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Abstract: Biodegradable polymers have been extensively researched in the field of biomedicine.
Polylactic-co-glycolic acid (PLGA), a biodegradable polymer material, has been widely used in drug
delivery systems and has shown great potential in various medical fields, including vaccines, tissue
engineering such as bone regeneration and wound healing, and 3D printing. Cancer, a group of
diseases with high mortality rates worldwide, has recently garnered significant attention in the
field of immune therapy research. In recent years, there has been growing interest in the delivery
function of PLGA in tumor immunotherapy. In tumor immunotherapy, PLGA can serve as a carrier
to load antigens on its surface, thereby enhancing the immune system’s ability to attack tumor
cells. Additionally, PLGA can be used to formulate tumor vaccines and immunoadjuvants, thereby
enhancing the efficacy of tumor immunotherapy. PLGA nanoparticles (NPs) can also enhance the
effectiveness of tumor immunotherapy by regulating the activity and differentiation of immune
cells, and by improving the expression and presentation of tumor antigens. Furthermore, due
to the diverse physical properties and surface modifications of PLGA, it has a wider range of
potential applications in tumor immunotherapy through the loading of various types of drugs or
other innovative substances. We aim to highlight the recent advances and challenges of plga in the
field of oncology therapy to stimulate further research and development of innovative PLGA-based
approaches, and more effective and personalized cancer therapies.

Keywords: PLGA; tumor; immunotherapy; modification; drug delivery

1. Introduction

Cancer remains a formidable global health challenge, with its pervasive impact afflict-
ing millions of lives worldwide [1]. Traditional modalities of cancer treatment, including
chemotherapy and radiation therapy, are frequently constrained by issues such as sys-
temic toxicity and the emergence of drug resistance [2,3]. In contrast, immunotherapy has
emerged as a promising frontier in oncology, offering a potentially transformative approach
to cancer treatment that may circumvent these limitations [4].

Biodegradable polymers have increasingly become a focal point within the realm
of medical materials research. Their applications in the field of immunotherapy are par-
ticularly noteworthy, serving as vehicles for immunomodulatory drugs, constituents of
anti-cancer vaccines, and as targeted delivery systems for antigens, thereby activating
the immune response [5–8]. Among these polymers, poly(lactic-co-glycolic acid) (PLGA)
stands out as an emerging material that has shown remarkable promise in performance, and
the application of PLGA in the immunotherapy of cancer is highlighted in this article [9]. In
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addition, we have employed bibliometric methods, yielding a set of quantifiable outcomes
that contribute to the depth of our research.

PLGA’s tunable properties, including degradation rate, mechanical strength, and drug
release kinetics, make it an ideal candidate for addressing the challenges associated with
cancer treatment [10–12]. Its unique immunogenicity, histocompatibility and Interaction
with the immune system are its basic properties in immunotherapy.

At present, the fabrication of PLGA particles is facilitated by a variety of well-
established techniques, such as: Single emulsion-solvent evaporation, double emulsion-
solvent evaporation, solvent-precipitation, and spray drying. Each of these methodologies
presents its own set of advantages and limitations, as well as a specific scope of application.
Consequently, researchers are empowered to select the most fitting approach aligned with
their unique research objectives. Moreover, the versatility of PLGA allows for targeted
modifications that can alter its targeting capabilities, immunogenicity, and other fundamen-
tal properties. Such modifications are instrumental in the development of strategies for
immune modulation and targeted delivery to tumors, thereby enhancing the therapeutic
potential of PLGA-based formulations in cancer treatment.

PLGA plays an important role in cancer immunotherapy, and its main mechanisms
include drug delivery and immune regulation. By encapsulating traditional anticancer
drugs, such as paclitaxel and vinorelbine, etc., PLGA is able to enhance the anti-tumor
effect of the drugs and deliver them precisely to the tumor site, reducing the damage to
healthy tissues. Simultaneously, PLGA’s versatility extends to encapsulating cytokines,
antigens and other immunomodulatory substances to regulate the activity of the immune
system. For example, PLGA can encapsulate antigens to promote the activation of immune
cells and enhance immune responses against tumor cells; In addition, PLGA can also
encapsulate immunomodulators to inhibit the expression of immunosuppressive factors,
thereby enhancing the ability of immune cells to attack tumors. Despite the potential of
PLGA in cancer immunotherapy, PLGA faces certain challenges in cancer immunotherapy:
limited drug loading capacity, difficult to regulate drug release rate in vivo, immunogenic-
ity and immunostimulatory effects on the body, and lack of long-term stability in vivo.
Nevertheless, ongoing advancements in synthesis techniques and the incorporation of
surface modifications offer promising avenues to address these limitations and enhance the
therapeutic potential of PLGA in cancer treatment.

The application of PLGA nanoparticles in cancer therapy addresses several limitations
of conventional treatments such as chemotherapy, which often suffer from uneven drug
distribution, severe side effects, and rapid drug elimination. PLGA nanoparticles provide
a controlled and sustained release mechanism, reducing toxicity to normal tissues while
increasing drug concentration at the tumor site, thus enhancing treatment efficacy [13].
PLGA nanoparticles are biocompatible and biodegradable, with degradation products that
can be naturally metabolized, reducing the risk of long-term toxicity. Additionally, the
ratio of lactic to glycolic acid in PLGA can be adjusted to tailor the drug release rate for
personalized treatment [14]. As a carrier for immunotherapeutic agents, PLGA nanopar-
ticles can simulate the effect of multiple injections through pulsatile release, enhancing
immune responses, inhibiting tumor growth, and prolonging survival without the need
for repeated injections, thereby improving patient compliance and reducing the risk of
treatment-associated metastasis [15]. Surface modification with targeting ligands, such as
antibodies or peptides, allows for specific targeting of tumor cells, enhancing treatment
efficacy and reducing systemic side effects [16]. The biocompatibility and biodegradability
of PLGA nanoparticles ensure their safety in the body, with studies showing complete
degradation and clearance inflammation or other toxic reactions [9]. These advantages
position PLGA nanoparticles as a promising approach in cancer therapy, offering patients
more effective, safer, and more convenient treatment options.

In the field of biomedical applications, the terms PLGA Nanoparticles, Microparticles,
and Nanopolymers are often used to delineate materials derived from PLGA. While these
terms are often used to describe PLGA-based constructs, they denote different scales and



Polymers 2024, 16, 1253 3 of 27

applications. PLGA Nanoparticles are defined by their nanoscale size and are commonly
utilized in drug delivery and imaging. Microparticles, larger in size, are typically used
for drug release and as scaffolds in tissue engineering. Nanopolymers, a broader category,
may encompass nanofibers and other nanostructures, offering a wide range of applications
in the biomedical field.

Overall, this review provides a comprehensive overview of the various applications
of PLGA in cancer treatment. We will discuss the immunological basis of PLGA in im-
munotherapy, the synthesis and preparation of PLGA, and the application of PLGA in
cancer. By elucidating recent advancements alongside the challenges faced in this field, we
aim to inspire further research and development of innovative PLGA-based approaches for
effective and personalized cancer therapy.

2. Immunological Basis of PLGA in Immunotherapy

To fully harness the therapeutic potential of PLGA nanoparticles (NPs) in immunother-
apy, a profound comprehension of their immunological foundation is imperative. This
necessitates a detailed exploration of the biodistribution of NPs within the body, their
cellular uptake mechanisms, and the intricacies of their interactions with immune cells.
The optimization of NP design parameters could significantly augment their targeting
efficacy and immune-stimulating properties, thereby enhancing the overall therapeutic
impact of immunotherapy.

A thorough understanding of the interplay between NPs and the immune system is
paramount for accurately assessing their metabolic fate and clearance profiles. This knowl-
edge is crucial for predicting the long-term immunological consequences and potential
adverse effects of PLGA NPs. Furthermore, insights into how NPs modulate immune
cell functions and the regulation of immune responses are invaluable for the strategic
refinement of immunotherapeutic protocols.

The objective of this part is to delineate the mechanistic pathways through which
PLGA NPs exert their effects in immunotherapy. By doing so, we aim to establish a robust
scientific framework that underpins their clinical translation and application, thereby
facilitating the development of more effective and safer immunotherapeutic strategies.

The primary immunological mechanisms of PLGA involve inducing antigen-presenting
cells (APCs), such as dendritic cells (DCs) and macrophages, to phagocytose antigens. This
improves humoral and cellular immune responses by enhancing antigen presentation on
MHC class I and II molecules [17,18]. The process involves three main steps: endosomal
escape, proteasomal processing, and antigen loading in the endoplasmic reticulum (ER)
and/or endosomes [19]. Upon recognition by the immune system, PLGA has been observed
to modulate inflammatory responses, mitigate neuroinflammation following central ner-
vous system (CNS) injury, and reprogram lipopolysaccharide-activated microglia from the
pro-inflammatory phenotype to the anti-inflammatory phenotype [20]. Furthermore, PLGA
has demonstrated the capacity to suppress the activity of immune cells within the CNS and
augment their accumulation in the spleen [21]. PLGA affects immune responses through
various mechanisms, such as enhancing antigen presentation, regulating inflammatory
responses, promoting the immunological effects of antigens, and interacting with immune
cells (Figure 1). Given these properties, PLGA emerges as a promising candidate for its
application in the realms of immunotherapy, vaccine development, and the regulation of
inflammatory conditions.

The interactions between PLGA nanoparticles and immune cells significantly influ-
ence both short-term and long-term immunological responses, and understanding these
interactions is vital for enhancing the design and clinical application of PLGA-based im-
munotherapy strategies. In the short term, PLGA NPs can enhance antigen presentation,
rapidly activating immune cells such as dendritic cells and T cells [22]. Additionally, im-
munoadjuvants like CpG oligonucleotides, when delivered via PLGA NPs, can quickly
activate natural killer cells and T cells, initiating a swift immune response [23]. Over the
long term, PLGA NPs can promote the generation of memory T cells, providing lasting im-
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mune protection against tumor reoccurrence [24]. Moreover, well-designed PLGA NPs can
prevent immune tolerance to therapeutic antigens, ensuring the longevity of the immune
response [25]. This knowledge can be utilized to strengthen PLGA-based immunotherapy
strategies through targeted delivery, combination therapies, and sustained release sys-
tems [26–28]. In clinical applications, personalized treatments, postoperative therapies, and
safety assessments are key directions for realizing the potential of PLGA NPs, enhancing
the effectiveness of cancer treatment [29,30].
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inhibiting the secretion of anti-inflammatory factors and promoting the synthesis of anti-inflammatory
factors by microglia.

Understanding the immunological mechanisms of PLGA nanoparticles is crucial for
optimizing their effectiveness in immunotherapy. The immunological mechanisms include
the interaction of PLGA nanoparticles with antigen-presenting cells (APCs), their role
in enhancing antigen presentation, and their ability to modulate immune responses. By
elucidating these mechanisms, the design of PLGA nanoparticles can be tailored to improve
their biocompatibility, targeting, and immune-stimulating properties. For example, surface
modifications can enhance the interaction of nanoparticles with specific immune cells,
thereby improving their therapeutic efficacy. Additionally, understanding the degradation
products of PLGA and their impact on the immune system allows for the development
of strategies to mitigate potential adverse immunological responses, ensuring the safety
and effectiveness of PLGA nanoparticles in clinical applications. This knowledge can
guide the design of multimodal nanoparticles capable of drug delivery, immune activation,
and modulation of the tumor microenvironment, thereby enhancing the overall efficacy
of immunotherapy.

PLGAs hold significant potential for applications in immunotherapy due to their
unique properties, including charge, size, and morphology. These properties are known
to exert a profound influence on the in vivo behavior of NPs, including their distribution,
cellular uptake, and immunostimulatory capabilities. Consequently, these characteristics
can modulate the immunological mechanisms and therapeutic efficacy of PLGA NPs. Given
the critical role of these properties, it is imperative to undertake a thorough investigation
into how the charge, size, and morphology of PLGA NPs impact immunotherapeutic
outcomes. Such a study would not only enhance our understanding of the underlying
principles but also inform the strategic design and optimization of PLGA NPs for use
in immunotherapy. This knowledge is essential for advancing the development of more
effective and targeted immunotherapies.



Polymers 2024, 16, 1253 5 of 27

The surface charge of PLGA NPs markedly influences their immunological mech-
anisms, affecting their biodistribution, cellular internalization, and immunomodulatory
functions. Nanoparticles bearing a positive charge are more inclined to be internalized
by the negatively charged cell membranes, whereas those with a negative charge may
interact more readily with positively charged cell surfaces. This electrostatic interaction can
modulate the targeting efficacy and immunomodulatory potential of NPs within the context
of immunotherapy. In the design of NPs for therapeutic applications, it is imperative to
contemplate the influence of surface charge on the therapeutic outcome. Research has
demonstrated that negatively charged PLGA NPs can interact with scavenger receptors
present on circulating immune cells, thereby modulating immune cell function. This in-
teraction may lead to the reprogramming of immune cells, influencing their trafficking
to the spleen, or dispersing circulating immune cells, such as inflammatory monocytes
and neutrophils, from the site of injury, indirectly mitigating immune pathology in in-
flamed regions [21]. Highly negatively charged PLGA NPs could also reduce immune cell
infiltration, thereby lowering secondary damage resulting from inflammatory responses.
PLGA may cause severe immune toxicity through hemolysis or platelet aggregation due
to the electrostatic interactions of positively charged NPs with cell membranes, the inter-
actions of hydrophobic NPs with the reticuloendothelial system, or the aggregation of
serum proteins caused by small cationic NPs [31]. When formulating NPs for immunother-
apy, it is crucial to balance the therapeutic benefits against the potential risks associated
with NP surface charge. This balance aims to maximize therapeutic efficacy while min-
imizing adverse reactions, ensuring the safe and effective application of PLGA NPs in
immunotherapeutic strategies.

The size of PLGA NPs is a determinant factor in their immunological mechanisms,
particularly within the context of immunotherapy. Recent research underscores the pivotal
role of particle size in eliciting antigen-specific T cell responses and modulating interactions
with the immune system. A study led by Natalia Muñoz-Wolf examined PLGA particles
with sizes varying from 50 nm to 30 µm, revealing that particle size is instrumental in the
induction of antigen-specific CD8+ T and Th1 cell responses, without significantly affecting
antibody production. The size range of 50–60 nm was identified as optimal for stimulating
specific Th1 and CD8+ T cell responses to subunit protein antigens, and also for the
induction of reactive oxygen species (ROS), which augments the cytotoxic potential against
tumor cells. Vaccination with 50 nm particles was shown to elicit a sustained functional
response, conferring protection against B16-ovalbumin (OVA) melanoma in mice [32].
Utilization of smaller particles may enhance uptake by immune cells and intracellular
presentation of antigens, leading to a stronger immune response [31]. Furthermore, smaller
particles may be more effective in penetrating tissue barriers, such as mucosal barriers,
thereby improving interaction with the immune system. Nusaiba K Al-Nemrawi discovered
that PLGA NPs of 300 nm size are more effective in promoting antigen-specific T cell
responses compared to particles larger than 1 µm [31]. This finding underscores the
importance of particle size in modulating immune responses. [5] Research conducted by
Ryan M Pearson and colleagues on autoimmune diseases suggests that PLGA NPs with a
size of 500 nm are the most suitable [33]. These NPs have a greater degree of internalization
and affinity for binding to immune cells [21]. Additionally, Eiji Saito and colleagues found
that PLGA-H (high molecular weight PLG) particles have a higher binding ability with
immune cells. Compared to low molecular weight PLGA particles, PLGA-H particles have
a higher affinity for neutrophils in the blood, which restricts immune cell activity in the
central nervous system and increases accumulation in the spleen [34]. In summary, the
size of PLGA NPs significantly influences their immunotherapeutic effectiveness. Smaller
particles, particularly those in the 50–60 nm range, are more readily phagocytosed by
immune cells, leading to more efficient antigen presentation and a robust immune response.
Conversely, larger PLGA particles may engage immune cells through distinct binding
mechanisms. When designing PLGA NPs for immunotherapy, it is imperative to consider
the impact of particle size on therapeutic efficacy. A comprehensive understanding of
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this parameter is crucial for optimizing the performance and safety of PLGA NPs in
clinical applications.

In addition, the morphology of PLGA NPs could also significantly influences their im-
munological mechanisms. In the realm of biomaterials and drug delivery, the morphology
of biomimetic particles has emerged as a key parameter that can impact their interaction
with biological systems [35]. Particle morphology is critical in reducing phagocytic endo-
cytosis, cellular uptake, and altering the biodistribution of drug delivery carriers [36–38].
For instance, rod-shaped PLGA NPs exhibit a higher affinity for neutrophil absorption
compared to their spherical counterparts, suggesting that the elongated structure may
enhance therapeutic targeting of neutrophils [39]. Future use of this particle shape-based
targeting of neutrophils will require researchers to obtain biocompatible and biodegradable
non-spherical particles easily. Furthermore, it is worth noting that the shape of PLGA NPs
may have varying effects on their uptake and internalization by immune cells, which in
turn could impact their efficacy in immunotherapy. Kavya Sree Maravajjala and others
found that compared to linear PLGA, star-shaped PLGA pH-responsive NPs demonstrated
improved pH-dependent drug release and increased permeability in a complex breast
cancer spheroid model (breast cancer cells and macrophages) [40]. Hence, it is impera-
tive for forthcoming researchers to consider the influence of nanoparticle morphology
on the therapeutic efficacy of immunotherapy, with the aim of designing more effective
treatment strategies.

While PLGA nanoparticles (NPs) hold substantial promise in the field of immunother-
apy, their clinical application is accompanied by a spectrum of challenges that necessitate
further investigation and innovation. Comprehensive research is essential to elucidate the
intricate immunological mechanisms of these NPs, which include their biodistribution,
cellular uptake, immune regulation, and interactions with immune cells. A thorough
understanding of these mechanisms is vital for the optimization of nanoparticle design,
with the aim of enhancing their targeting capabilities and immunomodulatory effects.
The biocompatibility and biodegradability of PLGA NPs must be carefully considered
to ensure minimal adverse effects and to facilitate their safe integration into the human
body. Additionally, overcoming technical hurdles in the preparation and production of
NPs is paramount. This includes achieving consistency in particle size and shape, which
are known to significantly influence the NPs’ immunological performance and therapeutic
outcomes. Further research endeavors, coupled with advancements in nanotechnology,
are imperative to surmount these challenges. The goal is to pave the way for the broad
application of PLGA NPs in immunotherapy, thereby harnessing their full potential in the
treatment of various diseases, including cancer.

We use bibliometric methods to analyze the immunologic mechanism of PLGA. We
collected 6107 PLGA articles from the Web of Science database by PLGA (Topic) AND
immun* (Topic), and finally analyzed a total of 2753 articles from 2018 to 2024 (Figure 2). The
data indicate the importance of the immunomodulatory effects of PLGA in tumor treatment
and demonstrate the research hotspots of immune cells such as DCs and Macrophages and
s cytokines.
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3. Surface Modification of PLGA

At present, PLGA could be one of the most widely used biodegradable polymers
is characterized by its strong modification ability, researchers through nanotechnology
modification, functionalization modification, bilayer structure modification, biodegradable
polymer modification, nanopore modification, surface modification and other different
modification methods on PLGA, so that the physical and chemical properties, immuno-
genicity, histocompatibility of PLGA could be changed, so that it could be applied to more
fields. The distinct modification methods, each with its unique mechanism, are detailed
as follows (Figure 3), showcasing the multifaceted approaches to optimizing PLGA for
specific applications within the biomedical sector.

3.1. Surface Modification of Biomaterials
3.1.1. Decreasing the Immunorecognition of PLGA and Increasing Immunocompatibility

Surface modification of PLGA microparticles with biocompatible materials can signifi-
cantly diminish their immunorecognizability by the in vivo immune system. By integrating
biocompatible molecules onto the surface of PLGA microparticles, the probability of im-
mune system recognition can be reduced. This modification strategy is critical for enhancing
the stealth characteristics of the particles, potentially improving their biocompatibility and
reducing the risk of immune-mediated adverse reactions.

In the modification using biomaterials, antibodies could be used for modification,
and by modifying antibody molecules on the surface of PLGA particles, the recognition
and binding of specific antigens could be realized, thereby improving the targeting and
specificity of the particles. This targeted surface modification facilitates more effective
interactions between PLGA microparticles and tumor cells while minimizing immune
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system interference [41]. In addition, the use of cell membrane modification of PLGA is
also a feasible method, and the membrane fragment derived from immunocompatible
cell membrane, or the entire cell membrane could be modified on the surface of PLGA
particles, which could increase the immunocompatibility of PLGA particles [42,43]. This
surface modification could mimic the characteristics of its own cells, reducing the im-
mune system’s recognition and attack of particles. Y. Wang et al. prepared macrophage
membrane-coated biomimetic NPs (MM/RAPNPs) copolymers by modifying PLGA with
macrophage membrane (MM), and determined their histocompatibility, and the results
showed that the prepared MM/RAPNPs exhibited good biocompatibility in mice. Due to
MM coating modifications, NPs potently inhibit macrophage phagocytosis and target acti-
vated endothelial cells in vitro. This modification helps to reduce the uptake of phagocytes
(e.g., macrophages) and improve cycle time in the body [44]. This coating modification is
instrumental in diminishing phagocytic uptake by immune cells, such as macrophages,
and prolonging the circulation time of the nanoparticles within the body.
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that PLGA affects inflammatory response and immune effect through interaction with immune cells
after modification of biological materials and chemical materials, as well as the barrier passing ability
of PLGA influenced by modification strategies; a normal arrow means facilitation or activation, and
an arrow with a crossbar means inhibition.

3.1.2. Regulating the Immune Response

Surface modification through biomaterials could alleviate the immunosuppressive
regulation of PLGA in the human body, such as unmodified PLGA particles may trigger
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inflammation and immune response of the immune system, and surface modification could
alleviate this immune regulation. Through the immunological mechanism, we can predict
that some modification of various biological factors can regulate the immune response.
Antibody modification: By carrying antibody molecules on the surface of PLGA particles,
it is possible to achieve a regulatory effect on immune cells. For example, modifying anti-
bodies with immunosuppressive functions, such as anti-CD47 antibodies, could inhibit the
phagocytosis of macrophages, thereby reducing immune and inflammatory responses. Im-
munosuppressive molecular modification: Modification of immunosuppressive molecules
on the surface of PLGA microparticles could increase the immunosuppressive properties of
microparticles. For example, modifying immunosuppressive factors such as TGF-β and
IL-10 could inhibit the activation and inflammatory response of immune cells to achieve
the effect of immunosuppression [45]. Cell membrane modification: modifying PLGA
microparticles with membrane fragments or whole membranes derived from immunosup-
pressive cells can endow the particles with biomimetic properties that regulate immune
responses. For instance, incorporating fragments of regulatory T cell membranes can
induce immune tolerance and immunosuppressive outcomes. The functionalization of
PLGA particle surfaces with immunosuppressive ligands allows for the binding to specific
receptors on immune cells, thereby conferring immunosuppressive effects. For example,
the modification with ligands such as PD-1 or CTLA-4 can bind to their respective receptors
on immune cells, inhibiting T cell activation and subsequent immune responses [46].

However, it should be noted that the application of these modification strategies may
modulate or attenuate the body’s immune response to a certain degree. If not meticulously
controlled, such interventions could precipitate immune dysregulation or even precipitate
diseases of the immune system. Consequently, a judicious approach is paramount in the
clinical application of PLGA modification. It is imperative to take a holistic view that
encompasses a comprehensive assessment of the patient’s immune status and the extent
of PLGA modification [27]. This precautionary stance ensures that the immune response
is neither over-suppressed nor under-stimulated, thereby maintaining a balanced and
beneficial therapeutic effect.

Further modifications could increase its immunomodulatory function. By modifying
APCs mimic molecules on the surface of PLGA particles, the function of APCs could be
mimicked, activating and regulating the activity of immune cells. These modified molecules
could include MHC molecules, costimulatory molecules, and inflammation regulators [47].

Immunostimulatory Molecule Modification: Immunostimulatory molecules are modi-
fied on the surface of PLGA microparticles to activate immune cells and regulate immune
responses. For example, modifying immunostimulatory molecules such as TLR agonists,
etc., could enhance antigen presentation, T cell activation, and immune response [48]. This
modification strategy can be particularly effective in enhancing the immunogenicity of
vaccine formulations and therapeutics that target the immune system.

3.1.3. Increasing Antigen Adjuvant Capacity

Surface modifications of PLGA nanoparticles can significantly enhance their capacity
to serve as antigenic adjuvants, a development with profound implications for vaccine de-
sign and immunotherapy. In a pivotal study, R. Han and colleagues encapsulated the model
antigen ovalbumin (OVA) within protamine-modified PLGA NPs. These NPs were utilized
to stimulate dendritic cells (DCs) derived from mouse bone marrow, demonstrating that
protamine-coated PLGA NPs could augment the cross-presentation of encapsulated exoge-
nous antigens. This effect was attributed to the promotion of antigen uptake and facilitation
of lysosomal escape, which are critical for initiating an effective immune response [49].

PR Hartmeier et al. reported that PLGA NPs modified with biotin could deliver
proteins and stimulate specialized APCs by adsorption [49].

Q. Liu and colleagues developed pH-responsive PLGA NPs using ammonium bicar-
bonate, which exhibited rapid intracellular antigen release behavior within APCs. These
NPs acted as antigen release promoters in DCs when co-encapsulated with antigens such
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as OVA. Upon DC uptake, the pH-responsive PLGA NPs enabled antigens to escape from
lysosomes into the cytoplasm, allowing for cross-presentation. Concurrently, these NPs
induced the upregulation of costimulatory molecules and stimulated cytokine production.
This multifaceted approach led to enhanced lymphocyte activation, increased generation
of antigen-specific CD8+ T cells with stronger cytotoxic capacity, boosted antigen-specific
antibody production, and improved the generation of memory T cells, thereby providing
robust protection against reinfection. These findings suggest that appropriately modi-
fied PLGA NPs can elicit potent cellular immune responses and offer antibody-mediated
protection [50].

3.2. Surface Modification of Chemical Material

Polyethylene glycol (PEG) modification is a widely adopted strategy for creating
a PEG-rich surface layer on PLGA particles. This is achieved through the covalent at-
tachment of PEG molecules to the particle surface, which confers several advantages for
the application of these particles in biological systems. The PEG layer acts as a barrier
to protein adsorption, mitigating the recognition and clearance by the immune system,
and consequently reducing the immunogenicity associated with PLGA particles. This
immunomodulatory effect of PEGylation can also enhance the stability and prolong the
circulation time of PLGA particles in the body [51]. In addition, the selection of molecules
with low immunogenicity as surface modifiers could reduce the immunorecognition of
PLGA particles. For example, the selection of molecules such as polymers, carbohydrates,
or lipids with low immunogenicity for modification could reduce the immune system’s re-
sponse to PLGA microparticles [52,53]. This approach is particularly valuable in the design
of nanoparticles intended for drug delivery and vaccine development, where minimizing
immune recognition is critical for maintaining particle integrity and functionality.

P. Gu et al. developed three OVA loaded PLGA NPs with different surface charge
and antigen loading modes, negatively charged antigens (Angelica sinensis polysaccharide
(ASP)-PLGA/OVA), polyethyleneimine (PEI)-coated antigen (ASP-PLGA/OVA-PEI), and
PEI-coated antigen (ASP-PLGA-PEI-OVA) NPs to study how the surface charge and antigen
loading patterns of NPs affect immune responses. The results showed that both PEI-coated
(positively charged) NPs facilitated antigen escape from endosomes compared to negatively
charged NPs, resulting in cross-presentation of cytoplasmic antigen delivery [54,55].

Similarly, C. Song et al. found that PEI-coated PLGA (OVA) NP was efficiently
internalized by phagocytosis in DCs or macrophage phagocytosis and induced efficient
cross-presentation of antigens on MHC class I molecules through endosomal escape and
lysosomal processing mechanisms [56].

Different experiments have found that PLGA modified by PEI could effectively pro-
mote the escape and cross-presentation of encapsulated drugs or antigens from endosomes.

On the whole, different surface modification techniques of PLGA, including nanotech-
nology and biodegradable polymer modifications, significantly impact its physicochemical
properties and suitability across various biomedical applications. Nanotechnology mod-
ifications, such as controlling the size and shape of PLGA at the nanoscale, can enhance
hydrophilicity, reduce nonspecific protein adsorption and cell adhesion, thereby improving
the circulation time and drug delivery efficiency of PLGA nanoparticles in the body [57].
Surface modifications with specific ligands or antibodies enable targeted delivery to par-
ticular cells or tissues, enhancing treatment specificity and reducing side effects [53]. For
instance, aptamer-conjugated PLGA nanoparticles showcase the potential of ligand mod-
ification for targeted cancer therapy. Biodegradable polymer modifications, such as the
covalent attachment of polyethylene glycol (PEG), can create a “stealth surface” on PLGA
microspheres, reducing immune recognition and clearance, and prolonging their half-life
in the body [58]. These modifications can also adjust the degradation rate of PLGA and the
kinetics of drug release to suit different therapeutic needs. For example, altering the ratio of
lactic to glycolic acid in PLGA copolymers can tailor the degradation rate and drug release
profile [59]. These modifications positively affect drug delivery by enhancing bioavailability
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and enabling targeted therapy, reducing the frequency of administration and dosage. In
tissue engineering, modified PLGA scaffolds can provide better support for cell adhesion,
proliferation, and differentiation, with controlled degradation rates that align with the
growth of new tissue, facilitating tissue regeneration and repair [60]. Surface-modified
PLGA can also reduce inflammatory responses and the formation of immunosuppressive
microenvironments, thereby improving the efficacy of immunotherapies.

3.3. Surface Modification Strategies for Tumor Immune Regulation and Targeted Delivery

By combining the mechanism of PLGA’s action in the human body, it is not difficult to
find that the body’s immunomodulatory effect against PLGA is the biggest challenge for its
use in humans.

We delineate PLGA surface modification strategies for immunomodulation and tar-
geted delivery into two distinct categories. The first category pertains to the alteration of the
intrinsic properties of PLGA molecules, with a focus on enhancing their immunogenicity
and biocompatibility. These modifications are designed to ensure the improved circula-
tion of PLGA as a carrier within the human body and to diminish the risk of premature
clearance by the immune system. Optimizing these properties is essential for the longevity
and effectiveness of PLGA-based drug delivery systems. The second category involves
acquired targeted modifications, where researchers implement specific alterations to the
PLGA molecule’s surface to fulfill the target specificity demands for applications such as
drug delivery. By adorning the surface of PLGA molecules with precise functional groups
or biomolecules, these modifications allow for the targeted delivery of therapeutics to
specific cellular or tissue sites. This targeted approach is particularly pertinent in the realm
of precision medicine, where the selective presentation of drugs can significantly enhance
treatment efficacy and minimize off-target effects [61].

3.3.1. Modification of Intrinsic Properties of PLGA Molecules

R. Yang et al. proposed a strategy to construct cancer vaccines by modifying im-
munoadjuvant NPs with mannose and encapsulating them with cancer cell membranes.
Through the modification of the mannose moiety, the obtained nanovaccine shows en-
hanced uptake of APCs (e.g., DCs) and then stimulates their maturation state to trigger an
anti-tumor immune response [23].

This approach is akin to the enhanced cross-presentation induced by protamine-
modified PLGA NPs, as previously discussed, which effectively stimulates cytotoxic T
lymphocyte (CTL) immune responses. Such stimulation is crucial for the elimination of
various infectious diseases and tumors [62].

Similarly, the PEI-coated polymer NPs made by C. Song. could be used as an efficient
antigen delivery vehicle and could induce antigen cross-presentation and strong cytotoxic
T lymphocyte immune response, to carry out effective anti-cancer immunotherapy [56].

3.3.2. Epigenetic Targeted Modification of PLGA Molecules

Targeted delivery to specific cells or tissues can be accomplished by adorning PLGA
NPs with ligands that bind to cell surface receptors. These ligands may include antibodies,
oligonucleotides, or other molecular entities that exhibit receptor specificity [63]. For exam-
ple, Yu et al.’s 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide
-activated biotin-PEG-amine, streptavidin, and biotinylated epithelial cell adhesion molecu-
lar antibody (biotin anti-EpCAM)-modified PLGA has a highly efficient ability to capture
circulating tumor cells [64].

Furthermore, the fusion of specific cell membrane proteins onto PLGA NPs via surface
modification can facilitate targeted delivery by fusing with specific cell membranes. X. Ma
et al. have shown that coating PLGA with mature dendritic cell membranes can enhance
the targeting ability of dendritic cells, traverse the blood-brain barrier, and induce the
maturation of immature dendritic cells, thereby amplifying the activation of immune
cells [65].
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Additionally, some researchers have employed membranes from cancer cells, such as
Lewis lung cancer cells, to camouflage PLGA NPs, which can augment the internalization
of NPs and improve the efficacy of drug delivery [66].

Modifications to PLGA that are sensitive to physiological conditions or external stimuli,
such as pH-responsive, enzyme-sensitive, or temperature-sensitive, to achieve targeted
release in a specific environment [50,53].

However, regardless of whether it is unmodified or modified PLGA, it is crucial for
researchers and clinicians to consider the material’s interaction with the human immune
system to prevent adverse immunological responses. This section elucidates the impact
of surface modifications on PLGA’s interaction with the immune system and outlines the
considerations and strategies that researchers should employ when designing PLGA NPs
for clinical applications.

3.4. Synthesis Method of PLGA

In the evaluation and comparison of PLGA synthesis methods, it is beneficial to
discuss several key dimensions: ease of operation, particle size control, drug encapsulation
efficiency, process complexity, and suitability for large-scale production. Furthermore, the
common synthesis methods of PLGA are present in Table 1 and Figure 4.

Table 1. PLGA modification methods and their advantages and disadvantages.

Preparation Method Advantages Disadvantages Reference

Solvent Evaporation
Commonly used for

microparticle preparation,
good control of particle size

Possible residual solvents,
high purification required [67–69]

Solvent Injection Fast and easy to operate,
suitable for sensitive drugs

Difficult control of
particle size, possible
polymer degradation

[70]

Nanoprecipitation
Suitable for nanoparticles,
good drug encapsulation

efficiency

High requirements for
solvent and cosolvent

selection
[71]

Double Emulsion Suitable for encapsulating
water-soluble drugs

Complex preparation
process, potential high

drug loss
[69,72–74]

Spray Drying Fast and efficient, suitable for
mass production

High equipment
requirements, potential

instability of
thermosensitive

substances

[14]

Phase Separation Suitable for the preparation
of porous materials

Strict requirements for
solvent and condition

control
[75,76]

Microfluidics and
PRINT Method

High precision in particle
size and shape control,
suitable for complex

formulations

Requires specialized
equipment and expertise,

high setup cost
[77]

Electrospinning

Produces fibers with high
surface area to volume ratio,

versatile in creating
structures

Requires high voltage,
difficult to scale up for
industrial production

[64,78]

Microfluidic Control

Enables precise control of
fluid flow and mixing at
microscale, suitable for

uniform particle production

Complexity in design and
fabrication, scalability

issues
[14,64]
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thesis and Preparation Methods simply shows that Single/Double Emulsion has a large proportion
in PLGA synthesis, indicating the universality of this PLGA synthesis method.

Firstly, both Solvent Evaporation and Solvent Injection methods are widely used for
microparticle preparation. Solvent Evaporation offers better control of particle size, but its
main drawbacks include potential solvent residues and high purification requirements. In
contrast, Solvent Injection is simpler to operate and suitable for sensitive drugs, but it faces
difficulties in controlling particle size and may cause polymer degradation. Nanoprecipita-
tion offers a balance between the two, excelling in nanoparticle preparation and high drug
encapsulation efficiency, though it requires careful selection of solvent and cosolvent.

On the other hand, Double Emulsion and Spray Drying cater to specific needs. Double
Emulsion is particularly suited for encapsulating water-soluble drugs, despite its complex
process and potential for high drug loss. Spray Drying performs excellently in terms of
speed and efficiency, making it ideal for mass production, but its high equipment require-
ments and potential instability with thermosensitive substances limit its application scope.
Phase Separation is characterized by its ability to prepare porous materials, although its
strict requirements for solvent and condition control increase the complexity of the process.

Advanced techniques such as microfluidics and print method, Electrospinning, and
Microfluidic Control represent the forefront of high-precision control. These methods
achieve extremely accurate particle size and shape control, particularly suitable for complex
formulations. However, they typically require specialized equipment and significant
investment costs, and pose challenges in scaling up to industrial levels.

The integration of 3D printing technology with biodegradable polymers like PLGA
opens new avenues for the fabrication of complex and patient-specific medical devices.
Recent advancements in 3D printing, such as the direct pellet three-dimensional printing of
polybutylene adipate-co-terephthalate, highlight the potential for sustainable manufactur-
ing processes [79]. Studies on the 4D printing of porous PLA-TPU structures demonstrate
the effect of applied deformation and other factors on the shape memory performance
of printed materials, which could be translated to PLGA for advanced biomedical appli-
cations [80]. Furthermore, a comprehensive review of various FDM (Fused Deposition
Modeling) mechanisms used in the fabrication of continuous-fiber reinforced compos-
ites provides insights into how these mechanisms can be adapted for the production of
reinforced PLGA structures with enhanced mechanical properties [81]. These research
collectively deepen our understanding of how 3D printing can be leveraged to create
innovative PLGA-based solutions for immunotherapy and other medical applications.

In summary, although each method has its unique advantages and applications, se-
lecting the appropriate PLGA synthesis method requires balancing factors such as ease of
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operation, control precision, production scale, and cost-effectiveness. Future research and
technological development may focus on enhancing the environmental friendliness of op-
erations, reducing drug loss, decreasing dependency on costly equipment, and improving
production output and drug encapsulation efficiency.

3.5. Bibliometrics

We use bibliometric methods to analyze the modification of PLGA. We collected
1818 PLGA articles from the Web of Science database by PLGA (Topic) AND modifi*
(Topic), selected by criteria published from 2018 to 2024 (Figure 5). The data demonstrate
the significance of modification methods in PLGA immunotherapy and reveal various
modification approaches and application domains.
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4. Application of PLGA in Drug Delivery in Tumor Immunotherapy
4.1. Encapsulating Traditional Medicines

The therapeutic horizon for a multitude of drugs has been significantly expanded
through the drug loading capacity of poly(lactic-co-glycolic acid) (PLGA), offering promis-
ing clinical implications. Numerous experimental studies have encapsulated a range of
conventional antineoplastic agents within PLGA, including but not limited to paclitaxel,
vinorelbine, cisplatin, etoposide, 9-nitrocamptothecin, and amrubicin. These studies have
aimed to evaluate the antineoplastic efficacy of the resulting nanoparticles both in vitro
and in vivo conditions [74]. The findings suggest that the use of anticancer drug NPs in
PLGA may enhance anticancer effects.

Recent studies have demonstrated the principles and effects of using PLGA to load
new drugs. This has enabled untested novel drugs, such as laurel oil, and some traditional
medicines with initially unclear direct effects, such as many Chinese herbal medicines like
Epimedium and Magnolia Officinalis (honokiol), to exhibit a more pronounced antitumor
effect following delivery via PLGA [78,82,83]. The potential for drug loading in PLGA to
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augment the antitumor effects of established medications and to uncover the therapeutic
capabilities of traditional medicines remains a fertile ground for scientific inquiry. The en-
capsulation of these agents in PLGA nanoparticles offers a promising avenue for improving
the delivery and efficacy of a broad spectrum of therapeutic compounds.

4.2. Encapsulating Enzymes or Other Proteins Targeting Disease

PLGA serves as a versatile carrier not only for the encapsulation of drugs but also
for enzymes and specific proteins that are integral to cancer treatment. When untargeted,
these bioactive molecules may fail to exert their anti-tumor effects effectively at the lesion
site. However, their therapeutic potential can be unlocked through targeted delivery,
facilitated by conjugation with PLGA and subsequent surface modification strategies.
For instance, the combination of methionine gamma-lyase and pemetrexed inhibits the
growth of gastric cancer cells. Methionine gamma-lyase enhances pemetrexed’s inhibitory
effects on thymidylate synthase synthesis and cell apoptosis [69]. Additionally, water-
soluble catalase could locally generate oxygen, improving the effectiveness of radiotherapy
and reducing tumor hypoxia-related radiotherapy resistance [7].Studies have shown that
targeting bromodomain-containing protein 4 with PROTACs could be an effective treatment
for lung cancer. Overexpression of bromodomain-containing protein 4 is associated with
poor prognosis in lung cancer. Inhibiting its expression promotes cell apoptosis and leads
to tumor shrinkage [84]. The latest advances in basic research allow for the identification
of molecular factors that can either disrupt or bolster specific cellular pathways. This
knowledge paves the way for targeted therapeutic interventions using PLGA, offering a
promising avenue for the treatment of various diseases with precision and selectivity.

4.3. Encapsulating Cytokines

PLGA could also encapsulate small molecules in the body, including inflammatory
factors, siRNA, and anti-miRNA. Compared to free IL-10, IL10-NP significantly reduces
airway hyperresponsiveness and T-helper 2 /T-helper 17 cell cytokines induced by house
dust mite (HDM) in a mouse model and inhibits the increase of neutrophils and eosinophils
in the airways, making it a potential treatment for allergic airway diseases [85]. This en-
capsulation strategy enhances the anti-inflammatory potency of IL-10. In another instance,
PLGA encapsulating a complex of soy lecithin and IL-4 has been shown to induce a stable
and sustained release of IL-4, which reprograms macrophages within the microenviron-
ment into M2Mφ anti-inflammatory type, thereby inhibiting local excessive inflammatory
responses [86]. Encapsulation of transforming growth factor-beta 1 (TGF-β1) within PLGA
has also been demonstrated to attenuate immune rejection in the context of allogeneic
islet transplantation for type 1 diabetes treatment. By designing a controlled and local
release of TGF-β1 for immune regulation and co-cultivating it with naïve CD4 T cells
in vitro, it could effectively generate multi-clonal and antigen-specific induced regulatory
T cells with strong immune inhibitory function [45]. This body of research suggests that
PLGA-encapsulated TGF-β1 could be instrumental in reducing the incidence of immune
rejection post-transplantation.

4.4. Encapsulating Antigens as Vaccines

PLGA nanoparticles serve as a versatile platform for the encapsulation of therapeutic
drugs aimed at targeted delivery to treat various diseases, as well as for the encapsulation of
antigens to bolster the immune response, effectively functioning as a vaccine adjuvant [48].
After encapsulating OVA in PLGA, it is effectively internalized in DCs through phagocytosis
or macropinocytosis. This process induces efficient cross-presentation of antigens on
MHC class I molecules through endosomal escape and lysosomal processing mechanisms,
thereby enhancing cellular immunity [56]. Research has shown that the efficiency of cross-
presentation of CD8 T cell activation on MHC I molecules by APCs is dependent on the
type of polymer used. This significantly increases T cell activation in vitro [48]. In terms
of PLGA-encapsulated Angelica sinensis polysaccharide, it has the potential to induce
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strong and long-lasting humoral and cellular immune responses as a vaccine adjuvant
delivery system [55]. ASP is an immune stimulant that acts as an adjuvant in ASP-PLGA-
PEI NPs to promote antigen presentation [47]. This leads to the promotion of specific IgG
immune responses and cytokine levels, inducing a mixed Th1/Th2 (cellular/humoral)
immune response with a Th1 bias [54]. The antigen presentation capabilities of PLGA
are particularly noteworthy, underscoring its significance in the establishment of active
immunity within the body. These attributes suggest a promising trajectory for the use of
PLGA as a component of vaccine formulations.

4.5. Encapsulating Contrast Media for Imaging Diagnosis

Cui-Wei Wang and colleagues have studied the application of a new type of ultrasound
contrast agent, C3F8, encapsulated in PLGA. They have synthesized and characterized
this in the laboratory and conducted in vitro and in vivo studies [87]. C3F8, recognized
for its stability, is a gas commonly utilized in the enhancement of ultrasound imaging as a
contrast agent. The encapsulation of C3F8 within PLGA nanoparticles is shown to augment
the stability and longevity of the agent within the biological milieu. This innovation has
the potential to significantly improve the quality and diagnostic accuracy of ultrasound
imaging, particularly in the context of breast cancer detection [88].

4.6. Encapsulating Compounds for Photothermal and Photodynamic Therapy

In light of challenges such as drug resistance, recent studies have identified novel
therapies utilizing PLGA, including photothermal therapy and photodynamic therapy.
Photothermal therapy for cancer involves the use of NPs assisted by anti-EGFR antibodies
to effectively enter head and neck cancer cells and convert near-infrared light into heat,
triggering the release of chemotherapy drugs from the PLGA core and causing tumor
ablation through high temperatures [89]. Furthermore, photodynamic therapy utilizes
PLGA-encapsulated molybdenum cluster compounds for the treatment of ovarian cancer.
Once the inorganic molybdenum octahedral clusters are released from the NPs system, they
generate singlet oxygen, leading to reduced cell viability [68]. These emerging therapies
underscore the versatility of PLGA and its potential for various research directions based
on its physicochemical characteristics. The ability of PLGA to serve as a platform for
drug delivery in combination with light-based therapies presents a promising frontier in
cancer treatment.

4.7. Encapsulating Gene Expression Regulation and Gene Editing Substances

Furthermore, PLGA nanoparticles (NPs) are also being explored for the delivery
of small interfering RNA (siRNA) to modulate gene expression, such as using PLGA-
encapsulated Stat3siRNA for the treatment of lung cancer [90]. Alternatively, anti-miR-
21 could be used for the treatment of triple-negative breast cancer [91]. This approach
indicates that there are many possibilities for further exploration of PLGA encapsulation.
Ngoc B Nguyen et al. found that PLGA NPs and other nanomaterials could bind to target
cells and activate Cre recombinase, leading to tissue specific Cre activation. This system
provides a universal and powerful method for inducing recombination in ubiquitous Cre
systems for various biomedical applications and lays the foundation for a time- and cost-
effective strategy for generating new transgenic mouse strains [92]. These collective studies
suggest that PLGA could be harnessed for gene editing or the regulation of gene expression
within cells. This includes the direct reprogramming of tumor cells or the reprogramming
of other cellular components within the body, such as immune cells, to augment their
tumoricidal effects. The potential applications of PLGA in these areas are vast and warrant
further investigation.
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4.8. Problems and Challenges of PLGA in Immunotherapy

Although PLGA encapsulated drugs play a large role in tumor immunotherapy
(Table 2), PLGA particles may exhibit immunogenicity and immune stimulation in certain
cases, potentially triggering immune and inflammatory responses. This could impact
treatment efficacy and limit their widespread clinical application. Therefore, on one hand,
modifications could be made to PLGA to alter its inherent immunogenicity and improve its
tissue compatibility. On the other hand, the properties of PLGA itself could be utilized, as it
possesses certain anti-inflammatory and immunosuppressive properties [20,93]. However,
research in this area is limited, and the specific mechanisms are still not fully understood.

Table 2. Encapsulation, immune mechanism and effect of PLGA for disease treatment.

Drug
Encapsulation Effectiveness

Targeted
Immune Cell

Type

Targeted
Disease Reference

CREATE
(nano-PROTAC)

Induces significant
apoptosis in lung cancer

cells and M2
macrophages

Lung cancer
cells and M2
macrophages

Lung Cancer [84]

Cabozantinib
-loaded PLGA

Promotes macrophage
polarization Macrophages Cancer [94]

PLGA
Nanoparticles

Successfully inhibits
miR-155

HeLa cells and
M1 macrophages Cancer [95]

HA-NPs-17AAG Induces better apoptosis
than 17AAG alone Not specified Cancer [52]

PLGA
Microspheres

Effectively releases
As2O3 and HCPT over

10 and 12 days,
respectively

Not specified Cancer [96]

DNA vaccine
targeting FGL1

and CAIX

Delivered via
PLGA/PLA

nanoparticles
Not specified Cancer [97]

TH-302 NPs Enhances the efficacy of
α-PD-1

Immune
checkpoint cells Cancer [46]

PRECIOUS-01 Im-
munomodulatory

Nanomedicine
Based on PLGA Not specified Cancer [98]

Biological factors in the tumor microenvironment could also impact the efficacy of
PLGA particles, such as tumor angiogenesis, tumor immune evasion, and others. This
means that tumor immunotherapy using PLGA requires a comprehensive consideration
of multiple factors, not just focusing on tumor cells themselves from the perspective of
cell apoptosis, but also considering the immune aspects of tumor treatment with the
stability of PLGA particles in vivo may be influenced by factors such as the accumulation
of degradation products and particle aggregation. This could lead to a gradual decline in
the functionality and performance of the particles, thereby affecting the therapeutic effects.
While the impact of PLGA degradation products and the resulting immune reactions are
discussed in the immunological basis of PLGA, studies on the post-degradation effects of
PLGA are still insufficient. This hinders a more comprehensive consideration of PLGA in
the process of immunotherapy and the improvement of its therapeutic effects. Therefore,
there is a broad research prospect for the study of PLGA degradation products.

The rate of drug release from PLGA particles is predominantly governed by the
degradation rate of the polymeric material. However, the degradation rate of PLGA is fixed
and difficult to adjust during the treatment process. This may result in rapid drug release
in the early stages or slow release in the later stages, affecting the therapeutic effects. On
one hand, better modifications could be induced to achieve targeted effects, allowing for
precise delivery under specific degradation rates. On the other hand, drug targeting or
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response to physiological conditions could be achieved through external magnetic fields
or internal pH endogenous signals [53]. Additionally, the application of photothermal
therapy has revealed the possibility of regulating the degradation rate of PLGA through
near-infrared means, highlighting the importance of studying the physical properties of
PLGA [89]. These developments underscore the importance of research into the physical
and chemical properties of PLGA, as they are crucial for the development of smarter, more
effective drug delivery systems.

Achieving specific targeting of tumor tissues by PLGA particles in vivo is a complex
endeavor that, while improvable, remains challenging. Surface modification and function-
alization strategies have shown promise in enhancing the targeting capabilities of PLGA
particles. Nonetheless, there are ongoing challenges to address, including the stability of
the particles, the drug loading capacity, and the efficiency of targeting. On one hand, it
is crucial to deepen our understanding of surface modification techniques and to explore
innovative approaches that can lead to improved tissue or organ-specific targeting. This
includes the development of biocompatible and biodegradable modifications that not only
enhance targeting but also maintain the integrity and bioactivity of the encapsulated thera-
peutics. Moreover, the optimization of these modifications to overcome current limitations
is a critical area of focus. This may involve the design of multifunctional surfaces that
can respond to specific biological cues or the incorporation of targeting ligands that have
high affinity and specificity for receptors overexpressed on tumor cells. Advancing our
knowledge in this field is essential for the development of PLGA-based drug delivery
systems that can effectively discriminate between malignant and healthy tissues, thereby
maximizing therapeutic outcomes and minimizing side effects.

The drug loading capacity of PLGA particles is limited by their size, morphology,
and surface properties. Due to the typically small size of PLGA particles, their drug
loading capacity is restricted. Additionally, certain drugs may interact with PLGA, leading
to reduced drug loading and release efficiency. Therefore, it is important to study the
physical properties of PLGA, analyze the effects of size, morphology, charge, and other
physical characteristics on drug loading capacity, and determine the optimal PLGA size,
morphology, and charge for achieving the highest drug loading capacity. Furthermore,
combining PLGA with other biodegradable polymers could be explored to increase drug
loading capacity.

4.9. Bibliometrics

We use bibliometric methods to analyze the application of PLGA in the field of cancer
immunotherapy. We collected 781 PLGA articles from the Web of Science database on
cancer immunotherapy (PLGA (Topic) AND tumor (Topic) AND immun* (Topic)), selected
by criteria published from 2018 to 2024, and finally analyzed a total of 521 articles (Figure 6).
Bibliometric analysis reveals the significant role of PLGA in tumor immunotherapy, par-
ticularly in modulating immune cells such as DCs and CD8+ T cells. Furthermore, it
emphasizes the importance of considering the influence of the tumor microenvironment.



Polymers 2024, 16, 1253 19 of 27Polymers 2024, 16, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 6. Bibliometric analysis about PLGA and tumor immunology. It reveals that the hot spot of 
PLGA tumor therapy lies in the regulation of immune cells such as DC and CD8+ T cells, which 
emphasizes the importance of tumor microenvironment. 

5. Discussion 
In summary, PLGA, as a biodegradable polymer, plays an important role in tumor 

immunotherapy. It improves the efficacy of immunotherapy by enhancing antigen 
presentation function, inducing inflammatory inhibition, mediating immune responses, 
and other pathways. In addition, surface modification of PLGA could reduce its immuno-
recognition, increase immunocompatibility, and lead to human immunosuppressive reg-
ulation, thereby further improving the stability and antigen adjuvant ability of PLGA par-
ticles. 

PLGA is a versatile drug carrier with promising clinical applications. It has been 
shown to enhance the efficacy of anticancer drugs, both traditional and novel, when en-
capsulated in PLGA NPs. Additionally, PLGA could be used to encapsulate enzymes, pro-
teins, and small molecules for targeted cancer therapy and immunomodulation. As a vac-
cine adjuvant, PLGA enhances the immune response, making it an attractive option for 
vaccine development. Furthermore, PLGA could be used to encapsulate ultrasound con-
trast agents, enabling more accurate and reliable imaging for the diagnosis of diseases 
such as breast cancer. It could also be utilized in novel therapies like photothermal and 
photodynamic therapy, which have shown potential in cancer treatment. Moreover, 
PLGA could encapsulate siRNAs and miRNAs, allowing for gene regulation and gene 
therapy applications. The application of PLGA in gene editing, such as Cre recombinase-

Figure 6. Bibliometric analysis about PLGA and tumor immunology. It reveals that the hot spot of
PLGA tumor therapy lies in the regulation of immune cells such as DC and CD8+ T cells, which
emphasizes the importance of tumor microenvironment.

5. Discussion

In summary, PLGA, as a biodegradable polymer, plays an important role in tumor
immunotherapy. It improves the efficacy of immunotherapy by enhancing antigen presen-
tation function, inducing inflammatory inhibition, mediating immune responses, and other
pathways. In addition, surface modification of PLGA could reduce its immunorecognition,
increase immunocompatibility, and lead to human immunosuppressive regulation, thereby
further improving the stability and antigen adjuvant ability of PLGA particles.

PLGA is a versatile drug carrier with promising clinical applications. It has been
shown to enhance the efficacy of anticancer drugs, both traditional and novel, when
encapsulated in PLGA NPs. Additionally, PLGA could be used to encapsulate enzymes,
proteins, and small molecules for targeted cancer therapy and immunomodulation. As a
vaccine adjuvant, PLGA enhances the immune response, making it an attractive option
for vaccine development. Furthermore, PLGA could be used to encapsulate ultrasound
contrast agents, enabling more accurate and reliable imaging for the diagnosis of diseases
such as breast cancer. It could also be utilized in novel therapies like photothermal and
photodynamic therapy, which have shown potential in cancer treatment. Moreover, PLGA
could encapsulate siRNAs and miRNAs, allowing for gene regulation and gene therapy
applications. The application of PLGA in gene editing, such as Cre recombinase-mediated
recombination, offers a powerful tool for manipulating cellular functions. These highlight
the immense potential of PLGA in drug delivery and therapeutic interventions.
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Therefore, based on the discussion of the immunological mechanism of PLGA itself,
this review describes the action mechanism of PLGA after modification and the pathogenic
mechanism of PLGA after encapsulation of drugs (Figure 7). Our innovation lies in the joint
discussion of PLGA with immunological mechanism and immunological therapy, aiming
to let researchers understand the immunological effects of PLGA and its research prospects.
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In addition to PLGA, there are other biodegradable polymers that also play an im-
portant role in tumor immunity. For example, PEG could improve the bioavailability of
drugs by improving their solubility and stability. Polyglycolic acid (PLA) and polylactic
acid (monomers of PLGA) have good biocompatibility and biodegradability and could
be used in sustained-release drug systems [99,100]. Deacetylated chitosan (CS) has good
adhesion and biological activity and could be used for targeted drug delivery [101].

The application of PLGA nanoparticles in tumor immunotherapy significantly en-
hances the efficacy of cancer treatment through various mechanisms. Acting as a drug
delivery system, PLGA nanoparticles can encapsulate immunomodulators, anticancer
drugs, or vaccines, providing controlled release and increased concentration at the tumor
microenvironment, thereby amplifying immune responses and antitumor effects [12,102].
For instance, PLGA nanoparticles can serve as a peptide/protein vaccine delivery system,
enhancing immune responses as referenced in literature. Furthermore, by modifying the
surface with specific targeting ligands such as antibodies, peptides, or aptamers, PLGA
nanoparticles can target tumor cells or receptors within the tumor microenvironment,
improving treatment specificity and reducing systemic side effects [84]. In combination
therapies, PLGA nanoparticles can co-deliver multiple drugs, such as chemotherapeutics
and immunoadjuvants, to achieve synergistic therapeutic effects, activating the immune sys-
tem while directly targeting cancer cells [23]. Additionally, PLGA nanoparticles themselves
or their degradation products can act as immunoadjuvants, activating the immune system
and enhancing the antitumor immune response [103,104]. Moreover, PLGA nanoparticles
can act as carriers for tumor antigens and immunoadjuvants, promoting the generation
of specific immune responses. In the realm of gene therapy, PLGA nanoparticles can be
utilized to deliver agents like siRNA or CRISPR systems to silence key genes in cancer
cells or modulate immune checkpoints, increasing the sensitivity of tumor cells to im-
mune attacks [63]. Lastly, PLGA nanoparticles can deliver drugs that modulate the tumor
microenvironment, such as anti-angiogenic factors or immunomodulators, facilitating im-
mune cell infiltration and tumor cell elimination [105]. The potential applications of PLGA
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nanoparticles in tumor immunotherapy are broad and promising, offering more effective
and safer treatment options for cancer patients. However, to realize these potential applica-
tions, further optimization of nanoparticle design, fabrication processes, and administration
strategies is necessary, along with clinical trials to verify their safety and efficacy.

The versatility of PLGA as a drug carrier significantly contributes to its potential clini-
cal applications in cancer therapy, particularly through targeted therapy, controlled release,
and combination treatments [70,106,107]. Compared to other biodegradable polymers,
PLGA offers unique advantages such as targeted delivery through surface modification,
adjustable drug release rates by altering copolymer ratios, and enhanced patient com-
pliance with reduced injection frequency. PEG, while biocompatible and stable, lacks
biodegradability, which may lead to long-term accumulation and potential toxicity [108].
PLA has a slower degradation rate, making it less suitable for therapies requiring rapid
drug release [100]. CS, despite its biocompatibility and immunoadjuvant properties, may
not match PLGA in terms of degradation rate and drug encapsulation efficiency [109].
Challenges associated with the application of biodegradable polymers in cancer therapy
and other fields include understanding their biodistribution and clearance, precise control
of drug release rates, enhancing targeting and biocompatibility, and scaling up produc-
tion for clinical use [110]. Future research efforts should focus on in-depth studies of the
biological effects of these polymers, development of novel polymers and nanoparticle
designs, optimization of surface modifications for improved targeting and biocompatibility,
and conducting preclinical and clinical studies to verify the safety and efficacy of new
drug delivery systems, thereby overcoming current challenges and advancing the clinical
application of biodegradable polymers in cancer therapy and other biomedical fields.

In addition to tumor immunotherapy, PLGA is also widely used in other fields. For ex-
ample, it could be used in tissue engineering to repair and regenerate damaged tissue [111].
In addition, PLGA could also be used for bone regeneration, promoting the growth and
repair of bone tissue through drug loading and sustained-release drugs [112]. It is also
widely used in the treatment of other diseases. PLGA could be used in many fields such as
cardiovascular disease treatment, orthopedic treatment, neurological disease treatment, and
infectious disease treatment [113]. In the treatment of cardiovascular diseases, PLGA could
be used to prepare vascular stents, drug release systems, and cardiac repair materials to
promote vascular regeneration and cardiac function recovery [114]. In orthopedic treatment,
PLGA could be used to prepare bone repair materials and bone scaffolds to promote bone
regeneration and bone defect repair. In the treatment of neurological diseases, PLGA could
be used to prepare nerve repair materials and nerve regeneration catheters to promote
nerve regeneration and neurological recovery. In the treatment of infectious diseases, PLGA
could be used to prepare antimicrobial sustained-release systems and vaccine delivery
systems to improve treatment efficacy and prevent infection [115]. In general, PLGA, as a
multifunctional biodegradable polymer, has a wide range of application prospects in the
treatment of multiple diseases.

In summary, PLGA, alongside other biodegradable polymers, occupies a significant
role in the realm of tumor immunology and presents a broad spectrum of application
prospects across various fields. The utility of these polymers in drug delivery and thera-
peutic applications is particularly noteworthy. Despite their potential, the application of
biodegradable polymers like PLGA is not without challenges. Current limitations include
difficulties in achieving a controlled drug release rate and ensuring sufficient specificity in
targeting. These hurdles necessitate ongoing research and innovation to refine the proper-
ties and performance of these materials. Further advancements are essential to enhance the
efficacy of biodegradable polymers in tumor immunity and to expand their applications in
other domains. This includes the development of more sophisticated targeting strategies,
improvement in the controllability of drug release kinetics, and the exploration of novel
functionalization techniques to tailor the polymers to specific therapeutic needs. Address-
ing these challenges will not only optimize the use of PLGA in cancer treatment but also
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unlock new possibilities for the treatment of other diseases, thereby contributing to the
broader landscape of biomedical research and clinical practice.
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