMR2 was analyzed on mature neutrophils using flow cytometry. (a) EMR2 (MFI) on
neutrophils; n = 3–14 volunteers/time point, * p < 0.05, *** p < 0.001, unpaired t-test. (b) Leukocytes
were incubated in medium with 10% FCS (ctr), serum, or plasma of either patients or volunteers for
17 h. Patients serum and plasma were taken 24 h after injury. One typical experiment is shown. The
percentage of EMR2+ neutrophils after 17 h is indicated in the graph, the EMR2 MFI is shown in the
upper right corner. (c,d) EDTA, but not BAPTA-AM, prevented the increase in EMR2 expression
on neutrophils in vitro. (c) Leukocytes of volunteers (n = 8) were incubated in medium/10% FCS
(ctr) for 17 h without or with 1 mM EDTA or 1 µM BAPTA-AM; *** p < 0.001, paired t-test. (d) One
typical experiment is shown. The percentage of EMR2+ neutrophils after 17 h is indicated in the
graph, MFI of EMR2+ cells is shown in the upper right corner. (e,f) EMR2 expression on apoptotic
neutrophils. Leukocytes were either cultured in serum-free medium or in medium/10% FCS (ctr)
and with staurosporin or TNFα/cycloheximid for 17 h. (e) EMR2 MFI was quantified on neutrophils
using flow cytometry; n = 4–6 volunteers/condition, Mann–Whitney U-test, ** p < 0.01. (f) One
typical experiment is shown. Upper panel: scatter analysis of all cells (pre-gating to single cells only).
The percentage of neutrophils and dead cells/cells debris (low forward scatter, FSC-A) is indicated.
Middle and lower panel: the percentage of neutrophils expressing EMR2 and CD16 was quantified
and indicated at/or in the gate; MFI of EMR2+ neutrophils is shown in the upper right corner.

3.6. Inflammatory Cytokines Do Not Regulate the Neutrophilic EMR2 Increase In Vitro

We investigated further conditions that may upregulate neutrophilic EMR2 in vitro
more compared to the control. These data are not shown in detail but are summa-
rized in Table 2. Severe injury causes a systemic cytokine storm associated with ad-
verse outcome [36,37]; thus, inflammatory cytokines are potential candidates. We found
enhanced levels of IL-6, IL-8, and CCL2 (MCP1) in patients but not in uninjured vol-
unteers. Very severely injured patients compared to moderately/severely injured ones
showed higher IL-6 and IL-8 levels 8 h after trauma (Figure S3), confirming published
data [36]. IL-1 and TNFα slightly increased at 1–8 h after trauma in a few patients. How-
ever, none of these cytokines, also known to stimulate hepatic CRP synthesis [38], fur-
ther increased neutrophilic EMR2 in vitro when applied alone or as a cocktail. LPS, a
pathogen-associated molecular pattern (PAMP) upregulating EMR2/ADGRE2 in differenti-
ated monocyte-derived macrophages in vitro [31], also left neutrophilic EMR2 unchanged.
Finally, mechanical force, which leukocytes are exposed to in circulation, with many aG-
PCRs being mechanosensitive [22], and in vivo vibration activates a missense substituting
EMR2 in patients with vibratoria urticaria [39], was applied via orbital shaking. It did not
change neutrophilic EMR2.

3.7. FHR1 Is Not Involved in Neutrophilic EMR2 Upregulation In Vitro

After trauma, necrotic cells and DAMPs are released into the circulation. Interestingly,
in vitro EMR2 expression on monocytes recognizes the complex consisting of necrotic-type
cells and FHR1, a complement regulatory protein of the factor H protein family [40]. The
binding of complexed FHR1 to EMR2 stimulates the monocytic NLPR3 inflammasome [16].
Thus, we investigated whether FHR1 and/or necrotic cells and their released components
are involved in the neutrophilic EMR2 increase in vitro. To destroy complement activity,
FCS was inactivated, but it increased neutrophilic EMR2 as native FCS (Table 2).

To further examine the role of FHR1, we screened volunteers for the homozygous
deletion of a chromosomal fragment containing the CFHR1 gene (∆CFHR1), which has a
frequency between 4.9–25.0% in White European populations [41]. In cultures with 10%
autologous serum, the increase in EMR2 at neutrophils was also seen in two volunteers
with a homozygous CFHR1 deletion (Figure S4a,b). Thus, in vitro FHR1 is not likely to be
involved in neutrophilic EMR2 increase. Finally, we verified whether necrotic leukocytes
and their released components additionally increased neutrophilic EMR2 compared to
the control, but neither necrotic cells and their components alone nor combined with
immobilized FHR1 obviously did so (Figure S4c).
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3.8. EMR2 Increased on Neutrophils Also in Serum-Free Cultures

Surprisingly, serum withdrawal increased neutrophilic EMR2, as in the control with
10% FCS (Figure 5e,f). Leukocyte scatters and viability were little changed, as seen in flow
cytometry. Neutrophilic CD16 decreased, a sign of programmed cell death induction, but
the addition of the caspase inhibitor Z-VAD-FMK did not prevent the neutrophilic EMR2
increase. Notably, the induction of intrinsic and extrinsic apoptosis by staurosporin and
TNFα/cycloheximide, respectively, stopped the neutrophilic EMR2 increase (Figure 5e,f).
Furthermore, CD16 disappeared and many leukocytes died, as seen in the scatters in
flow cytometry.

In summary, stimuli increasing neutrophilic EMR2 were already present in and/or
accumulate during culture. Notably, the lysis of red blood cells to isolate leukocytes
generates cell debris, acting as DAMPs, but any other isolation method or enrichment of
neutrophils without lysis also resulted in the generation of damaged/dying cells and cell
debris easily seen via unbiased scatter analysis in flow cytometry. Thus, we are unable to
exclude DAMPs in our in vitro experiments.

4. Discussion

Trauma is a ‘sterile’ inflammatory process in which neutrophils immediately recognize
and are activated by endogenous host-derived DAMPs released by damaged/dying or
necrotic cells [5,23]. The life cycle of neutrophils matches this function. Produced in reserve
in the bone marrow, and partly attached to the endothelium in vessels, known as marginal
pool, neutrophils are released after trauma [5]. They circulate only for a few hours before
migrating into peripheral tissues where they fulfill their function in a short time frame.
Overall, DAMP-induced inflammation is important for tissue repair and regeneration
(reviewed in [42]).

Here, we recognized that EMR2 expression on circulating neutrophils shows a charac-
teristic and uniform posttraumatic course in all injured patients. After a lag phase of several
hours, the percentage of EMR2+ neutrophils and the EMR2 expression level on neutrophils
increased and peaked two days after injury. Afterwards both parameters declined but
frequently remained at a higher level compared to uninjured volunteers. This posttraumatic
course of EMR2 appears to be independent of injury severity in patients with an ISS ≥ 9
and independent of the type of injury. However, very severely injured patients compared
to severely/moderately injured ones have elevated absolute numbers of neutrophils; thus,
more circulating neutrophils with advanced EMR2 levels are available in very severely
injured patients. Consistent with our data, the increased expression of EMR2 on circulating
granulocytes was seen in patients with non-infectious systemic inflammatory response
syndrome (SIRS) compared to control subjects (n = 14/group) [14]. Furthermore, to eval-
uate biomarkers differentiating patients with SIRS from those with sepsis, neutrophilic
EMR2 and CD11c were quantified once-only within 72 h of ICU admission in 103 patients,
83 of whom have sepsis, and in 50 healthy normal subjects [19]. Patients with SIRS had
an increased prevalence of neutrophils expressing CD11c and EMR2. Sepsis increased
additionally the percentage of CD11c+ but not of EMR2+ neutrophils, likely EMR2 is not
involved in PAMP recognition.

Interestingly, in trauma patients and uninjured volunteers with a higher percentage of
EMR2+ neutrophils, the circulating EMR2− and EMR2+ neutrophils differed: the expression
of CD62L was lower and that of CD11c was higher in EMR2+ cells, indicating that they
were more activated or primed for activation. Myeloid cells get with EMR2 a receptor,
which, after its activation, switches on pro-inflammatory cascades. The ligation of EMR2
by mAbs enhanced the inflammatory responses of neutrophils to a panel of stimuli [14]
and modulated the production of multiple cytokines and the survival of LPS-stimulated
neutrophils [15]. In THP-1 monocytic cells mAb-triggered EMR2 stimulation induces
macrophage differentiation and inflammatory responses via the Gα16/Akt/MAPK/NF-κB
signaling pathway [43]. Notably, EMR2 in blood-derived monocytes binds a complex
consisting of necrotic-type cells and FHR1, a dominant trigger of inflammation [16]. Via
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PLC, the binding of FHR1 to EMR2 induces the NLRP3 inflammasome independent of
complement, leading to the subsequent secretion of IL-1β [16]. Furthermore, the EMR2
potentiates recruitment of neutrophils [14]: the mAb-ligation of EMR2 enhanced adhesion
but not rolling of neutrophils on TNFα-stimulated human umbilical vein endothelial cells
(HUVECs) under shear conditions.

Whether EMR2+ are actually more activated in the circulation compared to EMR2−

neutrophils remains an open question. It is likely that EMR2 is acquired to adhere neu-
trophils to injured surfaces and/or to leave circulation. EMR2 binds dermatan sulfate, also
named chondroitin sulfate B (CS-B), a glycosaminoglycan highly present in the extracel-
lular matrix or at cell surfaces where it is linked to core proteins. Decorin in the skin and
cartilage or thrombomodulin [44] and endocan [45] in endothelia are such dermatan sulfate-
containing proteoglycans. Glycosaminoglycans are released after trauma [46,47]. EMR2
binds dermatan sulfate with its 4th EGF-like domain, existing only in the longest isoforms
of EMR2(EGF1-4) and of its homologue CD97(EGF1-5) [11,48]. Indeed, the affinity binding
of EMR2- and CD97-expressing myeloid U937 cells can be achieved in surface-bound
dermatan sulfate but not in grafted heparan sulfate (CS-A) in vitro [49].

What are the stimuli/conditions increasing EMR2 expression on neutrophils after
injury? To answer this question we cultured leukocytes, isolated by red blood cell lysis
only, up to 17 h. Unexpectedly, already in controls, culture in medium/10% serum, EMR2
expression increased on neutrophils. This increase depends on extracellular, but not
intracellular Ca2+ as experiments with extra- and intracellular Ca2+ chelators showed. The
cytokines IL-6, IL-8, or CCL2, already increased at 1–8 h in our trauma patients, did not
further upregulate neutrophilic EMR2 compared to the controls. The fact that even in
serum-free cultures neutrophilic EMR2 increased indicates that it is independent from
growth factors, and that the stimuli/conditions responsible for this process are already
present in, arise, and/or accumulate during prolonged culture in the medium. Importantly,
the induction of intrinsic and extrinsic apoptosis by staurosporin and TNFα/cycloheximide,
respectively, stops the neutrophilic EMR2 increase in vitro.

Finally, the explanation that cell debris/particles, damaged/dying or necrotic cells,
and/or released components, i.e. DAMPs, increase neutrophilic EMR2 during culture, and
probably also in vivo, is logically consistent. It is impossible to culture isolated leukocytes
or purified neutrophils without cell debris and/or damaged/dying or necrotic cells inside,
as seen through unbiased flow cytometric scatter analyses of the freshly prepared cells and
after 17 h of culture. After several efforts to purify neutrophils, with the highest gain being
~70%, we realized that we could not avoid cell damage and debris through purification
steps. Instead the neutrophils were permanently impaired, they die faster in vitro. Our
hypothesis that neutrophilic EMR2 increased through DAMPs is not contradicted by
the lack of additional EMR2 upregulation when adding necrotic cells and their released
components to the cultures because they are always present. We excluded FHR1 being
involved in the increase in neutrophilic EMR2. Only when complexed with necrotic-type
cells does FHR1 bind via EMR2 to primary monocytes in vitro [16]. However, two of
our uninjured volunteers, whose neutrophils showed an EMR2 increase during culture,
were CFHR1-deficient. Interestingly, one of the aGPCRs, BAI1/ADGRB1, binds apoptotic
cells [50,51]. This is based on the binding capacity of the BAI1 N-terminal thrombospondin
repeats for ‘eat-me’ signals in apoptotic cells and on the ability of the BAI1 C-terminal tail
to facilitate cytoskeletal rearrangements. However, BAI1 is hardly expressed in myeloid
cells [52].

Notably, we are unable to mimic in vitro the dynamic in vivo processes occurring in
bone marrow, peripheral blood, and injured tissue in neutrophils after trauma when they
are rapidly mobilized from all storage pools. The dramatic rise in circulating mature and
immature neutrophil numbers turns out to be more obvious in very severely injured patients
compared to moderately/severely injured ones, as confirmed in our research. Importantly,
neutrophils circulate only for a few hours before migrating into injured or inflamed tissues.
However, in our in vitro experiments, we investigated volunteers’ neutrophils, which are
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mainly of a resting phenotype [53]. The continuous replacement of circulating neutrophils
by the storage pool-released cells, present in vivo, did not take place in vitro.

Neutrophil phenotypic heterogeneity is obviously altered following traumatic injury
and is likely to contribute to the development of secondary complications [5,23,53,54]. In
particular, the functional characterization of neutrophil subsets differently expressing sur-
face molecules, such as CD16 and CD62L (plus CD11b, CD11c, CXCR2, and several others),
received attention. After isolated blunt chest injury, CD62L and CXCR2 decrease compared
to controls, a sign of neutrophil activation [55]. A CD16bright(or high) CD62Ldim(or low) neu-
trophil subset appears during inflammation and is seen also after trauma [54]. It suppresses
T cell proliferation. Furthermore, CD16dim CD62Lbright neutrophils occur [54], which are
banded, immature neutrophils, as seen via May–Grunwald staining. Importantly, neither
the EMR2− nor the EMR2+ neutrophils correspond to any of these subsets. We analyzed
the CD16high mature and the CD16low immature neutrophil subsets separately for EMR2.
In both subsets EMR2− and EMR2+ cells are present and the EMR2 expression level and
the percentage of EMR2+ cells similarly increased in both at 24–48 h after trauma.

Very recently, in injured patients and matched controls, eleven distinct neutrophil
populations were resolved using mass spectrometry-based cytometry based on differential
protein surface marker expression [53]. Trauma markedly altered the basal heterogeneity
of neutrophil subsets seen in controls, with the loss of the dominant population of resting
neutrophils and the expansion of two alternative neutrophil populations [53]. Thus, the
increased expression of EMR2 on circulating neutrophils in our patients could also be the
result of altered neutrophil subsets, differently expressing EMR2 after trauma.

5. Conclusions

After trauma, EMR2 expression on circulating neutrophils follows a characteristic and
uniform posttraumatic course in all patients when a certain threshold of injury severity is
reached. It is likely that EMR2 is a biomarker for injury in general; this hypothesis could be
verified in patients who underwent a planned surgical intervention. Furthermore, EMR2
could be a biomarker related to a patient’s outcome late after injury, as the correlation
analyses of EMR2 and patients clinical data 10 days after trauma suggest. Our in vitro data
indicate that necrotic cells/DAMPs are likely to be the stimuli/condition upregulating
EMR2 in vivo.
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