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Abstract: Valorization of waste biomass materials for fuels and other energy products has become
one of the effective ways of escalating and improving the bioeconomy. The development of a novel
biomass solid catalyst obtained from waste avocado peels and its potentials in transesterification of a
bi-hybrid oil of used cooking–baobab oil (UC-BO) was investigated in this study. The catalyst was
produced by calcining the burnt char of the dried avocado peels. The produced calcined avocado
peels catalyst (CAP) was further characterized using analytical equipment, such as FT-IR, XRD, SEM,
EDX, and TGA, to ascertain its catalytic properties. The results revealed that CAP contains some
vital elements, such as Mg, P, Cl, Ca, Si, Na, and a high percentage of K content, present in form of
oxides, carbonates, chlorides, and mixed metal compounds. The catalyst displayed effective catalytic
potential in converting the UC-BO to biodiesel with 100% yield under an optimized condition of
51 min reaction time (RT), 14.5:1 of methanol to oil ratio (MTOR), and 2.73 wt% of catalyst loading
(CL) at a constant temperature of 60 ◦C. The CAP exhibited excellent recyclability potential, achieving
92.85% biodiesel yield after five successive reaction cycles without notable catalytic activity reduction.
The fuel properties investigated were all established within the biodiesel quality specifications of EN
14241 and ASTM D6751, demonstrating that it is a practical substitute for petroleum fuel.

Keywords: avocado peels; biodiesel; green heterogeneous catalyst; optimization; transesterification

1. Introduction

The level of greenhouse gas emissions in the atmosphere has been recently reported to
continue increasing due to the overconsumption of conventional fuels. The upfront effect
of this is notable by the catastrophic environmental issues, such as climate change, global
warming, depletion of the ozone layer, and toxic pollution, that threaten human health
and bionetwork systems [1]. This situation will continue to deteriorate as the total primary
energy consumption is presumed to increase by 57% by 2050 [2]. However, the utilization of
bio-resources has attracted increasing attention from researchers and the government, due
to their replenishing and sustainable nature in addition to the provision of enhanced CO2
reduction and energy diversification to allow for a more secure and constant energy supply.
This has consequently led to the energy switch from fossil fuels to low carbon resources,
which creates a significant position for biomass energy. Among other renewable energy
sources, biomass energy is the most widely utilized. Lignocellulosic biomass is the third-
largest energy source after petroleum and coal products [3]. It contributes to the largest
share of the renewable energy consumption in the form of bioenergy, with an estimated
fast growing rate of 50% in the near future [4]. Its availability across the world makes it
a desirable candidate for biofuel production. Biodiesel as one of the prominent biomass
fuels is a domestic, clean-combusting, renewable fuel surrogate for fossil diesel. Biodiesel
that is utilized as automobile fuel provides safety benefits alongside an increase in energy
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security, air quality, and environmental improvement. The utilization of pure or unblended
biodiesel is significantly harmless as compared to petro-diesel if spilled or released into the
environment. According to ASTM specifications, biodiesel is less combustible and safer
to handle and store due to a high flashpoint of greater than 130 ◦C, compared to the low
flashpoint of 52 ◦C for fossil diesel [5].

Biodiesel is a diesel equivalent fuel, which is described according to the ASTM Inter-
national standard as mono-alkyl long-chain esters of fatty acids obtained from bio-lipids.

Sustainable development for alternative energy requires the availability of potential
feedstock for future applications. Biological feedstock for the production of biodiesel
includes non-edible and edible oils, used oils, and algae. While algae oil is expensive to
obtain, edible oils are not sustainable due to the food vs energy conflict. Using waste and
non-edible feedstock oils for biodiesel synthesis is an attractive solution to the feedstock
crisis, as they are not competing with food sources. Waste cooking oil has been considered
one of the cheapest and effective feedstock oils for biodiesel production [6]. It is abundantly
available and can easily be obtained from local restaurants or shops at a minimal cost,
if not completely free. It is usually discarded into local drainage after repeated cycles
of frying; however, this method of disposal causes pollution of drainage systems and
water bodies. Its utilization for biodiesel production could serve a dual advantage, which
includes reduction of environmental pollution and biodiesel cost. On the other hand,
underutilized plant oils, such as baobab kernel oil, with an oil content range of 30–68%, has
been reported to be rich in monosaturated fatty acid and is widely applied in traditional
medicine and cosmetic industries [7,8]. Its utilization for biodiesel production has not been
widely studied. However, oil mixtures in biodiesel production ensure constant feedstock
supply and optimization as well as improvement of fuel properties [9].

Among the various techniques used in oil conversion to biodiesel, catalytic transesteri-
fication is the simplest and most economical method used for biodiesel production [10]. The
triglycerides transesterification requires alcohol (usually methanol or ethanol as the short
chain alcohol) and effective catalysts. Several catalysts, such as enzymes, and homogeneous
and heterogeneous catalysts, have been reported to be effective for this process. However,
homogenous- and enzyme-catalyzed transesterification suffer various drawbacks ranging
from toxic waste generation and complicated separation of the homogeneous catalyst
from the mixture during extraction to high cost and slow reaction of the enzyme [10–12].
Heterogeneous catalysts overcome these limitations and become the most preferred choice
due to their easy recoverability, reusability, and non-corrosive characteristics [13]. The
popularity of heterogenous catalysts became much stronger in recent research on biodiesel
production because it can be derived from agricultural waste materials. This is due to
their mineral-rich contents, which are the requisite ingredients for heterogeneous catalyst
development. Agro-waste catalysts possess good catalytic properties, in addition to their
availability, eco-friendliness, and cost effectiveness in their process synthesis. Agricultural
materials recently investigated for heterogenous catalysts with promising catalytic activities
included the following: pomelo leaves [14] ), the peels and trunk of Musa acuminate [15,16],
Heteropanax fragrans [7], Radish leaves [17], Tucuma peels [18], Musa paradisiaca peels [19],
moringa leaves [20], Brassica nigra [21], and red banana peduncle [22].

The avocado plant (Persea Americana) is a popular tree from the family of the Lauraceae
species. It is a medium-sized tree and native to South Central Mexico and Guatemala. It
thrives well in tropical and Mediterranean climates [23]. The fruits have smooth, buttery,
golden-green flesh when ripe. Furthermore, the fruits contain high bioactive compounds
like vitamin C, B, and E, unsaturated fatty acids, lutein, dietary fiber, pigment and phenolic
compounds, and are majorly consumed globally because of its health benefits [24]. Accord-
ing to the food and agriculture organization (FAO) corporate statistics, the estimated total
global production of avocado in 2021 was 8,685,672 metric tons, about a 7.2% increase as
compared to 2020 with 8104.028 tons. Mexico was the largest with over 28% of the global
production. Figure 1a,b show the list of countries by avocado production from 2016 to
2021, while Figure 1b, shows the avocado production by region in South Africa. Avocados
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are largely produced in three provinces in South Africa, including Limpopo with 54%
production, followed by Mpumalanga with 22%, and KwaZulu Natal with 18%. Avocado
is a popular fruit that is mainly consumed in fresh and processed forms. According to [25],
the present market growth of avocado fruits is expected to double by 2024. With this
large increase, there is a great concern over the waste disposal of its peels, which are the
major byproduct and constitutes 13–14% of the fruit weight [26]. Avocado peels have less
economic value compared to its fruit and seeds. It is reported that it has been used for
animal feed and as preservatives in the food industry [23,26]. However, the descriptive
analysis of its raw peels revealed that it contains important minerals and elements, such
as potassium (485 mg/kg), phosphorus (52 mg/kg), magnesium (29 mg/kg), calcium
(12 mg/kg), sodium (7 mg/kg), and others such as manganese, iron, and zinc, which are
less than 1 mg/kg [23,25]. The presence of the basic ingredients for a heterogeneous catalyst,
such as high potassium content and other key elements, suggest that it could be deployed
to serve as a viable biomass catalyst for biodiesel synthesis. However, to the best of our
knowledge, the catalytic application of avocado peels as a catalyst for transesterification
has not been studied or reported.

Hence, this study seeks to explore the process behind the synthesis and application
of avocado peels as a heterogeneous catalyst for the production of optimized biodiesel
from waste cooking–baobab hybrid oil, which is the novelty of this investigation. The
influential parameters affecting the transesterification of the process, such as the methanol
to molar oil ratio and process reaction time, were optimized and statistically analyzed by the
response surface methodology-Box–Behnken design (RSM-BBD) model, while the reaction
temperature of 60 ◦C was held constant throughout the experiment. The characterization
and recyclability of the synthesized catalyst were also investigated and presented. Thus,
this study adds an advantage to the bio-refinery exploration of sustainable resources with
the overall impact of achieving a cost-effective biodiesel production process.
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2. Results and Discussion
2.1. CAP Catalyst Characterization
FT-IR Analysis

FT-IR spectroscopy was used to determine the functional group band vibrations of the
generated catalyst. As displayed in Figure 2a–c, the IR spectra of the raw avocado peels
(RAP), open-air burnt avocado peels (BAP), and calcined avocado peels (CAP) at 650 ◦C
revealed several adsorption vibrations. The spectra provide morphological details about a
certain vibration band that distinctively characterizes a particular functional group present
in the sample. The stretching vibrations of O-H and K-O were, respectively, attributed to
the bands at 3300 and 600 cm−1 [17]. The existence of carbonate compounds like K2CO3 is
indicated by the absorption band at around 1600, 1300, and 1000 cm−1, which are attributed
to the asymmetric stretching of the carbonates functional group, and bending vibration
of the C-O group [21,27]. Due to the high heat treatment, the K2CO3 bands at around
1300 and 1000 cm−1 are conspicuous and more prominent in the CAP spectrum than in
the BAP and AP spectrums. The adsorption band around 1400 cm−1 can be attributed to
the adsorbed atmospheric CO2 on the metal oxide [28,29]. The band at 800 cm−1 found in
the CAP spectra can be accredited to the Si-O-Si vibration, which is common in calcined
agricultural waste materials [11,30]. The band at 600 cm−1 is attributed to the K-O and
Ca-O stretching vibrations, suggesting the presence of CaO and K2O in CAP (Gohain et al.,
2020). The N-K-O bonds (where N = P or Mg) may be associated with the adsorption band
located around 2900 and 1800 cm−1 [29]. The results in this section are also supported by
the EDS analysis.
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2.2. XRD Analysis

The presence of crystalline molecules in BAP and CAP was determined using the
XRD analysis (Figure 3). The existence of the metals and compounds in the catalyst,
including potassium, magnesium, and calcium compounds, in carbonate, oxide, chloride,
and silicate forms, are illustrated in Figure 3a,b. The diffraction peaks were observed to
be more intense in the CAP spectrum than the BAP due to high heat of calcination. The
strong peak diffraction of K compounds was noticed after calcination in CAP, which is in
corroboration with the dominant K2CO3 bands in the FTIR spectra of CAP and the high
percentage fraction of K in the EDX analysis. This observation was also reported in the
characterization of cocoa pod husks and banana peels [22,27]. The strong characteristic
diffraction peaks indicating the presence of KCl were observed at 2θ = 28, 40, 48, 58, 65,
and the peaks diffraction observed at 2θ = 12, 25, 30, and 32 were due to K2CO3, while
2θ = 45 and 62 were due to existence of MgO. The existence of other small diffraction
peaks corresponding to Ca2Al2(SiO4)2, CaK2H(PO4)2 and K2Al2Si2O10 as also observed.
Using Scherrer’s equation, which is provided in Equation (1), the average crystallite size
was determined to be 46.30 nm. EDX and FTIR, which showed a high dispersal of K, Mg,
P, Ca, and Si, substantially support the XRD results. The result is consistent with other
heat-treated agricultural waste chars reported in the literature, including chars made from
Tucuma peels [18], moringa leaves [20], pineapple leaves [31], Musa acuminata, and so forth.

D =
κλ

βcosθ
(1)

where D stands for Crystallite size (nm)

K represents Scherrer’s constant denoted by (K = 0.9)
λ represents X-ray wavelength equal to 0.15406 (nm)
β represent the Radian for full width at half maximum (FWHM)
θ represents the Bragg-diffraction angle (Peaks position) in radians.
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EDS Analysis

The elemental composition of raw, dried, and calcined avocado fruit peels that were
calcined at 650 ◦C was determined using the EDS analysis. The elements obtained and their
percentage and fractions are presented in Table 1. It is apparent from the table that certain
elements increase and decrease due to the effect of the calcination process. The EDX result
reveals that the calcination process is efficient in extracting and successfully improving
available minerals present in the avocado peels. The observed element compositions are
clearly in congruence with the XRD analysis outcome. The percentage of carbon in the raw
and burnt avocado peels were found to be 64.52% and 49.95%, respectively. The fraction
was found to decrease significantly in the calcined avocado peels ash due to the formation
of carbonates and oxides, while other elements were observed to improve alongside the
formation of new ones at higher heat treatment. The elements in CAP are arranged in
the following sequence of increasing mass: K > P > Mg > Cl > Ca > Na > S > Si, with K
being the greatest. The XRD, where K was exhibited the most, and the EDX results are
consistent. Hence, CAP has a variety of mineral oxides and chlorides, the most important
of which are KCl, K2O, and MgO. These elements provide CAP with high catalytic activity
in the bi-hybrid oil transesterification reaction. Other agro-waste catalysts which used to
produce biodiesel have been found to include similar mineral compounds, with K being
the greatest [17,32,33].

Table 1. Composition of elements of raw, burnt, and calcined avocado peels.

Heat Treatment
Condition Composition (%)

C O Na Mg Si P S Cl K Ca
CAP at 650 ◦C, 3 h 7.20 36.71 0.4 2.54 0.41 4.17 0.46 1.84 45.0 1.65

Burnt AP 49.95 30.78 - 1.20 0.16 1.85 0.21 0.75 14.30 0.80
Raw AP 64.52 24.50 - 0.86 - 0.43 0.16 - 9.26 0.27

2.3. SEM Analysis

The SEM technique was used to examine the structural images of the green-based
catalyst obtained from avocado peels. The images were taken at a magnitude of 1000×
and are displayed in Figure 4a–c. The figure revealed the morphological transformation of
RAP, BAP, and CAP based on their different levels of thermal treatment. Figure 4a shows
the microporous structure and spongy nature of the raw avocado peels (RAP), while in
Figure 4b, the open-air burnt (BAP) sample revealed the aggregate of irregular particle
size and the spongy-like nature of the catalyst structure. The calcined (CPA) samples
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(Figure 4c) revealed the fibrous, spongy, and mesoporous features of the catalyst with
increased porosity. The high temperature of calcination resulted in the sintering of the
mineral particles. Thus, the agglomeration and shiny appearance of the particles in CAP
might be due to the presence of oxygenated materials, such as carbonates and oxides of
various metals [11]. This is also in support of the XRD and FTIR analysis results. However,
the higher temperature of calcination also favored the uniform distribution of the catalyst
and elimination of organic elements present in the waste avocado peels [27]. The increase
in the porosity of CAP enhanced significant activity that resulted in the high yield of
FAME. Similar reports and morphological changes were also observed and reported on for
various lignocellulose agro-biomass residues, such as pineapple leaves, cocoa pod, banana
peduncle, Carica papaya stem and peels, and kola nut husks [17,30,32].
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2.4. The Thermogravimetric Analysis (TGA)

The TGA results of the CAP catalyst and the percentage of weight loss as a function of
temperature are displayed in Figure 5. The results indicate that the mass losses occurred
gradually. The initial 4% weight loss that occurred between 85 and 150 ◦C could be assigned
to the loss of moisture that had been adsorbed and chemisorbed [14]. The second stage of
weight loss of 2.0% occurred between 180 and 580 ◦C and corresponded to the structural
loss, which could be attributed to cracking, de-polymerization, hemicellulose, and decar-
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boxylation of cellulose, leading to the release of volatile and non-volatile gases [17]. The
changes at the ash phase, with the weight loss of 6.0%, occurred between 580–800 ◦C. These
changes may be attributed to the dihydroxylation of OH units of the CAP catalyst, the
loss of H2O, and emission of CO2, CO, etc., resulting from the oxidation of carbonaceous
materials present in the catalyst. This leads to the breakdown of metal carbonates, such
as K2CO3, into its corresponding oxide, K2O, which is considered an active component of
the agro-waste heterogeneous catalysts [22]. Calcination at high temperature improves the
mineral content in organic materials, enhances the reusability and reduces leaching rate of
the catalyst when used in the transesterification process.
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2.5. Modeling and Optimization Results

The transesterification process was modeled using BBD with three level three com-
ponents, comprising 17 experimental runs. The results show that the FAME yield vary
between 79 and 99.98 wt%, and the regression multiple analysis of the polynomial second
order equation, which describes the transesterification reaction process for FAME yield, is
as follows:

Y = 95.72 − 4.50K1 + 6.30K2 − 1.73K3 + 0.58K1K2 − 0.22K1K3 + 1.72K2K3
−2.40K2

1 − 3.25K2
2 − 0.54K2

3
(2)

The result of the analysis of regression (ANOVA) is given in Table 2. The linear terms
(K1, K2, K3), the quadratic terms (K2

1, K2
2 and K2

3) and two of the cross products (K1K2
and K2K3) are all significant at p < 0.5, each with a significantly low p-value of p < 0.0001.
The sum of squares value of 591.97, high F-value of 405.06, and p < 0.0001 all confirm
the model effectiveness and show a good analysis of regression [34]. The model accuracy
and reliability were statistically juxtaposed using R2, R, adjusted R2, MAE and AAD. The
obtained R2 = 0.9981 indicates that the observed data is properly aligned to the model
regression equation. The adjusted R2 = 0.9960 indicates the model significance and accurate
estimation of the model. The predicted R2 = 0.9812, adequate precession (69.86), low values
of mean absolute error (MAE) of 0.02%, absolute average deviation (AAD) of 0.001%, and
insignificant lack of fit all establish the significance and accuracy of the developed model.
The graph of actual versus predicted biodiesel yield is shown in Figure 6a, which is also



Catalysts 2024, 14, 261 9 of 18

in support of the model analysis. The outlier plot for all the experimental conditions is
displayed in Figure 6b,c. All the studentized residuals were within the limit interval of
±4.0, illustrating the model significance. Figure 6d illustrates the selection of an adequate
exponent (Lambda = 1) to normalize the data due to residual error. On the other hand,
the lambda values ranging from −5 to +5 suggest that the transformed data have the
highest likelihood of being normal data. Therefore, the lambda values obtained and the
best lambda of −0.81 show that the data were normal and supported by the polynomial
model, which was chosen for its accuracy [35].
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Table 2. The test for significance through ANOVA for model and parameters.

Source Coefficient
Estimate

Sum
of Squares df Mean Square F-Value p-Value

Model 95.72 591.97 9 65.77 405.06 <0.0001
K1-Catalyst concentration −4.50 161.91 1 161.91 997.09 <0.0001

K2-Methanol/oil 6.30 317.27 1 317.27 1953.84 <0.0001
K3-Reaction Time −1.73 23.84 1 23.84 146.81 <0.0001

K1K2 0.5800 1.35 1 1.35 8.29 0.0237
K1K3 −0.2225 0.198 1 0.198 1.22 0.3060
K2K3 1.72 11.90 1 11.90 73.30 <0.0001
K1

2 −2.40 24.23 1 24.23 149.20 <0.0001
K2

2 −3.25 44.51 1 44.51 274.09 <0.0001
K3

2 −0.5437 1.24 1 1.24 7.67 0.0277
Residual 1.14 7 0.16

Lack of Fit 0.648 3 0.22 1.77 0.291
Pure Error 0.488 4 0.12
Cor Total 593.11 16

Fit Statistic of the model

R2 0.9981 R 0.9990
Adjusted R2 0.9963 MAE 0.020%
Predicted R2 0.9812 AAD 0.001%

Adeq Precision 69.8648

2.6. Effect of the Process Variables Interaction

Figure 7a–c shows a graphical representation of the regression equation used to
optimize the UCO-BO bi-hybrid oil transesterification using CAP.
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Figure 7a shows the 3D response surface plot that illustrates the influence of the
relationship between the methanol to oil molar ratio (MTOR) and catalyst loading (CL). One
crucial factor influencing the transesterification reaction process is the ratio of methanol to
oil. Methanol is needed for the reversible reaction of the transesterification process in order
to boost the yield, beyond the theoretical stoichiometric ratio of 3:1. The transesterification
reaction time was maintained at 60 min and 60 ◦C, while the MTOR was varied from
9:1 to 15:1 and the CL varied from 2.5 wt% to 4.5 wt%. FAME yield(s) was greatly increased
by raising the MTOR levels and lowering the catalyst loading (CL) levels. Thus, this can
be linked with the need for excess methanol to alter the equilibrium reaction in favor of
the FAME yield. An increase in the FAMEs was observed to occur from CL of 2.5–3.5 wt%
and MTOR of 10.5:1–15:1. A further increase in CL beyond 3.5 wt% and decrease in MTOR
below 10:1 led to significant decrease in FAME yields. Table 2 indicates the significant effect
of the mutual interaction of the two parameters (K1K2) with the p < 0.023 and F-value of
8.29. Similar trends have been reported on ash-based agro-waste heterogeneous catalysts
obtained from the red banana peduncle (RBP), tucuma peels, and cocoa pod husks [18,27].

The relationship between reaction time (RT) and catalyst loading (CL) and the FAME
yield at a fixed temperature of 65 ◦C and methanol ratio of 12:1 is displayed in Figure 7b. In
the transesterification process, reaction time and catalysts are crucial variables, particularly
when a heterogeneous catalyst is involved. In a heterogeneously catalyzed process, the
mass transfer rate and catalyst presence have a significant impact on the reaction rate.
Nevertheless, adequate time is required for the reactants to come into appropriate contact.
Excessive reaction time can promote the backward reaction due to a loss of some volatile
component of the reaction [36]. On the other hand, excessive catalyst loading may poten-
tially make the mixture too viscous, which would impede the mass transfer process. The
Figure indicates that FAME yield was at peak at low CL and RT. Table 2 shows that the
mutual contact of these parameters (K1K3) was not significant with the p-value of 0.30 and
F-value of 1.22. Nonetheless, the oil was converted to biodiesel within the range of time
and catalyst values chosen for this experiment.

The effect of the interaction between the process reaction time (RT) and methanol to
oil ratio (MTOR) at constant catalyst loading (CL) of 3.5 wt% is demonstrated in Figure 7c.
An increase in FAME yield was noticed at low RT and high MTOR. The reaction time (RT)
beyond 60 min results in a significant decrease in yield, which favors the backward direction
of the equilibrium reaction of the transesterification process. The mutual interaction impact
of both parameters (K2K3) in Table 2 indicates that they are very significant with the
F-value of 73.30 and p < 0.0001. Thus, the selected range and levels of these parameters
were sufficient for the process of hybrid oil conversion to biodiesel. To validate the model
prediction for the maximum yield, the input process parameters were set in the range while
the yield of biodiesel was set at maximum. The optimal conditions predicted were CL of
2.73 wt%, MTOR of 14.5:1, and RT of 51 min. Thus, a triplicate experiment was performed
to verify the predicted condition and the biodiesel average yield of 100% was achieved. A
similar yield of 100% was recorded by [37], when Musa balbisiana colla peels were employed
to trans-esterify used cooking oil. Again, 99.93% yield was also reported when cocoa nut
pod husks were used to trans-esterify neem oil [27] and several others.

2.7. Reusability Study of CAP

Reusability is an important characteristic of a heterogeneous catalyst when considering
industrial upcycling. The test of reusability of CAP was studied under ideal conditions
instituted by RSM. The recovered catalyst following the transesterification reaction was
washed with hexane to remove agglomerated substances on the catalyst surface, and then
placed in hot oven at 120 ◦C for 4 h. The dried catalyst was utilized in the subsequent
reactions following the same conditions. CAP catalyst reusability test was repeated for
up to five cycles with good catalytic activity and biodiesel yields. Figure 8 depicts the
percentage of biodiesel yield(s) obtained after each cycle. It can be observed that the yields
are minimally decreased after each cycle, which can be attributed to the gradual reduction
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in the catalytic activity of CAP after each reaction cycle due to catalyst loss and leaching
of the active metal during the recovery and separation process [3]. As shown in the EDX
results, it is clearly indicated that potassium compound played a crucial role in the hybrid
oil transesterification process, although other metals, such as Mg, P and Ca, also contribute
to some extent to the strength of the catalytic activity of the developed catalyst. This
is also in line with the reusability results reported with other biomass catalysts used in
transesterification, such as ripe plantain peels [19], Musa acuminata trunk [16], and papaya
stem [29].
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2.8. Biodiesel Quality Characterization

Quality compositions of the developed biodiesel using CAP catalyst were established
in accordance with the standard method of ASTM D6751 and EN 14214 [38]. The obtained
results are depicted in Table 3 and indicate the properties which are well established
within the biodiesel quality standard limits. The produced biodiesel has a density of
0.886 g/cm3 at 15 ◦C, which falls within the biodiesel standard specification. The obtained
value indicates that the produced fuel will promote efficient combustion with reduced
emission of toxic hydrocarbons [34]. The viscosity was established to be 3.20 mm2/s,
which is lower than EN14214 limit but fits well with the range limit of ASTM D6751. This
shows that the produced biodiesel has the potential to flow easily when injected into the
engine with fewer droplets, good fuel atomization, and increased efficiency of operation
within the engine. The acid number was ascertained by ASTM D664 to be 0.28 mg KOH/g,
which is lower than the specified maximum limits of 0.5 max. This indicates that the
biodiesel fuel produced is less corrosive and will not damage the fuel supply systems of the
engine [39]. The caloric value and the cetane number were determined to be 40.5 MJ/Kg
and 60, respectively, which are higher than the specified minimum standard of ASTM
D6751 and EN 14214. The obtained result for calorific value was found to be comparable
with other biodiesel results as reported in the literature, 40.20, 39.60, 43.13 MJ/kg [16,17],
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and is higher than the minimum standard limits specified by ASTM D6751 and EN 14214.
The results apparently show that the high thermal content of the produced FAMEs will
enhance the energy released during combustion as compared to petro-diesel as well as
enhance the quality of the combustion when undergoing compression ignition [40]. The
water content of the FAMEs was obtained, which is within the standard range of 0.05%.
This implies that the produced fuel is well dried and is free of water that would have
promoted microbial growth, tank corrosion, hydrolysis, and emulsion formation when
stored. The iodine value of 78 (gI2/100 g) obtained is lower than the maximum limits
stipulated by the ASTM 6751, which implies that the biodiesel fuel produced will positively
impact the engine operation as it has reduced engine deposits and increased lubrication
quality due to the limited unsaturated fatty acids present in the fuel [41].

Table 3. Produced biodiesel quality in comparison with standards.

Property Unit Test Method [38] Present Study ASTM D6751 EN 14214

Moisture content % ASTM D2709 0.01 <0.05 0.050% max
Density g/cm3 ASTM D4052 0.886 0.85 0.86–0.90

Kinematic viscosity at 40 ◦C mm2/s ASTM D 445 3.22 1.9–6.0 3.5–5.0
Acid value Mg KOH/g ASTM D 664 0.38 0.5 max 0.5 max

Iodine value AOAC 78 120 max N/S
Copper strip at 50 ◦C, 3 h Rating ASTM D130 1 No. 3 max Class 1 min

Calorific value MJ/Kg 40.5 N/S 35 min
Cetane number - ASTM D613 60 47 min 51 min

API deg 28.20 36.95 N/S

3. Materials and Methodology
3.1. Materials

The avocado fruits (Hass species) were obtained from fruit vendors at the open market
along Steve Biko Road, Durban. The used cooking oil was obtained from the snack shop
on campus at Steve Biko, Durban University of Technology. The baobab oil and all the
analytical grade chemical reagents used in this experiment, including phenolphthalein
(indicator), methanol (98%), cyclohexane, ethanol (98%), hydrochloric acid, diethyl ether,
Wij’s solution, potassium hydroxide, were made available by Lichro Chemical and Lab.
Supplies cc, Durban, South Africa.

3.2. CAP Catalyst Preparation

The fruit peels of ripe avocados were removed and washed several times with water
to eradicate all the impurities adhered at the surface. The washed avocado peels were sun
dried for one week, and then charred in open air to generate powder. It was then sieved
mechanically to obtain the powder particle size of >0.5 mm, and then further calcined in a
programmable muffle furnace at 650 ◦C for 3 h. The burnt and calcined avocado peel ashes
were labeled BAP and CAP, respectively, and kept in an airtight container for further use.

Characterization of CAP Catalyst

The Quanta 200 Nova NanoSEM system equipped with a micro-analyzer was used to
investigate the elemental compositions of the catalyst together with the surface structure of
the RAV, BAP, and CAP catalyst. The crystalline compounds and diffraction patterns in
BAP and CAP were analyzed using a D-8 Advance diffractometer equipped with radiation
(CU Kα) at a 2θ range of 10–80 ◦C. The catalysts’ crystallite average size was examined
by Dedye–Scherrer’s equation. Fourier-transform infrared spectroscopy (FT-IR) analysis
was carried out to determine the functional group of the calcined peel biochar using FT-
IR equipment (Perkin Elmer spectrum 100, PerkinElmer, Waltham, MA, USA) and was
recorded in a spectra range of 4000–400 cm−1. The thermal stability of the catalyst was
analyzed (Netzsch, TG 209 F1 Libra, Selb, Germany) under inert atmosphere, at a heating
range of 100–800 ◦C and heating rate of 10 ◦C/min, using nitrogen gas.
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3.3. Blend Preparation of Used Cooking Oil–Baobab Oil (UCO-BO) Hybrid

The hybrid oil was prepared by filtering the used cooking oil to remove impurities.
Thereafter, an equal weight of the two oils (UCO/BO) at 1:1 w/w was measured into a glass
beaker and mixed at 60 ◦C for 20 min to remove moisture and to obtain a homogenous
solution. The hybrid oil was allowed to cool and the physico-chemical properties, including
acid value, density, heating value, viscosity, cetane number, iodine value, and refractive
index, were determined in accordance with the standard methods.

3.4. Statistical Analysis of the Transesterification Process

The obtained data from the transesterification of the UCO-BO bi-hybrid experiment
were statistically analyzed using RSM-BBD. The process input parameters and their levels
and ranges of investigation are shown in Table 4, which includes 50–70 (min) of the process
reaction time, 2.5–4.5 (wt%) catalyst amount and 9:1–15:1 (w/w) methanol to oil ratio. The
generated matrix of the regression model for data fittings is given in Table 5. Analysis of
variance (ANOVA) considered at 95% confidence level was used to appraise the model
significance. The statistical parameters such as determination of the coefficient R2, predicted
R2, and lack of fit were evaluated to guarantee the fitness of the model developed. The
adjustability of the model was evaluated by the regression parameters, while diagnostic
plots were used to examine and explain the effect of the model fitness. The effect of the
interaction between the process parameters and yield is described by the 3D plot. The
correlation between the yield and the response variables is best expressed by the second
order differential equation given in Equation (3).

Y =
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where Y represents the biodiesel yield, while Ƒ0, Ƒi, Ƒ௜௜, Ƒ௜௝ are the model regression coeffi-
cients, and 𝐾௜𝐾௝ are the process factors, and 𝜉 is the error differential. The model was 
also validated by performing experiments under an established statistically optimal con-
dition predicted by the software. The actual FAME yields produced and the estimated 
yields from the developed model together with the viscosity of the biodiesel acquired 
from each experimental run are displayed in Table 5.  

Table 4. Operational levels and range of the factors. 

Factors Symbol Unit Levels and Coded Factor 
   −1 0 1 

Catalyst loading K1 wt% 2.5 3.5 4.5 
Methanol/oil 
molar ratio 

K2 w/w 9:1 12:1 15:1 

Reaction time K3 min 50 60 70 

Table 5. Empirical settings with actual and predicted yields, with their corresponding viscosity. 

Std 
Order 

Run K1 
(wt%) 

K2 

(w/w) 
K3 (min) Yield 

(%) 
Predicted 
Value (%) 

Viscosity 
(mm2/s) 

3 1 2.5 15:1 60 99.98 99.97 2.99 
12 2 3.5 15:1 70 98.30 98.22 2.84 
1 3 2.5 9:1 60 88.60 88.85 2.52 

14 4 3.5 12:1 60 95.50 95.72 3.11 
9 5 3.5 9:1 50 89.00 89.08 3.27 

15 6 3.5 12:1 60 96.10 95.72 3.10 
2 7 4.5 9:1 60 79.00 78.69 3.50 

11 8 3.5 9:1 70 82.20 82.18 2.94 

0 +
n

∑
i=1
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Table 5. Cont.

Std
Order Run K1

(wt%)
K2

(w/w) K3 (min) Yield
(%)

Predicted
Value (%)

Viscosity
(mm2/s)

10 9 3.5 15:1 50 98.20 98.22 2.85
6 10 4.5 12:1 50 90.00 90.23 3.72
8 11 4.5 12:1 70 86.00 86.33 3.15

13 12 3.5 12:1 60 95.40 95.72 3.01
5 13 2.5 12:1 50 99.11 98.78 3.18

17 14 3.5 12:1 60 96.10 95.72 3.29
4 15 4.5 15:1 60 92.70 92.45 3.16
7 16 2.5 12:1 70 96.00 95.77 2.86

16 17 3.5 12:1 60 95.50 95.72 2.87

Model Performance Evaluation

The model predictability efficiency of the transesterification response (yield) of the
UCO-BO bi-hybrid oil was further evaluated using the statistical equations shown in
Equations (4)–(7). The statistical parameters analyzed include coefficient correlation (R),
determination coefficient (R2), absolute average deviation (AAD), and mean absolute
error (MAE).

Correlation coefficient R =
∑

q
i=1 (Zp,i−Zp,m)·(Za,i−Za,m)√

[∑q
i=1(Zp,i−Zp,m)2 ][∑q

i=1(Za,i−Za,m)2 ]

(4)

Coefficient of determination R2 = 1 − ∑
q
i=1 (Z a,i−Zp,i)

2

∑
q
i=1 (Z p,i−Za,m)2

(5)

Average absolute deviation AAD = 100
q

q
∑

i=1

∣∣∣∣ (Za,i−Zp,i)
Za,i

∣∣∣∣ (6)

Mean absolute error MAE = 1
q

q
∑

i=1

∣∣∣(Za,i − Zp,i

)∣∣∣ (7)

where h, q, Za,i and Zp,i represent input variables, experiment, and predicted values, respectively,
while Za,m denotes the experimental mean value, and Zp,m represents the predicted value.

3.5. Transesterification Reaction of UCO-BO Hybrid with CAP Catalyst

The major decisive factor of the transesterification step was the acid value and the
corresponding FFA. The hybrid oil has an acid value of 4.25 (mg KOH/g) with a resultant
%FFA of 2.13. Therefore, with the CAP catalyst, a single-step transesterification reaction
process was used to convert the UCO-BO to biodiesel. The transesterification process of
UCO-BO hybrid was executed in a 250 mL spherical bottom three-necked flask. The reactor
was configured and fixed with some apparatus such as a reflux condenser to prevent the
escape of some volatile component, or a reactant such as methanol, and a thermometer
probe to monitor the temperature of the reactor content. A specific quantity of hybrid oil
(30 g) was first measured and poured into the reactor, and then agitated on a magnetic
hot plate set at 60 ◦C. The reactor content was let to heat to a required temperature, after
which a measured quantity of methanol and CAP was added to the reactor according to the
conditions of each experiment stipulated by the BBD in Table 5. To achieve homogeneity
of the mixture, an agitation speed of 450 rpm was set and the reaction was allowed to run
based on the time duration assigned for each experiment. The reaction mixture at the end
was centrifuged at 1500 rpm for 5 min to remove the solids catalyst (used CAP) and the
liquid part was transferred into a funnel for phase separation. The methyl ester layer was
then washed with warm distilled water at 50 ◦C and heated to eradicate moisture. The
recovered CAP was washed with hexane, and then dried at 120 ◦C for 4 h to be reused
for subsequent experiments. To quantify the biodiesel obtained from each experiment, the
yield was determined using Equation (8). The biodiesel produced was analyzed based on
the ASTM D6751 methods. The mathematical expression used in determining the exact
quantity of methanol utilized in the transesterification reaction process of the hybrid oil is
given in Equation (9).



Catalysts 2024, 14, 261 16 of 18

Biodiesel yield (%) =
weight o f obtained biodiesel (g)
weight o f oil sample used (g)

× 100 (8)

Y(g) =
W × Q × M

Mw
(9)

where Y is the alcohol weight, W is the hybrid oil weight, M is the molecular weight of
alcohol, and Mw is the molecular weight of oil.

4. Conclusions

The present study investigates the production of a green heterogeneous catalyst from
avocado peels and its efficacy in the transesterification of bi-hybrid oil of used cooking–
baobab oil (UCO-BO) biodiesel. The study showed that the heterogeneous green catalyst
generated from waste avocado peels has the potential to be a useful component in the
transesterification process that produces biodiesel. The highest biodiesel yield of 100% was
attained under the ideal conditions of catalyst loading of 2.73 wt%, molar ratio of methanol
to oil 14.5:1, and reaction time of 51 min. The statistical assessment of the model significance,
its predictability potential, and accuracy were indicated with the R (0.9999), R2 (0.9998),
and the adjusted R2 (0.9996), with negligible error function of MAE (0.02%) and AAD
(0.001%), respectively. The characterization results revealed that the synthesized catalyst
was rich in potassium (K), while other metals such as Mg, Ca, P and Si were present in
small quantities. The reusability investigations revealed that the avocado peel catalyst
demonstrated excellent stability with the yield exceeding 92% after five rounds of reuse. The
minimal deactivation noticed in the catalytic activity confirms the good thermal stability of
the produced catalyst. The results of the fuel properties’ characterization achieved in this
study show that the synthesized biodiesel has suitable quality and is well established within
the limit requirements for biodiesel. The developed catalyst is biodegradable in nature,
nontoxic, environmentally friendly, thermally stable, reusable, available, cost effective,
and efficient in oil conversion. Thus, CAP catalyst can be considered as a highly effective
biomass-based catalyst for large-scale biodiesel production. Overall, the general protocol
established can be adopted industrially for economical biodiesel production processes.
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