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Abstract: Intercropping soybean in tea plantations is a sustainable cultivation system that can
improve the growing environment of tea plants compared to monoculture tea. However, the effects
of this system on the photosynthesis activity of tea seedlings have yet to be reported. Therefore, we
used tea cultivar ‘Zhongcha108’ as experimental materials to investigate the effects of intercropping
soybean on the canopy spectral parameters and photosynthesis activity of tea seedlings. Canopy
spectral reflectance data showed that soybean–tea intercropping (STS) improved the reflectance of
720, 750 and 840 nm bands in tea seedlings’ canopy. The vegetation indexes (VIs) value related to
photosynthetic pigments in STS was obviously higher than monoculture tea (T). In addition, the
Fv/Fm and SPAD value in STS were also clearly higher. Transcriptome analysis data indicated that
STS induced the expression of light-harvesting complex (LHC) genes, photosystem subunit (Psbs and
Psas) genes and dark reaction biological process genes (FBP1, RPE, Calvin cycle protein CP12-1 and
transketolase). These results indicate that STS enhanced the photosynthesis activity. The metabolome
analysis showed that STS promoted the accumulation of carbohydrate metabolites, which further
provided evidence for the enhancement of photosynthesis in the leaves of tea seedlings. This study
enhanced our understanding of how intercropping soybeans in a young tea plantation improves the
photosynthesis activity to promote tea seedlings’ growth and development.

Keywords: intercropping; tea seedlings; canopy spectral; photosynthesis activity; light harvesting;
photosystem

1. Introduction

The tea plant [Camellia sinensis (L.) O. Kuntze] is a popular special cash crop, and its
tender leaves are processed in different ways to produce tea beverages consumed around
the world [1]. Tea beverages are popular because of their unique flavor and have significant
health benefits [2]. The flavor of tea beverages varies with the content and proportion
of many secondary metabolites [3,4]. Photosynthesis is the main energy source for the
biosynthesis of secondary metabolites [5]. Tea plants can produce more nitrogen-containing
compounds, nitrogen-containing aromatics, chlorophyll, amino acids and other effective
substances during photosynthesis under diffuse light conditions [2].

The pigment contents in plant leaves, especially chlorophyll and carotenoids, are
an important biological indicator of many physiological processes, including the light-
harvesting reaction of photosynthesis [6]. In addition, photosynthetic pigment contents
also affect the photosynthetic activity and growth of plants, which is directly related to
their primary yield and biomass accumulation [7]. VIs have been used to estimate plant

Agronomy 2024, 14, 850. https://doi.org/10.3390/agronomy14040850 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14040850
https://doi.org/10.3390/agronomy14040850
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-9726-6742
https://doi.org/10.3390/agronomy14040850
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14040850?type=check_update&version=1


Agronomy 2024, 14, 850 2 of 17

photosynthetic pigment contents, such as chlorophyll and carotenoid, in recent years [8–10].
Zhang et al. [11] used 26 VIs calculated from multispectral reflectance data to estimate the
chlorophyll and carotenoid contents of poplar leaves, showing that a chlorophyll index
using green reflectance (CIgreen), chlorophyll index using red edge reflectance (CIred-edge),
chlorophyll vegetation index (CVI), green leaf index (GLI), green normalized difference
vegetation index (GNDVI), leaf chlorophyll index (LCI), MERIS terrestrial chlorophyll index
(MTCI), normalized difference red-edge index (NDRE), green NDVI (NDVIg), red-edge
normalized difference vegetation index (RENDVI) and vogelmann red-edge index 1 (VOG1)
had a high correlation with chlorophyll and carotenoid contents. Therefore, multi-spectral
imaging technology has a broad application prospect in the monitoring of photosynthetic
pigment contents in leaves.

The photochemical reactions of photosynthesis occur via two photosystems including
photosynthetic pigments. Photosystem I (PS I) and photosystem II (PS II) have a special
pigment complex and other substances. The functions of PS I and PS II are crucial to
maintain the growth and survival of tea plants [12]. PSII can provide energy and electrons
by producing ATP and NADPH for subsequent reactions in various metabolic processes.
In the photosynthetic electron transfer chain, the PS II, cytochrome b6f complex and PSI,
embedded in the thylakoid, work in series, together with ATP synthase, to convert light
energy into chemical energy [13]. Firstly, light is absorbed by pigment-binding LHC, and
then transferred to the nearest correctly oriented pigment until it reaches the photosynthetic
reaction centers PS II and PS I [14]. In the face of the complex photosynthetic reaction
process, the PSII complex must be properly regulated to fulfil its function. Different
regulatory mechanisms can produce different effects, such as increasing photosynthetic
efficiency, reducing energy consumption, and maintaining PSII stability.

Intercropping in tea plantations is an important cropping system based on the biologi-
cal characteristics of tea plants, which adopts a three-dimensional compound cultivation
method to realize the intensive use of various natural resources, such as light, temperature,
water and fertilizer [15]. In the intercropping system of tea plantations, different species oc-
cupy different ecological niches by which light and nutrients can be fully recycled. In areas
with a high temperature and strong solar radiation, intercropping can effectively reduce
the light intensity of tea gardens and the air and soil temperature around tea gardens, thus
providing a suitable growth environment for tea plants [16–19]. This altered microclimate
satisfies the tea plant’s preference for shade, diffuse light, moisture, warmth and acidic
soil, helping to improve tea yield and quality. So far, studies on intercropping soybean in
tea plantations have mainly focused on the improvement in tea quality from the perspec-
tive of rhizosphere soil nutrients and microbial communities, leaf nutritional physiology,
functional genes and metabolite changes [20–22]. The soybean–tea intercropping system
improved nutrient absorption and tea quality by regulating the abundance of beneficial
microorganisms in soil [16]. Moreover, soybean–tea intercropping improved the aroma of
tea by increasing the soil nitrogen levels [23]. Duan et al. [15] revealed that the synthesis of
glutamate, amino acids, lysine, arginine and glutamine was increased, and the biosynthesis
of flavonoid, flavone and flavonol also changed in the soybean–tea intercropping system.
These studies have strengthened our understanding of how soybean–tea intercropping in
tea plantations regulates the soil bacterial community to maintain soil health, and revealed
that the legumes–tea intercropping system has great potential to improve tea quality in
terms of tea quality components, amino acid metabolism, flavonoid metabolism, etc. How-
ever, the effects of soybean–tea intercropping on the photosynthesis activity of tea seedlings
remain unclear.

The research aimed to decipher the effects of STS on the tea seedlings canopy’s spectral
and photosynthetic pathways. We detected the difference in the multispectral reflectance,
physiology, genes and metabolites of a tea seedlings canopy in T and STS. The spectral
and temperature differences in the tea canopies were analyzed by UAV multispectral and
thermal infrared remote sensing data. SPAD and Fv/Fm were used to explore the chloro-
phyll content and integrity of the photosystem of tea seedling leaves in STS. The expression
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levels of genes involved in photosynthetic pathways were analyzed through transcriptome
sequencing. Moreover, the genes enriched in photosynthesis-antenna proteins and the
PSII subunit were identified, and the gene expression profiles were detected via RT-qPCR.
Finally, the metabolome data were used to analyze the changes in the sugars produced by
photosynthesis. This study provided theoretical guidance for improving the photosynthesis
activity of tea seedling leaves by enhancing the light harvesting ability and PSII levels in a
young tea plantation.

2. Materials and Methods
2.1. Experiment Field and Setup

This field experiment was conducted in the Maguguan young tea plantation, which
is located at Zhucheng, Shandong Province, China (119.60◦ E, 35.91◦ N) (Figure 1). This
region belongs to a warm temperate zone semi-humid climate with an average annual
temperature of 13.2 ◦C and annual precipitation of 741.8 mm. The annual average relative
humidity is 67%, and the annual evaporation is 1677.5 mm. the frost-free period is about
217 days. A one-year tea cultivar (Camellia sinensis cv. Zhongcha108) was intercropped
with soybean (Glycine max cv. Qihuang34). The cuttings of “Zhongcha 108” were sown on 6
April 2022, with a plant spacing of 0.3 m, small row spacing of 0.3 m, and large row spacing
of 1.2 m. The seeds of “Qihuang34” were sown on 5 June 2022, with a plant spacing of
0.1 m. In the soybean–tea intercropping system, the distance between adjacent tea seedling
rows and soybean rows was 0.6 m (Figure 1). Field experiments were conducted with
two treatments, including monoculture tea (T) and soybean–tea intercropping (STS). Other
management measures were completely consistent, such as fertilization and watering.
When the intercropping soybean reached physiological maturity and was sufficient for
harvest (27 August 2022), tender leaves of tea seedlings were sampled. T was used as a
control. Each treatment had 3 replicates, for a total of 6 samples.
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2.2. Unmanned Aerial Systems and Image Acquisition

The UAV system consisted of a DJ M200 V2 UAV flying platform (DJI Co., Ltd.,
Shenzhen, China) and multi-source sensor systems (multispectral camera and thermal
imager). Flight parameters were determined according to the previous research of our
team [24]. The MS600 multispectral camera (Yusense Co., Ltd., Qingdao, China) used in
this study can simultaneously capture six bands of spectral images. The parameters of
MS600 are shown in Table 1. Other information regarding the MS600, such as the pixel
resolution, spatial resolution, image storage format, and specific information before and
after acquisition, are provided in detail in our previous research [24]. The ZENMUSE™
XT 2 camera (DJI, Shenzhen, China) used in this study was equipped with a thermal
imaging camera movement and a visible light camera to capture thermal and visible images
simultaneously. The thermal camera has a resolution of 640 × 512 and the images are
stored in TIFF format.

Table 1. Wavelength parameters of the MS600 multispectral camera.

Wavelength Centre (nm) Bandwidth (nm)

Blue 452 35
Green 555 25
Red 660 20

Red edge1 720 10
Red edge2 750 15

Near infrared 840 35

The extraction of the tea seedlings canopy’s spectral information was carried out
according to our previous research [24]. In brief, the ROI tool of ENVI 5.3 (Research System
Inc., Orlando, FL, USA) software was used to extract average spectral values of the 6 bands
from MS images as the multispectral data of the research points. In this study, we selected
an individual tea seedling canopy as the ROI region and extracted the spectral values of
20 ROI regions under STS and T patterns, respectively. A typical image obtained with
a multispectral camera and the ROI selected from the image are shown in Figure S1. In
addition, 11 commonly used VIs [11] were calculated using the average spectral data
of 6 bands. The extraction of temperature information of the tea seedlings canopy was
carried out according to the method presented by Mao et al. [24]. In brief, FLIR Tools
2.2 (FLIR Systems, Inc., Wilsonville, OR, USA) software was used to extract the temperature
information of the tea seedlings canopy. In this study, tea seedlings canopy temperatures at
20 points under different treatments were extracted from TIR images.

The 11 VIs and calculation formulas are shown in Table 2.
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Table 2. VIs and calculation formulas.

VIs Formulation

LC (NIR − Edge1)/(NIR + Red)
MTC (Edge2 − Edge1)/(Edge1 − Red)

NDRE (NIR − Edge1)/(NIR + Edge1)
NDVI (Edge2 − Green)/(Edge2 + Green)

RENDVI (Edge2 − Edge1)/(Edge2 + Edge1)
VOG1 Edge2/Edge1
CIgreen (NIR/Green) − 1

CIred-edge (NIR/Edge1) − 1
CV NIR × (RED/Blue2)
GLI (2 × Green − Red − Blue)/(2 × Green + Red + Blue)

GNDV (NIR − Green)/(NIR + Green)

2.3. Determination of SPAD and Fv/Fm

The SPAD were measured by a plant nutrition analyzer (TYS-4N, Hangzhou, China).
For each treatment, 20 young leaves of different tea seedlings were randomly selected for
determination.

Tea seedling leaves were treated with dark adaptation forceps for 20 min and the
Fv/Fm was measured using chlorophyll fluorimeter (PS I, Drásov, Czech Republic) [25].

2.4. RNA Extraction and RNA-Seq

The RNA extraction of six samples was performed through an RNA Isolation System
(TaKaRa, Dalian, China). The degradation and contamination of RNA were detected by
1% agarose gel electrophoresis. Using the NanoPhotometer® spectrophotometer (IMPLEN,
Calabasas, CA, USA), RNA purity was checked. Using the Qubit®RNA Assay Kit in
Qubit®2.0 Flurometer (Life Technologies, Carlsbad, CA, USA), RNA concentration was
measured. The RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Tech-
nologies, Palo Alto, CA, USA) was used to assess RNA integrity. A total of 6 RNA samples
were used to construct cDNA libraries and sequenced on the Illumina platform by Metware
Biotechnology Co., Ltd. (Wuhan, China).

2.5. Transcriptome Data Analysis

Raw data were filtered by fastp (v 0.19.3) to obtain clean reads. Clean reads were
mapped to the tea genome (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/004/153/79
5/GCF_004153795.1_AHAU_CSS_1/GCF_004153795.1_AHAU_CSS_1_genomic.fna.gz, ac-
cessed on 12 December 2022) using HISAT (v2.1.4) [26]. A new transcript was predicted
using StringTie (v1.3.4). FPKM value was used to estimate transcript expression level.
FeatureCounts (v1.6.2) and StringTie (v1.3.4) were used to calculate the gene alignment and
FPKM. Differentially expressed genes (DEGs) were identified by DESeq2 (v1.6.3) and edgeR
(v3.24.3). The thresholds for significant difference expression were corrected p-value < 0.05
and |log2foldchange| > 1. Venny 2.1.0 software was used to display the number of DEGs.
KEGG and GO enrichment analyses were performed for all DEGs.

2.6. Metabolite Extraction and Analysis

The frozen six tea samples were freeze-dried using a vacuum Scientz-100F lyophilizer
(SCIENTZ Biotechnology, Ningbo, China). After the freeze-dried samples were crushed,
dissolved and extracted, the extracts were used for UPLC-MS/MS analysis. The detailed
process followed the method presented by Duan et al. [15]. Unsupervised principal compo-
nent analysis (PCA) was performed by statistics function prcomp within R. The differential
metabolites were determined by VIP (VIP ≥ 1) and absolute Log2FC (|Log2FC| ≥ 1.0).

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/004/153/795/GCF_004153795.1_AHAU_CSS_1/GCF_004153795.1_AHAU_CSS_1_genomic.fna.gz
https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/004/153/795/GCF_004153795.1_AHAU_CSS_1/GCF_004153795.1_AHAU_CSS_1_genomic.fna.gz
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2.7. Quantitative Real-Time PCR Analysis

Eight DEGs were selected for qRT-PCR verification. A primer online design tool (https:
//www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome, accessed
on 15 October 2023) was used to generate primers, and primer sequences are shown
in Table S1. A glyceraldehyde 3-phosphate dehydrogenase (CsGAPDH) was used as a
reference gene [27]. qRT-PCR reactions were performed using the ABI 7500 Sequence
Detection System. The reaction volume was 20-µL. All eight genes were analyzed for three
biological replicates. The relative expression was normalized against the reference gene
and calculated based on the 2−∆∆CT method [28].

2.8. Statistical Analysis

Statistical analyses in this study were performed using GraphPad Prism 9.0. Dif-
ferences between groups were detected by using a t-test. A p-value < 0.05 was consid-
ered significant.

3. Results
3.1. Effects of STS on Spectral Reflectance and VIs of Tea Seedlings Canopy

Figure 2 shows the statistical characteristics of the multispectral reflectance of six
bands and VIs values. The spectral reflectances of the tea seedlings canopy under T and
STS were not significantly different in the 450 nm, 555 nm and 660 nm bands. However,
the spectral reflectances of the 720 nm, 750 nm and 840 nm bands in STS were significantly
higher than those in T. Among the 11 spectral indexes highly correlated with leaf pigment
contents, except for CVI and MTCI, the other spectral indexes of STS were significantly
higher than those in T.
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3.2. Effects of STS on the SPAD, Fv/Fm and Canopy Temperature of Tea Seedlings

SPAD and Fv/Fm were measured to obtain an overview of the relative chlorophyll
content and intactness of the photosystems of tea seedlings under field conditions (Figure 3).
Significantly higher SPAD and Fv/Fm values were detected in STS compared to T. Furthermore,
the canopy temperature of tea seedlings under the STS was significantly lower than that of T.
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3.3. RNA Sequencing Data Analysis

A global-transcriptome analysis using the tender leaves of tea seedlings was per-
formed. In total, 42.69 Gb of clean data were generated from six libraries, and the clean
data of each sample were above 7 Gb. The average clean bases, Q20 and Q30 values were
7.11 Gb, 97.95% and 93.93%, respectively. The mapping ratio was 86.84–87.92% (Table S2).

The results of PCA analysis using PC1 × PC2 score plots distinguished the transcript
grouping of different sample groups (Figure S2). The PC1 (64.56%) and PC2 (12.6%)
effectively separated STS group from T.

3.4. Analysis of Photosynthesis-Antenna Proteins and Photosynthesis Pathways

Transcript levels analysis showed that 7940 (3246 up- and 4694 down-regulated) genes
were identified as DEGs in STS compared with T (Figure 4A). This result suggests that STS
induced more down-regulated than up-regulated DEGs.

All DEGs in the STS vs. T group were matched to the KEGG pathway database. A
total of 139 pathways were enriched (Table S3). Combining the phenotypic results of
Figures 2 and 3, we focused on analyzing the photosynthesis-antenna proteins (Ko00196)
and photosynthesis (Ko00195) pathways to elucidate the molecular mechanism of this
trait difference. For photosynthesis-antenna proteins pathway, a total of nine DEGs (eight
up- and one down-regulated) were selected, including one Lhcb1 (CSS0039893), one Lhca2
(CSS0017867), one Lhcb2 (CSS0041844), one Lhca3 (CSS0018005), two Lhcb3 (CSS0049576
and CSS0025719), two Lhcb4 (CSS0014124 and CSS0043476) and one Lhcb7 (CSS0033337)
(Figure 4B,C,E). These DEGs belong to the LHC family. The up-regulated expression of the
above DEGs indicated that STS could enhance the light-harvesting capacity of tea seedlings
by increasing Lhca2, Lhca3, Lhcb1, Lhcb2, Lhcb3 and Lhcb4 levels compared with T.

For photosynthesis pathway, there were 12 up-regulated DEGs and 8 down-regulated
DEGs (Figure 4B,D,F). In PSII, PsbP (CSS0020461), PsbR (CSS0016237), PsbW (CSS0002873),
Psb27 (CSS0031699) and Psb28 (CSS0017427) were up-regulated. In PSI, subunit genes PsaA
(novel.8274), PsaH (CSS0004601) and PsaK (CSS0007721 and CSS0016265) were up-regulated.
Down-regulated DEGs include PsbL (novel.6566), PsaB (novel.7378), PetG (CSS0003194),
PetH (CSS0038460 and novel.7900) and PetF (CSS0043179). This result indicates that STS
could enhance PSII and PSI by increasing PsbP, PsbR, PsbW, Psb27, Psb28 (CSS0017427),
PsaA, PsaH and PsaK expression levels.



Agronomy 2024, 14, 850 8 of 17

Agronomy 2024, 14, x FOR PEER REVIEW  9  of  19 
 

 

 

Figure 4. Photosynthesis-antenna proteins and photosynthesis pathways based on the KEGG pathway analysis. (A) The total number of DEGs in STS vs. T. (B) 

The number of DEGs in photosynthesis-antenna proteins and photosynthesis pathways. (C) Partial diagram of photosynthesis-antenna protein pathway. The red 

boxes in are associated with up-regulated genes, while green is associated with down-regulated genes. (D) Partial diagram of photosynthesis pathway. The blue 

boxes are associated with both up-regulated and down-regulated genes. The red and green boxes are the same as subfigure C. (E) Heatmap of the DEGs involved 

in the photosynthesis-antenna protein pathway. Expression differences in genes are represented by different colors, ranging from low (green) to high (red), based 

on log2foldchange. (F) Heatmap of the DEGs involved in the photosynthesis pathway. Color difference is the same as (E). 

Figure 4. Photosynthesis-antenna proteins and photosynthesis pathways based on the KEGG pathway analysis. (A) The total number of DEGs in STS vs. T. (B) The
number of DEGs in photosynthesis-antenna proteins and photosynthesis pathways. (C) Partial diagram of photosynthesis-antenna protein pathway. The red boxes
in are associated with up-regulated genes, while green is associated with down-regulated genes. (D) Partial diagram of photosynthesis pathway. The blue boxes are
associated with both up-regulated and down-regulated genes. The red and green boxes are the same as subfigure C. (E) Heatmap of the DEGs involved in the
photosynthesis-antenna protein pathway. Expression differences in genes are represented by different colors, ranging from low (green) to high (red), based on
log2foldchange. (F) Heatmap of the DEGs involved in the photosynthesis pathway. Color difference is the same as (E).



Agronomy 2024, 14, 850 9 of 17

3.5. GO Analysis Related to Photosynthesis

GO enrichment analyses were performed to elucidate the functional differences be-
tween DEGs. All DEGs in the STS vs. T were matched in the GO database. A total
of 4630 GO terms were enriched (Table S4). Among them, 19 GO terms were associ-
ated with photosynthesis (Figure 5A). For the biological process, STS mainly enhanced
the expression level of genes related to the light harvesting (GO:0009765) and dark re-
action (GO:0019685) of photosynthesis. The genes enriched in the light harvesting pro-
cess mainly included Lhcb1 (CSS0039893), Lhca2 (CSS0017867), Lhcb2 (CSS0041844), Lhca3
(CSS0018005), Lhcb3 (CSS0049576 and CSS0025719), Lhcb4 (CSS0014124 and CSS0043476)
and Psb27 (CSS0031699) (Figure 5B). The genes enriched in the dark reaction process of
photosynthesis mainly included FBP1 (CSS0030665), RPE (CSS0047408 and CSS0027332),
Calvin cycle protein CP12-1 (CSS0006498), transketolase (CSS0019185 and CSS0018066) and
Lhcb2 (CSS0041844) (Figure 5C). For the cellular component, STS mainly increased the
expression level of genes in photosystem II (GO:0009523) and photosystem I (GO:0009522).
In addition, 27 DEGs (16 up- and 11 down-regulated) were selected in PS II. These up-
regulated DEGs mainly included LHC antenna genes (Lhcb1, Lhca2, Lhcb2, Lhcb3, Lhcb4)
and PSII subunit genes (PsbP, PsbR, PsbW, Psb27, Psb28) (Figure 5D). A total of 15 DEGs
(12 up- and 3 down-regulated) were selected in PS I. These up-regulated DEGs mainly
included LHC antenna genes (Lhcb1, Lhca2, Lhcb2, Lhca3, Lhcb3, Lhcb4) and PS I subunit
genes (PsaA, PsaB, PsaH, PsaK) (Figure 5E).

3.6. Validation of DEGs by qRT-PCR

To verify the reliability of transcriptome sequencing results, four LHC antennas DEGs
(CSS0039893, CSS0018005, CSS0043476 and CSS0014124) and four PSII subunit genes
(CSS0020461, CSS0016237, CSS0002873, CSS0017427) were selected for qRT-PCR assay
validation. qRT-PCR results indicated that the expression level of these eight genes were
consistent with the transcriptome data (Figure 6).

3.7. Differential Metabolite Identification

To analyze the change in metabolites, a widely targeted metabolome analysis using
the tender leaves of tea seedlings was performed using an UPLC-MS/MS system. PCA
revealed that variance shown in the horizontal axis and vertical axis was 63.26% (PC1) and
10.38% (PC2), respectively (Figure S3). This result shows that the STS and T can be clearly
separated, indicating that there are differences in the metabolites.

A total of 1062 metabolites were detected. Flavonoids were the richest, including
256 compounds. Phenolic acids were the second largest group, with 180 compounds. In ad-
dition, other metabolites were also detected (Figure 7A). Compared to the T group, STS had
195 differential metabolites (111 up- and 84 down-regulated) based on a fold change ≥ 2 and
fold change ≤ 0.5 (Figure 7B). Saccharides are the main product of photosynthesis. In this
study, a total of 70 saccharides metabolites were extracted, and the content of most metabo-
lites in STS was higher than that of T (Figure 7C). In addition, STS had eight up-regulated
differential metabolites and five down-regulated differential metabolites compared with
T, with 70 saccharides metabolites (Figure 7D). These up-regulated DEMs included Dihy-
droxyacetone phosphate (C3H7O6P), D-Erythrose-4-phosphate (C4H9O7P), D-Glucoronic
acid* (C6H10O7), D-Fructose 6-Phosphate* (C6H13O9P), D-Ribose (C5H10O5), Glucose-
1-phosphate* (C6H13O9P), D-Glucose 6-phosphate* (C6H13O9P) and D-Glucosamine
1-phosphate (C6H14NO8P). These down-regulated DEMs included D-Threose (C4H8O4),
Stachyose (C24H42O21), D-Threonic Acid (C4H8O5), D-Glucono-1,5-lactone* (C6H10O6)
and D-Panthenol (C9H19NO4).
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4. Discussion

The ecological benefits of interplanting soybean in a tea plantation are mainly based
on the characteristics of soybean plants. Soybean plants have large leaves and a large
population, and the root system has the ability of nitrogen fixation, which can provide a
suitable growth environment for the growth of tea seedlings [16]. In soybean–tea inter-
cropping, soybean leaves reflect part of the light to the tea seedlings canopy, changing
the light environment of the tea seedlings canopy. Therefore, to evaluate the effects of
intercropping soybean on the spectral reflectance and photosynthetic capacity of tea tree
seedlings, we compared the differences between intercropping soybean and solo tea from
the perspectives of canopy multispectral reflectance, vegetation index, SPAD, Fv/Fm, gene
transcription and metabolite changes.

4.1. Soybean–Tea Intercropping Changed the Spectral Characteristics of the Tea Seedlings Canopy

Canopy NIR reflectance is affected by leaf structure (leaf thickness, palisade thickness
and spongy parenchyma, etc.) [29] and leaf arrangement (leaf angles and leaf clumping) [30].
These characteristics of canopy leaves can be used to elucidate plants’ functional responses
to environmental changes, including leaf nitrogen availability and photosynthesis [29,30].
In this study, the spectral reflectance of the 720 nm, 750 nm and 840 nm bands in STS was
significantly higher than that in T (Figure 2A). This was a very interesting result. The
increased level of NIR reflectance indicated that the canopy leaf structure of tea seedlings in
STS may undergo some changes to response to the changes in the surrounding environment.
This surrounding environment might include light, temperature, etc. Notably, a strong
positive correlation was reported between NIR reflectance and stomatal conductance [31].
Moreover, the increase in stomatal conductance can promote the enhancement of photo-
synthesis [32–34]. Therefore, the changes in tea seedlings’ leaf structure in the STS pattern
are worthy of further study. We speculated that the increase in NIR reflectance is due to
the change in leaf structure. At the same time, this change n structure led to an increase in
stomatal conductance (Gs), which increased the photosynthetic rate (Pn) of tea seedlings.

Plant chlorophyll content can be more effectively assessed based on UAV multi-spectral
images and machine learning algorithms, which is important for better understanding the
interaction between plants and the environment [35]. Numerous studies have shown that
spectral indices calculated using red edge and NIR bands were able to accurately estimate
canopy chlorophyll content [36–38]. In this study, we calculated the 11 spectral indices
using red edge and NIR bands, and the results showed that the values of CIgreen, CIred-edge,
GLI, GNDVI, LCI, NDRE, NDVIg, RENDVI and VOG1 in STS were significantly higher
than those in T (Figure 2B). Similarly, these vegetation indices were used to estimate canopy
chlorophyll content of soybean, maize and poplar, and maintain a high correlation [11,36].
Therefore, it is speculated that there are differences in the canopy chlorophyll content of tea
seedlings between STS and T.

4.2. Soybean–Tea Intercropping Improved the Photosynthetic Characteristics of Tea
Seedlings’ Leaves

Soybean–tea intercropping is an effective cultivation measure to improve photosyn-
thetic efficiency. The Gs, Pn, ABS, DI, RC/CS, ETo/RC and ETo/CSo in the soybean–tea
intercropping were higher than those in the monoculture [15]. This study also indicated
that the Fv/Fm and SPAD value in STS were significantly higher than T (Figure 3A,B). In
addition, the ambient temperature around tea seedlings in STS was significantly lower
than that of T (Figure 3C). Photosynthesis is sensitive and easily affected by high tem-
peratures [39,40]. High-temperature stress resulted in the Fv/Fm, chlorophyll content, Pn,
transpiration rate (Tr) and water potential decreasing significantly [41]. Extreme summer
high-temperature (HT) conditions significantly inhibited the Pn and PSII photosynthetic
activity of tea plants [42]. Therefore, the improvement in Fv/Fm in STS may have a great
correlation with the decrease in tea canopy temperature.
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4.3. Soybean–Tea Intercropping Enhanced Photosynthesis-Related Genes’ Expression Levels

PSII-LHCII super-complexes in plants are composed of core antenna proteins CP43
and CP47, and variable amounts of trimeric LHCII antennas, such as Lhcb1, Lhcb2, Lhcb3,
Lhcb4, Lhcb5 and Lhcb6 proteins [13,43]. PSI-LHCI super-complexes in plants, such as
Lhca1, Lhca2, Lhca3 and Lhca4, are also essential for coping with different light condi-
tions [44]. LHC captures light energy and rapidly transfers energy to the reaction center
to maximize the photosynthetic efficiency [45,46]. Previously published studies have
demonstrated that the enhancement of photosynthetic capacity is always consistent with
the up-regulated expression of light-harvesting complex I (LHCI) and II (LHCII) Chl
a/b binding protein genes that acted as photosynthesis antenna proteins in tea plant
leaves [2,45,47,48]. In this study, eight LHC genes involved in the photosynthesis–antenna
proteins pathway were upregulated, including Lhca2 (CSS0017867), Lhca3 (CSS0018005),
Lhcb1 (CSS0039893), Lhcb2 (CSS0041844), Lhcb3 (CSS0049576 and CSS0025719), Lhcb4
(CSS0014124 and CSS0043476) (Figure 4C,E). These LHC genes are mainly involved in the
biological processes of photosynthesis, and light harvesting (Figure 5A,B). RT-qPCR showed
that STS increased the expression of Lhcb1, Lhca3 and Lhcb4 (Figure 6). The transcription
levels indicated that STS could enhance the light-harvesting capacity of tea seedlings by
increasing the expression of Lhca2, Lhca3, Lhcb1, Lhcb2, Lhcb3 and Lhcb4.

The PSII complex contains more than 20 subunits [49]. The core subunits are mainly
Psb proteins, including PsbB, PsbC, PsbR, PsbO, PsbP and PsbQ, which have photochemical
reaction capabilities [50]. Fv/Fm can be used to reflect the intactness of the photosystems
or the maximum potential capacity of a photochemical reaction [51]. The expression
of PsbP and PsbR, as well as LHCII subunits Lhcb1, Lhcb2, Lhcb4, Lhcb5 and Lhcb6, in
tea plants was significantly inhibited under the strong light conditions, and the Fv/Fm
value was decreased. However, the expression levels of PsbP and PsbR and the value of
Fv/Fm were significantly increased under low-light treatment [49]. Similarly, low light
caused by artificial shading enhanced PsbR (CSS0016237) and increased Fv/Fm value [48].
The present study shows that STS clearly induced the expression of the PSII subunits
PsbP (CSS0020461), PsbR (CSS0016237), PsbW (CSS0002873), Psb27 (CSS0031699) and Psb28
(CSS0017427) and PSI subunits PsaA (novel.8274), PsaH (CSS0004601) and PsaK (CSS0007721
and CSS0016265) (Figure 4D,F). In addition, these Psbs and Psas genes are key components
of cellular component photosystem II and photosystem I (Figure 5D,E). This result indicates
that the STS intercropping system could enhance photosystem II and photosystem I levels
by increasing PsbP, PsbR, PsbW, Psb27, Psb28, PsaA, PsaH and PsaK expression. Combined
with the previous discussion of Fv/Fm value, the improvement in PSII-LHCII and PSI-LHCI
might be an important regulatory pathway for STS in enhancing the photosynthesis of
tea seedlings.

4.4. Soybean–Tea Intercropping Promotes the Accumulation of Carbohydrate Substances

The enhanced photosynthesis activity can improve the accumulation and metabolism
of carbohydrates, thus promoting the growth of tea seedlings [52]. The dark reaction of
photosynthesis is mainly for CO2 fixation and the Calvin cycle, which ultimately ensures
the conversion to sugars [53,54]. The transcriptome data in this study indicate that the STS
intercropping system significantly improved the expression level of genes involved in the
dark reaction, mainly including FBP1 (CSS0030665), RPE (CSS0047408 and CSS0027332),
Calvin cycle protein CP12-1 (CSS0006498), transketolase (CSS0019185 and CSS0018066) and
Lhcb2 (CSS0041844) (Figure 4C). A lot of evidence shows that these genes are involved in
the regulation and synthesis of carbohydrates. FBP1 contributes to glucose homeostasis
and was demonstrated to regulate plant growth in response to fructose signaling [55,56].
Ribulose-phosphate 3-epimerase (RPE) is involved in the regulation of pentose phosphate
pathway [57]. The Calvin cycle protein CP12-1 has been shown to regulate the activity of
two Calvin cycle enzymes, phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), through the reversible formation of a multiprotein complex [58].
These conclusions suggest that the STS intercropping system can improve carbohydrate syn-
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thesis and regulation by up-regulating the expression of FBP1, RPE and Calvin cycle protein
CP12-1. In addition, metabolomics data showed that the level of saccharides metabolites in
the STS intercropping system were higher than that of T, especially Dihydroxyacetone phos-
phate, D-erythrose-4-phosphate, D-Glucoronic acid*, D-Fructose 6-Phosphate*, D-Ribose,
Glucose-1-phosphate*, D-Glucose 6-phosphate* and D-Glucosamine 1-phosphate (Figure 7).
The up-regulated expression levels of genes related to the dark reaction in transcriptome
data were consistent with the metabolomics data. In conclusion, STS promotes the accumu-
lation of carbohydrates in the leaves of tea seedlings by up-regulating the expression of
genes in the dark reaction of photosynthesis.

5. Conclusions

This study investigated the molecular mechanism of soybean–tea intercropping to
improve the photosynthesis activity in tea seedling leaves through multi-source remote
sensing, photosynthetic characteristics, transcriptomics and metabolomics analysis. We
obtained the following conclusions: (1) Based on the results of multispectral reflectance, VIs
and thermal infrared remote sensing data, we determined that soybean–tea intercropping
system can increase the canopy chlorophyll contents and reduce the canopy temperature
of tea seedlings. (2) The photosynthetic characteristics data showed that soybean–tea
intercropping could significantly improve the Fv/Fm and SPAD levels of tea seedling leaves.
(3) At the transcriptome level, soybean–tea intercropping enhanced the photosynthesis
activity of tea seedling leaves by improving the expression of light-harvesting genes (LHC),
photosystem subunit genes (Psbs and Psas) and dark reaction biological process genes (FBP1,
RPE, Calvin cycle protein CP12-1 and transketolase). (4) At the metabolome level, soybean–tea
intercropping promoted the accumulation of carbohydrate metabolites, which provided
further evidence for the enhancement of photosynthesis in the leaves of tea seedlings.

In conclusion, our research showed that intercropping soybean in young tea plantation
could improve the photosynthesis activity of tea seedlings by improving the spectral
characteristics of the tea seedlings canopy, reducing the canopy temperature and increasing
the expression levels of LHC and photosystem subunit genes. Actually, soybean–tea
intercropping is a mutually beneficial cultivation pattern of cash crops and food crops,
which improves the growth environment of tea seedlings and increases soybean yield.
Therefore, it is suggested to promote this pattern in terms of practical production. In
addition, this intercropping pattern also improves the land-utilization rate of tea gardens,
which is particularly valuable.
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