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Abstract: Transparent polysiloxane elastomers with good self-healing and reprocessing abilities have
attracted significant attention in the field of artificial skin and flexible displays. Herein, we propose a
simple one-pot method to fabricate a room temperature self-healable polysiloxane elastomer (HPDMS)
by introducing dynamic and reversible imine bonds and boroxine into polydimethylsiloxane (PDMS)
networks. The presence of imine bonds and boroxine is proved by FT−IR and NMR spectra. The
obtained HPDMS elastomer is highly transparent with a transmittance of up to 80%. The TGA
results demonstrated that the HPDMS elastomer has good heat resistance and can be used in a wide
temperature range. A lower glass transition temperature (Tg, −127.4 ◦C) was obtained and revealed
that the elastomer is highly flexible at room temperature. Because of the reformation of dynamic
reversible imine bonds and boroxine, the HPDMS elastomers exhibited excellent autonomous self-
healing properties. After healing for 3 h, the self-healing efficiency of HPDMS reached 96.3% at room
temperature. Moreover, the elastomers can be repeatedly reprocessed multiple times under milder
conditions. This work provides a simple but effective method to prepare transparent self-healable
and reprocessable polysiloxane elastomers.

Keywords: self-healing; polysiloxane; elastomers; imine bonds; boroxine

1. Introduction

Self-healing materials represent a novel class of intelligent materials. They are en-
dowed with the remarkable ability to autonomously repair damage and restore function-
ality. Consequently, they offer numerous advantages, including prolonged service life,
reduced maintenance costs, and minimized waste generation and pollution levels, as well
as enhanced usage safety. Over the last decades, self-healing materials have gained much
attention from researchers in various fields, such as engineering, electronics, energy, and
the environment [1]. Broadly speaking, self-healing materials can be categorized into two
types: extrinsic and intrinsic. The extrinsic type involves embedding microcapsules or
microvascular tubes containing healing agents within the material matrix. However, the
self-healing efficiency in this case is contingent upon the type and mobility of the healing
agent, and the healing time is often limited. On the other hand, intrinsic self-healing
materials leverage reversible physical and chemical interactions within the material system.
This approach relies solely on polymer diffusion and internal reversible interactions, elimi-
nating the need for externally added healing agents [2]. Remarkably, the healing process in
intrinsic materials can be repeated numerous times. Consequently, intrinsic self-healing
materials have garnered increasing attention in recent years [3].

A polysiloxane elastomer, an essential organosilicon material, is renowned for its
distinct physicochemical properties that encompass high elasticity, robust chemical stability,
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nontoxicity, and biocompatibility. These attributes have led to its widespread application
in diverse fields, including flexible sensors, electronic skins, and biomedical uses [4].
Nevertheless, traditional polysiloxane elastomers often suffer from limited mechanical
performance, rendering them vulnerable to damage during operation. Additionally, the
inherent irreversible crosslinking structure within these materials precludes the restoration
of their original functionality once damaged. Consequently, the development of self-
healable, recyclable, and reprocessable polysiloxane elastomers is of utmost importance.
This pursuit holds significant potential in extending their service life, minimizing resource
wastage, and contributing to a more sustainable future [5,6].

In recent years, extensive efforts have been made to design an intrinsic self-healing
polysiloxane elastomer by introducing dynamic non-covalent interaction (such as hydro-
gen bonds [7,8], ionic interactions [9], π−π stacking [10], host−guest interactions [11], and
metal−ligand interactions [12,13]) or reversible covalent bonds (such as imine bonds [14,15],
Diels−Alder reactions [16,17], and disulfide exchange [18,19]) into polysiloxane networks.
Among them, the imine bond is a typical dynamic bond in organic chemistry, which can be
obtained by the reaction of the aldehyde group and amino group under mild conditions.
This bond can endow a polysiloxane elastomer with self-healing ability and recyclabil-
ity [20]. For instance, Yu et al. [21] and Wang et al. [22] reported a transparent, stretchable,
and self-healing PDMS elastomer based on imine bonds, respectively. Similarly, in our
previous work, we obtained a self-healing PDMS elastomer by mixing amine-functionalized
PDMS and 1,4-diformylbenzene (DFB) at room temperature [23]. These elastomers ex-
hibited impressive light transmittance, high stretchability, and remarkable self-healing
capabilities. However, their mechanical properties are relatively poor due to the incorpo-
ration of dynamic imine bonds. It is necessary to develop a PDMS elastomer with good
self-healing performance and desired mechanical strength. Boroxine is formed through the
dehydration between three boronic acid molecules and possesses high bond dissociation
energy. Due to its unique tripodal ring structure, it can provide a higher crosslink density
to improve the mechanical properties of the materials [24]. Additionally, the formation of
the boroxine structure is dynamically reversible, making it suitable for the preparation of
high-strength self-healing and recyclable PDMS elastomers. Researchers have carried out
extensive explorations in the development of self-healing materials based on the boron
oxygen hexagonal structure, which often exhibits excellent mechanical performance [25,26].
Recently, many self-healing PDMS elastomers based on dynamic–covalent boroxine bonds
have been reported [27–30]. In our previous studies, a self-healable and reprocessable
polysiloxane elastomer was prepared by introducing exchangeable imine bond and borox-
ine into PDMS networks [31]. However, the precursors are generally not easily available,
and the fabrication procedures are time consuming and inefficient. Thus, it is still a chal-
lenge to develop an efficient strategy for the preparation of polysiloxane elastomers with
good mechanical properties and excellent self-healing.

Herein, a transparent self-healable and recyclable PDMS elastomer was prepared
by incorporating a reversible imine bond and boroxine into PDMS networks using a
simple and efficient one-pot strategy. This method can minimize chemical waste, save
time, and simplify the actual operation. It is of great significance to resource conserva-
tion and environmental protection. The presence of an imine bond and boroxine was
proved by FT−IR and NMR results. The mechanical and self-healing properties of the
elastomer were tested. The key raw material used in this study is an amine-functionalized
polydimethylsiloxane (PDMS−NH2), which is one of the common commercial softening
finishing agents. Compared with amino-terminated PDMS, the material used in this paper
is cheaper, easier to obtain, and more suitable for large-scale production and application.
The as-prepared PDMS elastomer showed good light transmittance, desirable mechanical
properties, and excellent self-healing properties. This research provides new insights into
designing self-healing, mechanically tough, and transparent PDMS elastomers. We antici-
pate that the self-healing elastomer could have potential applications in intelligent sensors
and biomedicine (tissue adhesives, agents for drug or cell delivery).
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2. Materials and Methods
2.1. Materials

Amino-modified polydimethylsiloxane (XIAMETER OFX−8040 fluid, viscosity: 800−5000
cPs, nitrogen content: 0.32−0.42%) was obtained from Dow Corning Corporation (Midland, MI,
USA). 4-formylphenylboric acid (FPBA) was purchased from Aladdin Chemical Ltd. (Ontario,
CA, USA) Methanol was provided by Sigma−Aldrich (St. Louis, MO, USA). All solvents and
chemicals were used as received without further purification.

2.2. Preparation of the Self-Healing PDMS Elastomer

The PDMS elastomer was prepared via a one-pot method. Firstly, different amounts
of 4-formylphenylboric acid (FPBA) were dissolved in 4 mL of methanol and stirred for
2 h. Subsequently, 4 g of amino-modified PDMS (PDMS−NH2) was added to the above
solution and stirred at room temperature. After several minutes, the polymer solution
turned viscous, and crosslinked organogels were obtained. The resulting product was then
placed in a fume hood for 12 h to evaporate the solvent, followed by drying in a vacuum
oven at 60 ◦C for 6 h to remove the residual solvent. The product was collected into a
polytetrafluoroethylene (PTFE) mold. Finally, the self-healable PDMS elastomers were
obtained by mold pressing at room temperature.

2.3. Characterization

Fourier-transform infrared spectra (FT−IR) were recorded on a PerkinElmer Frontier
(PerkinElmer, Waltham, MA, US) from 4000 to 400 cm−1 with 32 scans at a resolution of
4 cm−1. Proton nuclear magnetic resonance spectroscopy (1H NMR) was obtained using a
Bruker 300 MHz spectrometer (Bruker, Bremen, Germany) with CDCl3 as the solvent. The
transmittance of elastomers was characterized on a UV−Vis spectrophotometer (TU−1810,
Beijing Puxi Instrument Factory, Beijing, China). Thermal gravimetric analysis (TGA) was
performed on a synchronous thermal analyzer (STA449F3, Netzsch, Selb, Germany) by
heating the samples from room temperature to 800 ◦C at a heating rate of 10 ◦C/min
under the protection of a nitrogen atmosphere. Differential scanning calorimetry (DSC)
measurements were conducted on a NETZSCH STA449F3 instrument (Netzsch, Selb,
Germany) at a heating rate of 10 ◦C/min from −140 to 100 ◦C under a nitrogen atmosphere.
Rectangular specimens (40 mm × 10 mm × 2 mm) were formed and used to test the
mechanical properties of PDMS elastomers on a universal electronic tension testing machine
(Instron 5944, Instron, Norwood, MA, USA) with a strain rate of 20 mm/min at room
temperature. The self-healing process of the crack on the elastomer was observed using
optical microscopy (WMP−6880, Wumo Optical, Shanghai, China).

2.4. Evaluation of Self-Healing Properties

The original PDMS elastomers were cut into two halves using blades. Then, the
separated samples were put together under ambient conditions without exterior pressure
and heating. After self-healing at room temperature for different times, the tensile strength
and elongation of elastomers were obtained from the tensile test. The self-healing efficiency
(HE) was calculated in Equation (1) as follows:

HE =
σh
σ0

× 100% (1)

where σh and σ0 correspond to the tensile strength for the healed and original elastomer,
respectively.

3. Results and Discussion
3.1. Preparation and Characterization of the HPDMS Elastomer

The chemical structure and the synthesis process of the HPDMS elastomer are pre-
sented in Figure 1. The self-healing PDMS elastomer was prepared with PDMS−NH2
as a soft segment and FPBA as crosslinker by introducing two dynamic bonds, weak
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imine bonds, and a strong boroxine structure into the polymer networks. Imine bonds
were constructed through a Schiff base reaction between the amine groups in the PDMS
backbone and the aldehyde groups of FPBA. Meanwhile, boroxine was formed through a
dehydration reaction between the boron hydroxyl groups of FPBA. Thus, the crosslinking
density of this material can be easily tunable through the ratio of PDMS−NH2 and FPBA.
The dynamic and reversible imine bonds and boroxine can not only provide crosslinking
points for improving the tensile strength and stretchability of the material but also endow
the elastomer with fast autonomous self-healing ability at room temperature.
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Figure 1. Schematic illustration of the HPDMS elastomer synthesis and the self-healing process.

The successful synthesis of the HPDMS elastomer was evidenced by the FT−IR
and 1H NMR spectra. As depicted in Figure 2a, the spectrum of the HPDMS elastomer
shows similar peaks as PDMS−NH2. The peak at 800 cm−1 is attributed to the stretching
vibration of Si−C. The doublet at 1019 cm−1 and 1096 cm−1 is assigned to the asymmetric
stretching of Si−O-Si in the backbone. The adsorption peak at 2965 cm−1 is due to the
C−H stretching vibration from the alkyl group. Compared with PDMS−NH2, in the
spectrum of HPDMS, a peak corresponding to the C=N stretching vibration appeared at
1624 cm−1, and two characteristic absorption peaks of the boroxine structure emerged at
746 and 687 cm−1. This observation suggests the successful formation of imine bonds and
boroxine structures [29]. The 1H NMR spectrum of HPDMS is provided in Figure 2b. The
chemical shift peaks at b (δ = 1.27 ppm), d, e, and f (δ = 2.62–2.93 ppm) correspond to
the methyl (-Si−CH3) and methylene (−Si−CH2CH2CH2−) groups attached to silicon.
Additionally, signals at c (δ = 7.3 ppm) and a (δ = 7.98 ppm) belong to the protons from
the benzene ring and imine bond (−HC=N−), respectively [27]. These findings indicate
the successful construction of imine bonds and boroxine structures through the Schiff base
reaction and dehydration reaction between PDMS−NH2 and FPBA. The above results
prove the successful preparation of self-healing PDMS by introducing imine bonds and
boroxine into the PDMS networks.
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Figure 2. (a) FT−IR spectra of PDMS−NH2 and the HPDMS elastomer. (b) 1H NMR spectra
of the HPDMS elastomer. (c) UV−Vis transmittance spectra of the glass slide, Sylgard 184, and
HPDMS elastomer.

The optical transparency of self-healing materials greatly determines their application
in flexible displays, solar cells, artificial skin, medical supplies, and others. Currently, most
healable PDMS elastomers are chromatic and opaque due to the presence of metal ions
and chromophores. The transparency of HPDMS elastomers is evaluated using a UV−Vis
spectrophotometer. As shown in Figure 2c, the self-healing PDMS elastomer exhibits good
transparency. The average transmittance of the HPDMS elastomer with a thickness of 1 mm
is 80% in the visible light region (400–800 nm), and the underneath images can be clearly
seen through the elastomer, although the transparency was lower than that of quartz glass
(≈91%). The value was comparable to the transparency of commercial Sylgard 184 (≈87%)
and other transparent elastomers [32,33].

Thermogravimetric analysis (TGA) was performed in a nitrogen atmosphere to de-
termine the thermal stability and decomposition temperature of the elastomers. It can be
seen from the TGA curves in Figure 3a that there is only one weightlessness from 300 to
600 ◦C. This significant weight loss mainly corresponds to the depolymerization of the
siloxane chains [34]. This stage indicates that the HPDMS elastomer is converted into
cyclic oligomeric species due to the thermally activated depolymerization mechanism [35].
The decomposition temperature (the temperature at 5% weight loss) of the self-healing
PDMS elastomer is 345 ◦C, which is higher than that of the PDMS elastomer based on only
imine bonds in our previous work [23]. This is due to the higher crosslinking density and
introduction of boroxine with high bond dissociation energy. These results indicate that the
self-healing elastomers have good heat resistance and thermal stability and can be used in
a wide temperature range.
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In order to investigate the thermally amendable characteristic of the HPDMS elastomer,
a differential scanning calorimetry (DSC) analysis was conducted via a heating and cooling
cycle in the temperature range of −150–100 ◦C (Figure 3b). It can be observed that there
are no endothermic or exothermic peaks during heating and cooling cycles (the peaks
at −143 ◦C and 100 ◦C are not genuine, and they may be due to an experimental error),
which indicates that the HPDMS elastomer does not have a melting temperature (Tm) and
crystallization temperature (Tc). The polymer is amorphous. Additionally, an inflection
point in the heating process was observed and taken as the glass transition temperature
(Tg). The Tg of HPDMS is about −127.4 ◦C, which indicates that the elastomer is highly
flexible at room temperature [21]. Such low Tg benefits the movement of polymer chains,
promoting chain diffusion, bond exchange, and the re-entanglement of molecular chains at
the fracture interface [36]. It is helpful for self-healing at room temperature.

3.2. Mechanical Properties of the HPDMS Elastomer

The mechanical properties of the HPDMS elastomer with different FPBA contents were
investigated by tensile test at room temperature. It can be seen in Figure 4a that HPDMS
exhibited different tensile strengths and elongations with varying FPBA concentrations.
When the FPBA concentration was 0.3 M, the polymer behaved like a viscous liquid
and could not form an elastic elastomer due to insufficient crosslinking sites. Therefore,
although it had a higher elongation (>1800%), the tensile strength was too low (<2 kPa).
With the increase in FPBA concentration, the mechanical strength markedly improved.
When the FPBA concentration was 0.4 M, a three-dimensional polymer network was
constructed, resulting in tensile strength and elongation at a break of 0.24 MPa and 554%,
respectively. However, when the FPBA concentration was further increased to 0.45 M,
although the tensile strength increased to 0.47 MPa, the elongation reduced to 304%. This
is because a higher FPBA concentration leads to the formation of more imine bonds and
boroxine, providing a higher crosslinking degree, which is beneficial for improving the
tensile strength of the polymer. However, highly crosslinked polymer networks also limit
chain migration and segment dynamics, leaving insufficient space in the polymer network
for polymer chain slippage under stretching, resulting in quick fracture of the networks
and showing a lower elongation at the break [37]. The mechanical properties can be
regulated by adjusting the concentration of FPBA. Moreover, the mechanical strength is
higher than that of PDMS based on the imine bond alone in our previous work [23] due to
the introduction of stronger boroxine with higher bond energy in the polymer. This finding
is consistent with the results of TGA. Furthermore, the mechanical performances of the
HPDMS elastomer under different stretching speeds were also compared. As shown in
Figure 4b, the stretchability of HPDMS is related to the stretching speed during tensile
tests. With the stretching speed increasing from 10 mm/min to 40 mm/min, the tensile
strength increased from 0.15 MPa to 0.30 MPa, while the elongation at the break decreased
from 336% to 130%. A higher stretching speed resulted in higher tensile strength but lower
elongation at the break. This phenomenon could be ascribed to the fact that when a higher
stretching speed is applied, the movement of polymer chains cannot keep up with the
external force, allowing less time for the displacement, reorientation, and reconfiguration
of polymer chain segments and the reformation of the broken dynamic covalent bond,
which reduces the fracture tolerance [38]. Conversely, when the elastomer was applied
with a lower stretching speed, there was enough time for the relaxation and configuration
of polymer chains, and it can be compensated for the breakage of dynamic covalent bonds
through a slip between molecular chains. As a result, the HPDMS elastomer shows higher
extensibility at a lower stretching speed.
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(b) different stretching speeds.

3.3. Self-Healing Properties of the HPDMS Elastomer

The self-healing performance of the HPDMS elastomer was observed and evaluated.
The self-healing process was monitored through optical microscopic observation. As shown
in Figure 5a, a crack was created on the surface of the HPDMS elastomer using a razor
blade, and the incision was very apparent before healing. As the healing time increased,
the incision gradually became narrower and shallower. After healing at room temperature
for 3 h, the incision on the elastomer almost disappeared, demonstrating the excellent
self-healing ability of HPDMS. In addition, the tensile experiments were conducted to
quantitatively evaluate the self-healing properties of HPDMS. First, HPDMS strips were
cut into two pieces. Then, the contacting surfaces of the two pieces were placed together
for self-healing at room temperature without any external stimuli. Figure 5b shows the
stress−strain curves of the HPDMS elastomer healed at room temperature at different times.
It can be seen that the original samples exhibited a tensile strength and an elongation at a
break of 0.41 MPa and 335%, respectively. The mechanical properties of healed elastomer
increased with the increase in healing time. After healing for 30 min, the tensile strength
and elongation can recover to 56% and 44%, respectively. When the severed samples
were healed for 3 h, the tensile strength and elongation at the break of HPDMS can reach
0.39 MPa and 335%, respectively. These values are very close to the original samples.
Furthermore, self-healing efficiencies (HE) calculated from the ratio of the tensile strength
of the healed and original samples were also used to evaluate the self-healing performance.
It can be seen in Figure 5c that the HE is related to the self-healing time. When the self-
healing time increased from 10 min to 3 h, the average HE of HPDMS increased from
35.2% to 96.3%. Although the HE of HPDMS is slightly lower than the elastomer (whose
HE is 99% when healing for 1 h) we reported previously [23], it is still higher than many
other PDMS elastomers [7,39–41]. All these results indicate that the prepared HPDMS
elastomer exhibits good autonomous self-healing capability. This was the result of the
spontaneous and rapid reconstruction of dynamic imine bonds and reversible boroxine at
room temperature. Additionally, the flexibility of the molecular chains of HPDMS was also
beneficial for the rapid integration of the fracture surfaces.
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3.4. Reprocessability of the HPDMS Elastomer

In general, a conventional PDMS elastomer cannot be recycled and reprocessed due
to the presence of permanent covalent crosslinked network structures within the poly-
mer, leading to resource waste and environmental pollution [42]. Introducing dynamic
reversible chemical bonds into PDMS can endow materials with recycling and reprocessing
ability. The reprocessability of the HPDMS elastomer was evaluated through the following
procedures. Firstly, the rectangular sample was cut into small pieces, which were then
pressed in a Teflon mold at room temperature at a pressure of ~10 MPa for several hours,
to reshape it (Figure 6a). The stress−strain curves of original and recovered samples are
shown in Figure 6b. The original samples exhibited a tensile strength of 0.34 MPa and an
elongation at a break of 560%. Although the elongation slightly decreased with an increase
in the number of cycles, the mechanical strength could almost reach the value of the original
elastomer. Even after three cycles of cutting/recycling process, the tensile strength and
elongation of HPDMS still reached 0.32 MPa and 458%, respectively. The recovery ratio
of mechanical properties (defined as the ratio of the mechanical property after and before
reprocessing) exceeded 94%. These results indicate an excellent reprocessability of HPDMS
elastomers under mild conditions. The remarkable reprocessability of HPDMS can be
attributed to the reformation of dynamic imine bonds and boroxine in polymers. When the
polymer specimen is shredded and then compressed together, Schiff base reactions and
the reformation of boroxine could occur between the particle surfaces, reconnecting the
grains. As a result, the elastomer can regain its mechanical strength after reprocessing. This
manner offers a facile way to reprocess polymers under a milder condition instead of hot
pressing, aligning with the trend of environmental protection and resource conservation.
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4. Conclusions

In summary, a transparent polysiloxane elastomer with good room temperature self-
healing and reprocessing abilities was successfully prepared by introducing dynamic imine
bonds and boroxine into polymer networks. The elastomer exhibits high optical trans-
parency (80%) in the visible region. The results of DSC and TGA show that the HPDMS
elastomer has a low glass transition temperature (−127.4 ◦C) and a high decomposition
temperature (345 ◦C), indicating that the elastomer is highly flexible at room temperature
and possesses good heat resistance and thermal stability. Owing to the dynamic nature
of imine bonds and boroxine, the HPDMS elastomer exhibits excellent autonomous self-
healing properties. A damaged sample can rapidly recover its mechanical strength after
healing for 3 h at room temperature without any external stimuli, such as light or heat.
Additionally, the elastomer can be repeatedly reprocessed multiple times under milder
conditions without significant degradation in mechanical performance. This work pro-
vides a simple and efficient method to prepare a transparent self-healable and recyclable
polysiloxane elastomer. It has great potential in the field of flexible electronics, wearable
devices, and biomedicine.
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