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Abstract: The aim of this study was to optimize the ultrasonic consolidation (USC) parameters for
‘PEI adherend/Prepreg (CF-PEI fabric)/PEI adherend’ lap joints. For this purpose, artificial neural
network (ANN) simulation was carried out. Two ANNs were trained using an ultra-small data
sample, which did not provide acceptable predictive accuracy for the applied simulation methods. To
solve this issue, it was proposed to artificially increase the learning sample by including additional
data synthesized according to the knowledge and experience of experts. As a result, a relationship
between the USC parameters and the functional characteristics of the lap joints was determined.
The results of ANN simulation were successfully verified; the developed USC procedures were
able to form a laminate with an even regular structure characterized by a minimum number of
discontinuities and minimal damage to the consolidated components.

Keywords: machine learning; neural network simulation; carbon fiber fabric; ultrasonic consolidation;
lap joint; PEI; prepreg; interface; adhesion; structural integrity

1. Introduction

Manufacturing processes, as a rule, are controlled according to several technological
parameters, the combined influence of which determines the resulting product quality.
Values of these parameters can individually exert opposite (conflicting) effects on each
other, so they have to be optimized [1,2]. Solving such problems can be considered as a
‘classical’ design of experiment (DoE), and has attracted considerable attention from many
researchers [3]. An example is turning, when it is necessary to simultaneously take into
account the spindle speed, the feed rate, and a number of other factors [4]. In additive
manufacturing by the fused filament fabrication/fused deposition modeling (FFF/FDM)
method, both extruder and bed temperatures, the head speed, the material feed rate, and
some additional parameters have different effects on the structure and properties of the
3D-printed products [5].

Since conducting a complete multifactorial experiment is not always possible
(or rational), various optimization methods may be applied, for instance, the Taguchi [6] or
Box–Behnken [7] techniques. Recently, artificial neural networks (ANNs) have increasingly
begun to be used for solving such problems, especially for approximation or classifica-
tion [8,9]. ANNs are characterized by high efficiency when a large (experimental) data
sample is available [10]. However, the reliability of the prediction decreases (or it cannot
be considered reliable at all) with limited data sets [11–13]. At the same time, numerous
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ANNs have been developed to date, so their correct selection and learning is a challenge
under such conditions [14].

Ultrasonic welding (USW) of laminated polymer composites has been implemented in
many high-tech industries (primarily aerospace) [15,16]. To form reliable welds, numerous
USW parameters have to be optimized [17,18], including ultrasonic (US) frequency, ampli-
tude of sonotrode vibration, clamping pressure, USW duration, duration of clamping after
USW, etc. These parameters are the input data for the USW process [19], while its efficiency
can be controlled by one output factor, namely the USW joint thinning, taking into account
the need to insert an energy director (ED) between joined plates (adherends) [20].

It should be noted that USW can be used not only for joining laminates for structural
components, but for the fabrication of laminates as well [21–27]. In such cases, their struc-
ture is formed due to processes developing at several interfaces, with the unilateral input
of mechanical energy converted into frictional heating [28]. Respectively, the number of
output parameters increases, since some physical, mechanical, dimensional, and structural
characteristics have to be considered [29–31]. Their complete assessment is a rather long
procedure, also requiring thorough statistical justification. The solution to this problem
fully correlates with another production route for the formation of prepregs or laminates
via automatic fiber placement assisted with heating via a laser beam [32–37].

A previous paper by the authors [38] was devoted to the optimization of the
US-consolidation (USC) parameters for the formation of USC lap joints of polyetheretherke-
tone (PEEK) adherends, a carbon fiber (CF) fabric prepreg impregnated with polyetherimide
(PEI), and two PEEK EDs [39]. Impregnation of the CF fabric with the polymer, charac-
terized by a low melting point and a melt flow index (MFI) greater than that for PEEK,
determined the specific development of the structure formation process. In particular,
molten PEI was squeezed out of the prepreg during USC, damaging the reinforcing CF
fabric. Based on this experience, only PEI was utilized in this study, so PEI adherends
were joined using the CF fabric impregnated with a PEI-based solution as well. A film
of the low-melting TECAPEI (PEI-based copolymer) was inserted as an ED in the devel-
opment of a USC procedure that firstly enables it to melt, ensuring the formation of lap
joints with minimum possible damage to the CF fabric-based prepreg [30,40]. Hereinafter,
these USC lap joints are designated as the ‘PEI adherend/Prepreg (CF-PEI fabric)/PEI
adherend’ samples.

The aim of this study was to optimize the USC parameters by ANN simulation,
providing the required functional characteristics of lap joints with a minimum number of
full-scale experiments. To achieve this goal, it was firstly necessary to simulate the USC
process as a ‘black box’ with many inputs and outputs. Then, two ANNs were trained
using an ultra-small sample, which did not provide acceptable predictive accuracy for
the applied simulation methods. It was proposed to implement a well-known approach,
which consisted in artificially increasing the learning sample by including additional data
synthesized according to the knowledge and experience of experts [41].

This paper is structured as follows. Section 1 provides an overview of the implementa-
tion of ANNs for optimization purposes, and generally reveals the ideology of their use
to solve the problems highlighted in this study. Section 2 presents the sequence of ANN
simulation of the USC process with an analysis of both a priori and a posteriori knowledge,
as well as the obtained results, while Section 3 is devoted to their verification. Section 4
discusses the prospects for application of the developed approach using an example of
laminated composites formed by layer-by-layer USC processing of the prepregs based on
the CF fabric impregnated with the PEI solution. All the above results are summarized
in conclusions.

A brief overview of the application of machine learning methods using small experi-
mental data samples. As the authors have shown previously [42], the issue of finding an
optimal combination of USC parameters cannot be considered as an optimization problem,
since the conditions for ensuring the optimality of the functional characteristics of such
lap joints are represented by a system of inequalities. This formulation is determined not
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only by the inconsistency of the requirements (formulation of criteria) for their individual
properties, but also by the specifics of the problem. Practical interest is not in the specific
values of the USC parameters, but their ranges. So, a solution to this problem should be
approached in two stages: (i) approximation of a vector quantity (characteristics of a lap
joint) in the multidimensional space of the USC parameters, and (ii) search for such a range
of values of the parameter vector within which all the inequalities of the optimality condi-
tion are satisfied. In the general case, such areas contain an infinite number of solutions,
so calling all of them ‘optimal’ (in the classical sense) is incorrect. More precisely, they
should be referred to as areas of ‘suboptimal’ parameters (SOPs), within which the optimal
solution is located.

The first stage of approximation can be carried out using (i) linear interpolation al-
gorithms based on triangulation, (ii) inverse distance weighting or polynomial methods,
(iii) basis function approach, (iv) Kriging interpolation, (v) piecewise linear function, and
(vi) component-wise splines [43–48]. Each of these methods has both advantages and draw-
backs. Nevertheless, only ANN simulation is recommended for universal approximation
of a vector quantity in a multidimensional space, taking into account the relationship of the
vector components and the significant non-linearity of the observed patterns [49].

The second stage of searching and constructing SOP areas based on the results of ANN
simulation can be carried out using well-known methods of cluster analysis and image
processing. The issue of the implementation of one of these is outside the scope of this
study since it deserves a separate investigation.

One of the key challenges in ANN simulation is the selection of the ANN type and
architecture. For processing static data, feedforward neural networks (FFNNs), radial basis
function networks (RBFNN)s, and their modifications are most often used [50,51]. The
numbers of layers and neurons in them are determined not only by the complexity of an
approximated dependence but also by the learning sample size [52]. For small samples,
the complexity of the applied model is typically neglected. In the presence of a large
number of factors, reducing the dimension of the problem is achieved by highlighting one
or two of the most significant factors, while the rest are not used for simulation. In [53],
it was proposed to compensate for the simplification of ANNs by including additional
parameters to the significant factors obtained using known output/input relationships. The
complexity of ANNs depends on the numbers of their layers and neurons, as well as the
justified relationships. In some cases, ANNs are divided into two or more interrelated (but
simple) types for clarity. A special approach to the development of ANNs that considers the
known physical laws of simulated processes is described in [54,55]. In that case, the ANN
architecture was designed according to those laws and includes a hybrid physical–statistical
learning method that explicitly embeds the solution of partial differential equations into
the loss function of the so-called physics-informed neuron networks (PINNs).

Great attention is paid to numerous techniques for training ANNs, such as (i) learning
algorithms for solving direct problems (for example, based on the finite element method),
(ii) genetic algorithms, (iii) support vector machines [51,56], etc.

ANNs are characterized by the so-called ‘curse of dimensionality’: as the dimensions
of their input vectors rise, the complexity of ANNs increases exponentially [49]. As a result,
a learning sample has to be enhanced. For example, the following procedures should be
implemented in one of the most common classes of problems related to classification and
image recognition [57,58]: (i) generation of surrogate data, (ii) interpolation of experimental
data, (iii) algorithms for shifting, permutation, reflection, and rotation of data to achieve
system invariance, or (iv) randomization procedures to increase noise immunity.

Due to both the high labor intensity and the cost of full-scale research in materials
science, the number of experiments performed is typically negligible [12,59,60]. In these
cases, the authors mean by the ‘ultra-small sample’ concept such experimental data arrays
that are sufficient to draw a linear or quasi-linear relationship, but significantly less than
are necessary to formulate an adequate non-linear one. For example, the number of
experiments can vary from nine (for the Taguchi method) to twenty-seven (for the fractional
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full factorial design) when designing an investigation with three factors and their levels.
In such cases, the results of hundreds of experiments are required to train ANNs, but
thousands are required for deep learning. Therefore, ANN simulation is characterized by
high errors in the approximation region for ultra-small samples, no matter what type of
ANN and training method are implemented. This is especially true outside the range of
experimentally determined values. Such a phenomenon is referred to by many researchers
as ‘the poor ability of ANNs to solve extrapolation problems’ [61]. It would seem an obvious
and correct conclusion that using ultra-small learning samples requires abandoning the
implementation of ANNs; however, they may be suitable for solving numerous applied
problems that do not require high accuracy of simulation results, i.e., when a quality
solution is enough.

It should be noted that for ANN simulation of objects and processes that are not
characterized by periodicity or high correlation of values in parameter spaces, the task
of extrapolating the small experimental data samples cannot be solved correctly without
additional information. Therefore, one of the possible ways to minimize errors in the
approximation and extrapolation regions is to add a priori known data for the boundary,
limit, or special parameter values (Figure 1). It is more correct to designate the latter a priori
knowledge rather than data, because they are not obtained experimentally but are rather
based on the experience of experts. A priori knowledge can be considered in a broad sense,
since it includes both theoretical premises and previously comprehended knowledge about
the simulated objects or processes. It is not always possible to formulate such knowledge,
so the development of ANNs should be carried out in stages, assessing the adequacy of
developed models and the accuracy of obtained results, as well as adding a posteriori
knowledge, if necessary.
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2. ANN Simulation with Ultra-Small Samples to Optimize the USC Parameters for the
Formation of ‘PEI Adherend/Prepreg (CF-PEI Fabric)/PEI Adherend’ Lap Joints
2.1. A General Model of the USW Process

As mentioned above, conventional input (control) USC parameters include US fre-
quency (ω), amplitude of sonotrode vibrations (θ), clamping pressure (P), USC duration (t),
duration of clamping after USC (τ), etc. [38]. In this study, it was assumed that the values
of the t, τ, and P parameters varied within specified ranges for optimizing the USC process,
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whereas the other two (ω, θ) were constant. This decision was based on the specifications
of the deployed ‘UZPS-7’ ultrasonic welding machine (‘SpetsmashSonic’ LLC, Russia).

The following mechanical characteristics were used as the required properties of USC
lap joints [38]:

(a) tensile strength (σ), MPa;
(b) elongation at break (ε), %;

as well as the dimensional parameters:

(c) USC joint thinning (∆d), µm;
(d) top ED thickness, according to the image analysis (δED top), µm;
(e) distance between PEI adherends (δED+CF), µm;
(f) top PEI adherend integrity, assessed qualitatively (C), +/–.

Considering that the USC process was a transformation of the properties of all compo-
nents of the lap joints due to external impacts, and its law was significantly non-linear and
unknown as well, the model of this process can be represented as a ‘black box’ with three
inputs and six outputs (Figure 2).
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Figure 2. A general model of the USC process.

2.2. ANN Architecture

In this study, both FFNN and RBFNN were implemented. According to Figure 2, the
inputs were three USC parameters, while six outputs were the functional characteristics
of the lap joints. In their feedforward architectures, one hidden neural layer was used
(Figure 3). In the case of FFNN, the following parameters had to be studied: the number of
neurons in the hidden layer, the type of activation function of each layer, the selection of
both learning and testing samples, etc. The RBFN architecture was uniquely defined except
for the number of neurons in the hidden layer (Figure 4).

It was determined by its learning algorithm, which possessed two parameters: the
‘spread’ (the radius of the response of neurons to the input stimulus/distance between the
input data) and the ‘goal’ permissible error (between the approximation and the values
of the learning sample). Both these parameters were determined from an analysis of the
distances between the input data of the learning sample and the measurement errors of the
output data.

Due to the different dimensions of the USC parameters and the functional character-
istics of the lap joints, the values of both input and output data spaces were normalized
to dimensionless before the simulation. As the obtained results show, the highest rate of
convergence of the ANN learning algorithms was achieved when normalized to the [−1, 1]
interval. Formal criteria for the quality of such models included a number of assessments of
the difference between the test sample and the predicted values (standard deviation, mean
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square, determination coefficient, etc.) used in the ANN learning algorithms. However,
according to the authors’ best knowledge, no formal criteria have so far been proposed to
justify the adequacy and overlearning of ANNs.
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2.3. Analysis of a Priori Knowledge and Its Implementation

A preliminary analysis of the USC parameters and the expected results was based on
previously acquired knowledge about the process patterns:

1. USC procedures could not be successfully completed due to their short durations
and/or insufficient or excessively high clamping pressures. In these cases, the di-
mensions of the USC lap joints were not changed, while the mechanical properties
were minimal.

2. If the USC durations were too long, the components being joined were partially
or completely damaged. The USC lap joint thicknesses were minimal (after their
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maximum thinning), while the mechanical properties were low (but above zero
values).

3. Releasing the clamping pressure immediately after USC reduced the mechanical
properties of the lap joints to below acceptable levels. Moreover, their dimensions
predominantly depended on the USC parameters (duration, clamping pressure) at the
first stage, while the mechanical properties were determined by both USC duration
and clamping duration after USC.

Since it was not possible to simultaneously achieve extreme (maximum or minimum)
values of all the functional characteristics of the USC lap joints, their acceptable ranges
were specified, i.e., the optimality conditions (Table 1). The quantitative values of the range
boundaries were based on the previous experience of the authors [38] and the results of an
analysis of data reported by other researchers. Accordingly, further search for the optimal
combination of the USC parameters was carried out taking into account the values given
in Table 1.

Table 1. The acceptable ranges of the functional characteristics of the USW joints.

Property Range

Tensile strength, MPa 30 ≤ σ ≤ 65
Elongation at break, % 1.75 ≤ ε ≤ 4.50
USC joint thinning, µm 100 ≤ ∆d ≤ 400
Top ED thickness, µm 120 ≤ δED top ≤ 180

Distance between PEI adherends, µm 450 ≤ δED+CF ≤ 550
Top PEI adherend integrity, +/– 0 ≤ C

Trial numerical investigations to determine the optimal USC parameters were per-
formed using only the a priori knowledge (the first two features mentioned above).
In this case, the ANN simulation was not enabled to achieve the goal due to patterns
in the learning data structure. Separately, the parameter values were the maximum values
of the acceptable ranges of the functional characteristics of the USC joints. Their approxi-
mation also gave similar levels that did not satisfy the optimality conditions. Therefore,
subsequent learning samples included both a priori knowledge and predictive parameters
within the acceptable ranges.

Advanced numerical investigations were based on a priori knowledge of the USC
parameters at which such procedures could not be successfully completed and the levels
required to achieve the optimal functional characteristics of the lap joints (Table 2). Figure 5
presents the results of the ANN simulation and assessment of the SOP area, drawn using
the data from Table 2 when varying each range of the USC parameters presented in three
rows for condition #2 “Constancy of dimensions”. The learning sample included 29 vectors
of the USC parameters and the corresponding ones of the functional characteristics. In this
case, the RBFNN (‘goal’ = 0.001) and FFNN (activation functions are hyperbolic tangents)
were applied, with variation of their other parameters.

Note that the USC parameters presented in Table 2 limited the search area for their
optimal values, but lay only in three sections of the corresponding space. As follows in
Figure 5, this turned out to be enough to limit the SOP areas drawn using the RBFNN over
their entire volumes. The ‘spread’ parameter exerted a direct impact on the sizes of the
SOP areas: increasing the parameter gave rise to enlargement of the SOP areas. At this
stage of the analysis using a priori knowledge, only models with ‘spread’ values below 0.5
were recognized as inadequate. In this case, it was accepted that the τ parameter was not
dominant [38] and the SOP areas could not be discontinuous. Obviously, such a gap was
associated with a great relative distance between the points of the predicted optimal USC
parameters and could be eliminated by supplementing the sample with intermediate data.
To the best of the authors’ knowledge, the problem of selection of an adequate value for the
‘spread’ parameter has not been formally solved for the RBFNN.
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Table 2. A priori knowledge, as well as predicted USC parameters and functional characteristics of
the lap joints.

Conditions

Parameters Characteristics

USW Duration, ms Clamping
Pressure, atm

Duration of Clamping
after USW, ms

σ,
MPa ε, % ∆d,

µm
δED top,
µm

δED + CF,
µm C

1. Optimal predicted
properties

500 1.5 3000
65 4.5 400 120 450 1500 1.5 7000

2. Constancy of
dimensions

100 1÷2 1000 ÷ 7000
0 0 0 250 750 1300 ÷ 700 4 1000 ÷ 7000

300 ÷ 700 0.5 1000 ÷ 7000
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Figure 5. The USC parameters of a priori knowledge (a) and the SOP areas, constructed using the
RBFNN (b–d) and FFNN (e,f) models. A priori knowledge data.

For the FFNN models, the absence of restrictions on three sections of the parameter
space led to the unboundedness of the SOP areas in the direction of increasing the t
parameter and in all directions of the τ parameter. It was noted that all the studied FFNN
models implemented reliable approximation under these conditions but did not correspond
to the a priori physical and mechanical concepts of the SOP areas. In this case, increasing
the FFNN complexity (the number of neurons in the hidden layer) did not result in any
significant changes in the SOP areas.

Additional a priori knowledge in the form of local points were added to the models
as new variable parameters, namely the number of values and their distribution in space.
Accordingly, it was necessary to use a uniform distribution of a priori knowledge in the
parameter space according to Table 2, and to assess the influence of the number of additional
points. In each of the three sections of the τ = 100 ms, P = 0.5 atm, and P = 4 atm space of
the models described above, a priori knowledge was determined in the amounts of 6, 9, 12,
and 18 points. The learning sample sizes were 20, 29, 38, and 56, respectively.

Subsequent numerical investigations included the development of a set of both RBNNs
and FFNNs. The ‘spread’ value was 0.5, while the ‘goal’ levels varied from 10–3 to 10–6.
The FFNNs were characterized by a single hidden layer (five neurons) and a log tangent
activation function. Bayesian regularization was used as a learning algorithm.

The accuracy of the models was assessed by the standard deviation of the data from
the a priori values at the outputs. Errors were calculated for three cases: (i) the approxi-
mation region was limited to the predicted ranges of the optimal USC parameters, (ii) the
extrapolation region was limited to the maximum predicted optimal USC parameters and
the maximum boundaries of the acceptable ranges (t = 700 ms, P = 4 atm, τ = 9000 ms), and
(iii) the scope of the analysis was limited to the acceptable ranges of the USC parameters.
Since the FFNN learning results were multi-valued, the errors in these cases were estimated
from the ensemble of synthesized and learned networks. Table 3 and Figure 6 show some
of the results of calculating the errors of ANN simulation as instances.
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Table 3. The errors of ANN simulation using a priori knowledge learning samples.

Sample
Size

MSE for Learning Sample Number of Neurons (N)
Standard Deviation

Analysis Region Approximation
Region

Extrapolation
Region

RBFNN (goal = 1 × 10–3)

20 9.72 × 10−4 10 0.0636 0.0336 0.047
29 2.3691 × 10−4 20 0.0318 0.0194 0.0189
38 4.1871 × 10−5 20 0.0191 0.0069 0.0139
56 2.6309 × 10−4 18 0.0236 0.0224 0.0173

RBFNN (goal = 1 × 10–6)

20 7.22 × 10−7 16 0.0345 0.0399 0.0242
29 2.852 × 10−31 27 0.0074 6.0390 × 10−4 0.0025
38 2.6257 × 10−10 34 0.0074 6.0496 × 10−4 0.0025
56 2.6669 × 10−7 37 0.0077 5.6014 × 10−4 0.0033

FFNN (average of seven models)

20 7.71 × 10−6 6 0.1395 0.0470 0.0905
29 9.45 × 10−7 6 0.0325 0.0001 0.0134
38 6.79 × 10−6 6 0.0210 0.0060 0.0979
56 6.68 × 10−6 6 0.3247 0.0002 0.2165
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2.4. Analysis of the Experimental Data

As expected, the errors exhibit complex, ambiguous, and extreme patterns. According
to Figure 6a and Table 3, for the RBNNs, the errors of the simulation depended on the ‘goal’
parameter as well as the sample size. The errors in the extrapolation and approximation
ranges were comparable and repeated the behavior of the errors in the field of analysis.
This indicates that the RBFNNs’ results might be validated only over the data of the latter
error. For FFNNs, a substantial difference was found in the behavior of the error with an
increase in the sample size. After reaching a minimum, the error in the approximation range
changed insignificantly, while in the extrapolation range it began to drastically increase.

In the general case, determining the optimal size of the learning sample could not
be formulated as ‘the higher, the better’ for both RBFNNs and FFNNs. This is related
to the problem of redundancy of the training sample, which occurs with large sample
sizes. However, the use of deep learning can result in decreasing the accuracy of the
simulation [10]. This is usually solved by introducing one or more of various methods
of reducing the dimensions of the source data or the total sample size. Among them are
the principal component method, linear discriminant analysis, random or deterministic
sampling, etc. [62–65]. In the current study, the optimal size of the training sample in
terms of minimizing the error of approximation and extrapolation was addressed as the
problem of searching for the minimum error. Obviously, this task was of the search type.
For the data presented above, the best results of the ANN simulation were achieved with a
learning sample size of 38 (9 additional points with a priori knowledge in each section of
the parameter space).

Comparing the errors in the approximation and extrapolation regions with the num-
bers of neurons in the RBFNNs after learning, the following could be concluded. Their
training algorithm enabled them to avoid overlearning the model, i.e., an increase in the
sample size did not enhance the number of neurons in all cases. Perhaps for this reason,
it also did not contribute to a significant increase in extrapolation errors. In contrast to
the RBFNNs, increasing the learning sample size of the FFNNs could lead to a significant
increase in extrapolation errors (Figure 6b, volume > 29). Consequently, the implemen-
tation of FFNNs for ANN simulation using samples of a priori knowledge required the
development of criteria for assessing their redundancy and limiting the sizes. In the ANN
simulation, experimentally measured levels of the functional characteristics of lap joints
obtained using the USC parameters presented in Table 4 were applied as a learning sample.
The determined values are shown in Table 5, including nine vectors assessed by the Taguchi
method. Both RBFNNs (‘goal’ = 0.001) and FFNNs (activation functions—hyperbolic tan-
gent) were implemented. The distribution of the learning sample in the parameter space is
shown in Figure 7a, while the SOP areas are presented in Figure 7b–d. As expected, the SOP
area, determined using the RBFNN model with an ultra-small sample (Figure 7b), covered
the relevant data and tended to the minimum size with lowering of the ‘spread’ parameter.
On the one hand, this fact led to more accurate approximation within the range of the
experimental USC parameters, but on the other hand it did not allow solving predictive
problems. The implementation of the FFNN gave an infinite number of solutions, from
completely unrealistic (Figure 7c) to adequate (Figure 7d). Moreover, all these models met
the minimum mean square error criterion (the difference between the calculated values
and the data of the learning and testing samples). Note that the drawn SOP areas were not
limited to the region of the experimental USC parameters and extended into the predicted
(extrapolation) area. Nevertheless, general patterns in their behavior were not revealed.
This drawback of the ANNs testified to the inefficiency of their use in learning with ultra-
small training samples, requiring the use of additional data to limit acceptable solutions in
the extrapolation range. The accuracy of the constructed models was estimated according
to verification with additional laboratory tests, as described in Section 3.
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Figure 7. (a) The USC parameters of a priori knowledge and the SOP areas, drawn using the
(b) RBFNN and (c,d) FFNN models. The learning sample was the experimental data from nine points,
according to Table 5.

Table 4. The UCC parameters obtained by combining the factors and their levels in the L9 format,
according to the Taguchi method.

Experiment No.
Parameters

USW Duration, ms Clamping Pressure, atm Duration of Clamping after
USC, ms

(1) 400 1.5 3000
(2) 400 1.7 5000
(3) 400 1.9 7000
(4) 500 1.5 5000
(5) 500 1.7 7000
(6) 500 1.9 3000
(7) 600 1.5 7000
(8) 600 1.7 3000
(9) 600 1.9 5000



Polymers 2024, 16, 451 13 of 24

Table 5. The functional characteristics of the joints obtained using the USC parameters presented in
Table 4.

No.
Tensile

Strength
(σ), MPa

Elongation at
Break (ε), %

USC Joint
Thinning
(∆d), µm

Top ED
Thickness

(δED top), µm

Bottom ED
Thickness
(δED bottom),

µm

Mean ED
Thickness
(δED mean),

µm

Distance
between PEI
Adherends

(δED+CF), µm

“CF layer”
Thick-

ness (δCF),
µm

Top PEI
Adherend
Integrity,

+/–

1 26.0 ± 1.6 1.61 ± 0.05 110 ± 60 140 ± 40 220 ± 40 180 ± 80 620 ± 20 230 ± 30 +
2 24.7 ± 1.7 1.41 ± 0.06 160 ± 30 160 ± 60 200 ± 40 170 ± 70 620 ± 40 230 ± 70 +
3 25.0 ± 1.5 1.70 ± 0.07 230 ± 20 170 ± 30 180 ± 40 180 ± 40 540 ± 40 210 ± 50 +
4 35.2 ± 1.4 2.07 ± 0.07 160 ± 20 150 ± 70 160 ± 40 150 ± 70 540 ± 40 190 ± 70 +
5 46.2 ± 3.2 2.85 ± 0.10 120 ± 20 150 ± 150 115 ± 65 150 ± 150 550 ± 50 250 ± 110 +
6 61.3 ± 3.1 3.81 ± 0.11 400 ± 40 160 ± 40 175 ± 75 175 ± 75 500 ± 40 190 ± 70 +
7 34.3 ± 2.1 2.00 ± 0.07 360 ± 20 90 ± 70 130 ± 110 130 ± 110 420 ± 80 200 ± 60 –
8 38.2 ± 2.3 2.12 ± 0.07 290 ± 20 110 ± 50 170 ± 50 140 ± 80 490 ± 70 210 ± 30 –
9 41.6 ± 1.7 2.37 ± 0.08 420 ± 20 100 ± 60 170 ± 70 140 ± 100 420 ± 60 180 ± 40 –

2.5. Analysis of a Posterior Knowledge and Its Implementation

Next, within the framework of the ANN simulation, a posteriori knowledge was
added to the a priori knowledge (Table 2). The latter was obtained after or in the process
of the experimental investigations and was introduced in sections of the parameter space
corresponding to high t values but low τ levels (Table 6). In this case, the model was limited
to knowledge in five sections of the parameter space, which were determined by three
values according to Table 4. The learning sample size was 47 vectors of the USC parameters
with the corresponding functional characteristics of the lap joints.

ANN simulation was carried out implementing both RBFNNs (‘goal’ = 0.001) and
FFNNs (activation functions are hyperbolic tangent), as well as using the data from
Tables 2 and 6. A distribution of the learning sample in the parameter space is shown
in Figure 8a, while the SOP areas, drawn using various USC parameters, are shown in
Figure 8b–g.

Table 6. A posteriori knowledge about the functional characteristics of the USC lap joints.

Conditions

Parameters Properties

USW
Duration, ms

Clamping
Pressure, atm

Duration of Clamping
after USC, ms

σ,
MPa ε, % ∆d,

µm
δED top,
µm

δED + CF,
µm C

Failure of lap joints
during USC

(before testing)
900 1 ÷ 3 1000÷7000 40 1.5 400 50 350 −1

Negligible strength due
to minimum clamping

duration after USC

300 1 ÷ 3
0 10 0.75

50 250 650 1
500 1 ÷ 3 200 160 550 1
700 1 ÷ 3 400 50 350 −1

Comparing the results obtained using the RBFNNs (Figures 4 and 6), a conclusion was
drawn that additional knowledge on the boundary sections could lead both to enhancing
the SOP areas (Figure 8b) and their downsizing (Figure 8c,d). Changing the ‘spread’
parameter still affected the sizes of the SOP areas and could be considered as a tool for
applying the subjective knowledge of experts.

Enhancing the learning sample size through the use of new knowledge in the FFNN
models resulted in the limitation of the SOP areas in the directions of those sections where
this new knowledge was determined. In this case, increasing the complexity of the FFNN
(through the number of neurons in the hidden layer) played an important role in the
non-linearity of the model: from a simple quasi-linear law (Figure 8e) to a significantly
non-linear one (Figure 8g). Unlike the RBFNN models, the way to express non-formalized
knowledge in the FFNN ones was to justify the number of neurons (N) in the hidden
layer. In this example, the model had to be considered as coarse (undertrained) at N = 5,
displaying an unreasonably complex law (overtrained) at N = 25, but adequate at N = 10.
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Figure 8. The USC parameters of a priori knowledge (a) and the SOP areas, drawn using the RBFNN
(b–d) and FFNN (e–g) models. The learning sample was both the a priori and a posteriori knowledge.

Subsequent ANN simulation was performed using a sample that included nine exper-
imentally measured values as well as both a priori and a posteriori knowledge about the
USC parameters. The total sample size was 54 vectors. A distribution of the experimental
parameters in the search area is presented in Figure 9a. The SOP areas drawn using the
RBFNN models with different values of the ‘spread’ parameter are presented in Figure 9b,c,
while Figure 9d reflects the case for the FFNN. As a result of comparing the data presented
in Figures 8 and 9, the following conclusions were drawn about the impact of the addition
of both a priori and a posteriori knowledge on the assessment of the SOP areas:

1. The RBFNN models became more complex. The sizes of the SOP areas increased,
including in the extrapolation region.

2. The SOP areas determined using the FFNN models were limited to the extrapolation
regions and acquired a general pattern (the uncertainty of the behavior decreased).
However, this phenomenon did not solve the problem of multiple solutions.

3. The models drawn with the addition of both a priori and a posteriori knowledge
should not be considered as competing, due to their imprecise expression. SOP areas
drawn both with and without them had to be jointly analyzed.

4. The problem of choosing the learning sample size of both a priori and a posteriori
knowledge had to be justified as a problem of finding the optimal size according to
the minimum extrapolation error criterion.
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using the RBFNN (b,c) and FFNN (d–g) models. The learning sample was the experimental data, as
well as both a priori and a posteriori knowledge.

3. Verification of the Results of ANN Simulation

Verification of the results of the ANN simulation was carried out using USC parameters
(t = 510 ms, τ = 9000 ms, P = 1.85 atm) from the extrapolation region, for which the predicted
values (i) varied most significantly, (ii) could be implemented using the available USW
facility, and (iii) were located in the direction of the greatest expected errors of the ANN
simulation. Table 7 presents the predicted values of the functional characteristics of the
USC lap joints, obtained using the predicted USC parameters:

- the RBFNNs were trained with only the experimental data (the ‘RBFNN’ row in
Figure 8b) and with both a priori and a posteriori knowledge in addition to the
experimental data (the ‘RBFNN (+ knowledge)’ row in Figure 9c);

- for the FFNNs, due to the ambiguity of their training, the predicted values were
calculated from a variety of the results (examples shown in (Figures 8c,d and 9d,e)
after training with only the experimental data (the ‘FFNN’ row) and with both a
priori and a posteriori knowledge in addition to the experimental data (the ‘FFNN
(+ knowledge)’ row).

Table 7 also includes the experimentally measured values of the functional characteris-
tics of the lap joint, obtained using the optimal USC parameters. Figure 10 shows an optical
image of its cross-section. The USC lap joint thinning was 330 ± 10 µm, while the top ED
was noticeably (but not uniformly) thinned (δED top = 80 ± 60 µm). At the same time, the
bottom ED thickness was changed to a much lesser extent (δED bottom = 170 ± 70 µm). The
“CF fabric layer” thickness was 280 ± 40 µm, which was slightly greater than the initial
prepreg value (considering possible scattering). Samples of such USC lap joints fractured
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at rather high stress levels of 62.60 ± 3.13 MPa and values of elongation at the break
of 4.22 ± 0.21%.

Table 7. The functional characteristics of the USC lap joints.

No. σ, MPa ε, % ∆d, µm δED top, µm δED + CF, µm C

RBFNN −3.52 0.12 661.24 89.86 316.53 −1.04
RBFNN (+knowledge) 41.17 2.29 98.08 191.29 551.46 0.91

FFNN 31.70 ± 6.93 2.06 ± 0.58 268.3 ± 146.0 164.6 ± 5.0 533.9 ± 53.4 1.0 ± 0.0
FFNN (+knowledge) 45.50 ± 15.78 2.9 ± 0.9 208.3 ± 208.3 148.5 ± 94.9 567.04 ± 160.50 0.88 ± 0.10

Optimal 62.60 ± 3.13 4.22 ± 0.21 330 ± 10 80 ± 60 280 ± 40 1
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Figure 10. The optical image of the cross section of the lap joint obtained using the optimal
USC parameters.

An analysis of the results presented in Table 7 showed that the RBFNN model trained
with both additional a priori and a posteriori knowledge significantly increased its accuracy,
so the predicted and experimentally measured values were closer to each other. This fact
confirmed the possibility of using the RBFNN models for prediction by extrapolation using
ultra-small samples after artificial expansion of their sizes. Respectively, such models
should be considered as the most promising ones.

On the other hand, the FFNN models, both with additional a priori and a posterior
knowledge and without them, were characterized by average predicted values close to the
real ones. However, the scatter of the predicted values with additional knowledge in the
learning samples increased significantly (Table 7), bringing into question the applicability of
this approach. Additional research is required to determine the reasons for these variations.

A comparison of the predicted and real values (Table 6) showed that mechanical
properties were achieved that exceeded the experimental data obtained above (mode 6). In
this case, the δED top and δED+CF parameters were outside the acceptable ranges according
to Table 1. Nevertheless, these values reflected the optimal USC parameters, enabling
improvement of the mechanical properties (falling within the range specified in Table 1), a
situation which was not obtained using modes 1–9. On this basis, it was decided to change
the SOP areas according to Table 8.
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Table 8. The acceptable ranges of the functional characteristics of the USC joints, justified by ANN
simulation and verification of its results.

Property Range

Tensile strength, MPa 30 ≤ σ ≤ 65
Elongation at break, % 1.75 ≤ ε ≤ 4.50

USC lap joint thinning, µ m 100 ≤ ∆d ≤ 400
Top ED thickness, µ m 65 ≤ δED top ≤ 180

Distance between PEI adherends, µ m 230 ≤ δED+CF ≤ 550
Top PEI adherend integrity, +/– 0.0 ≤ C

The results of ANN simulation using the updated models trained with both a priori
and a posteriori knowledge in addition to the experimental data (Table 5, modes 1–9;
Table 7, the optimal USC parameters) are summarized in Figure 11.
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4. Discussion

As noted above, most researchers of USW/USC procedures implemented for joining
composites based on thermoplastic binders have focused on laminates. The reason for this
includes both their high strength properties and the practical relevance of the obtained
results. Similar, ANNs have been applied for solving such problems [12]. However, the key
advantage of USC procedures is their short duration, expanding the application areas. For
example, data on USW patterns concerning particulate composites based on thermoplastic
matrices have been reported [66–68], in addition to which the results presented above could
be adapted to develop such procedures for composites fabricated from polymer blends
or hybrid polymer mixtures [69–71]. In this way, ANN simulation performed to optimize
the USW parameters for obtaining USC ‘PEI adherend/Prepreg (CF-PEI fabric)/PEI ad-
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herend’ lap joints enabled an understanding of their complex mutual influence on the
functional characteristics.

By analogy with the approach implemented for manufacturing laminates from sequen-
tial layers of both thermoplastic and CF fabric [72], a similar material was fabricated from
PEI/CF prepregs and EDs in this study. To achieve this goal, the optimal USC parameters
were applied, which were determined through ANN simulation. The method for manu-
facturing the PEI-impregnated PEEK-based prepreg based on the CF fabric (Toray Cetex
TC1200, Toray Industries, Japan) was described in a previous paper by the authors [38].

Figure 12 shows cross-sections of the laminates made from (a) PEI-impregnated and
(b) commercially available PEEK-based prepregs. The USC parameters justified above
were used (clamping pressure of 1.85 atm, USW duration of 510 ms, clamping duration
after USW of 9000 ms). The thickness of the PEI prepreg was 250 ± 20 µm, while that
of the PEEK-based one was 170 ± 20 µm (PEEK prepregs were US-consolidated without
EDs). The number of prepreg layers was five, while it was four for the EDs (for the PEI
prepregs only). The USC procedures were carried out using the layer-by-layer method.
The total number of passes of the USC instrument (sonotrode) was four. Under such
conditions, it was possible to form non-porous USC laminates (joints) with satisfactory
quality (minimal damage to the components). Thereby, the correctness of the optimal
USW parameters predicted by ANN simulation was verified experimentally. This ap-
proach can also be implemented to repair damaged regions of other composites based on
thermoplastic binders.
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The research areas in which USC procedures have been implemented to form fiber-
reinforced composites based on thermoplastic binders were already mentioned above:

- continuous ultrasonic impregnation and consolidation of thermoplastic
matrix composites;

- ultrasonic-assisted consolidation of commingled thermoplastic/glass fiber rovings;
- consolidation of composite pipes by in situ ultrasonic welding (thermoplastic matrix

composite tape);
- ultrasonic vibration-assisted automated fiber placement;
- automated fiber placement and tape laying (thermoplastic composite prepreg);
- filament winding and automated fiber placement with in situ consolidation.
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All of these were characterized by the use of different USC parameters. Moreover, the
sizes of the experimental data samples were very limited. Respectively, the authors believe
that the approach developed in this study, based on ANN simulation using ultra-small
samples, is of undoubted practical interest and can be applied to solve related problems,
including the automated tape placement [73,74].

5. Conclusions

1. By ANN simulation, an approach was developed to establish the relationship between
the USC parameters and the functional characteristics of ‘PEI adherend/Prepreg
(CF-PEI fabric)/PEI adherend’ lap joints. For this purpose, the RBFNN and FFNN
models were tested and the most reliable results were selected.

2. The real values of the functional characteristics of the USC joints were measured
experimentally and used to train the ANNs. For improving the effectiveness, the
experimental sample was significantly expanded by adding both a priori and a
posteriori knowledge.

3. The conducted studies into the influence of the ANN simulation parameters and
the addition of both a priori and a posteriori knowledge to the learning sample on
the accuracy of the drawn SOP areas showed the following outcomes. The RBFNN
model trained using the sample with the additional a priori and a posteriori knowl-
edge significantly increased its accuracy, and the predicted data came closer to the
experimental results. This fact confirmed the possibility of using RBFNN models for
prediction through extrapolation of ultra-small samples after artificial expansion of
their sizes. On the other hand, the FFNN models, even without adding both a priori
and a posteriori knowledge, gave average values close to the real ones. However, the
scatter of the predicted values increased significantly after the addition of both a priori
and a posteriori knowledge, so the obtained results sow doubt on the applicability of
this approach.

4. The results of ANN simulation were verified, since the implementation of the pre-
dicted USC parameters made it possible to maintain the structural integrity of the
reinforcing CF fabric and ensure the maximum strength properties.

5. The results of ANN simulation for optimizing the USC parameters were suitable
for manufacturing the ‘PEI adherend/Prepreg (CF-PEI fabric)/PEI adherend’ lami-
nates (and those from the commercial PEEK/CF prepregs). Such procedures enable
the formation of an even (regular) structure characterized by a minimum number
of discontinuities and minimal damage to the joined components.
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