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Abstract: We investigate the role and performance of imitative behavior in a class of quantity-setting,
Cournot games. Within a framework of evolutionary competition between rational, myopic best-
response and imitation heuristics with differential heuristics’ costs, we found that the equilibrium
stability depends on the sign of the cost differential between the unstable heuristic (Cournot best-
response) and the stable one (imitation) and on the intensity of the evolutionary pressure. When
this cost differential is positive (i.e., imitation is relatively cheaper vis a vis Cournot), most firms use
this heuristic and the Cournot equilibrium is stabilized for market sizes for which it was unstable
under Cournot homogeneous learning. However, as the number of firms increases (n = 7), instability
eventually sets in. When the cost differential is negative (imitation is more expensive than Cournot),
complicated quantity fluctuations, along with the co-existence of heuristics, arise already for the
triopoly game.
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1. Introduction

Ref. [1] remarkably shows that, when firms compete on quantity using the [2] adjust-
ment process1, the Cournot-Nash equilibrium becomes unstable if the number of firms
exceeds two. In fact, with linear demand and constant marginal costs, the Cournot-Nash
equilibrium loses stability and bounded but perpetual oscillations arise already for a tri-
opoly. For more than three firms oscillations grow unbounded, but they are limited once
the non-negativity price and demand constraints bind.

Whereas [1] focused only on the homogeneous (Cournot) adjustment process, more
recent research extends to models of heterogeneous expectations2. For instance, Ref. [3]
focus on the Cournot heuristic in competition with rational firms, under replicator dynamics.
Ref. [4] extend the framework in which these heuristics compete in a quantity-setting
oligopoly with arbitrary number of firms and for general monotone selection dynamics.
Each firm chooses a behavioral rule from a finite set of different rules, which are assumed
to be commonly known. When making a choice concerning the behavioral rules, a firm
takes the past performance of the rules, i.e., the past realized profit net of the cost associated
with the behavioral rules to compare fitness. Both past performance and costs associated
with the behavioral rules are publicly available. This implies that successful heuristics will
continue to be used, while unsuccessful behavioral rules are dropped.

Experimental evidence for the (in)stability and homogeneous learning in Cournot
games, even in linear environments, is rather mixed. Ref. [5] discuss a linear Cournot
oligopoly experiment with four firms. They do not find that quantities explode as the [1]
model predicts, instead the time average quantities converge to the Cournot-Nash equi-
librium quantity, although there is substantial volatility of the actual period-by-period
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around the Cournot-Nash equilibrium quantity. Ref. [6] run laboratory experiments on
two types of linear Cournot oligopolies, the one that displays an unique, stable interior
Nash equilibrium (Type I) and a Type II oligopoly for which the interior equilibrium is
unstable and two additional, stable boundary Nash equilibria emerge (with one firm acting
as a de facto monopolist). Subjects learn to play the Type I, interior stable equilibrium, but
not the unstable, or even the stable, boundary ones in the Type II oligopoly. Importantly,
on the equilibration path, they reject prediction of homogeneous learning theories such as
Cournot adjustment, fictitious play or best-reply to the average of opponents’ entire past
play3. The experimental rejection of the homogeneous learning theories above, naturally
leads us to consider alternative heuristics and, more generally, heterogenous learning, with
rules updating.

Among the alternative heuristics, there is an increasing interest, both theoretical and
experimental, in understanding the performance of imitative players. Ref. [8] show that
Cournot markets with players imitating the past successful strategy of their opponents
converge to the Walrasian equilibrium. However, the hypothesis that players actually
use the imitate-the-best heuristics in Counot games is invalidated, experimentally, by [9].
They posit that (naive) imitate-the-best players may realize that past period “success” may
be purely drive by a particular realization of opponents’ types. Ref. [10] adds myopic
optimizers (Cournot best-responders) to [8] population of imitate-the-best players, and
finds that in stationary distribution of the stochastic process, the imitators are better off.
Moreover, Ref. [11] prove that imitation can be unbeatable if imitate-the-best heuristic is
not subjected to a money pump (i.e., game is not of the circular best-reply, Rock-Scissors-
Paper type). Subsequently, Ref. [12] show that unconditional imitation, of the tit-for-tat
variety, is essentially unbeatable in class of potential games. Ref. [13] analyze a Cournot
duopoly, subjects earn on average higher profits when playing against “best-response”
computers than against “imitate-the-successful” computers. Ref. [5] find that a process
where participants mix between the Cournot adjustment heuristic an imitating the previous
period’s average quantity gives the best description of behavior. Our choice of modelling
imitation as imitate-the-average lagged strategy in the population is informed, on the one
hand, by this experimental result, and, on the other hand, by the evidence against imitate-
the-most successful past period strategy in [9]. The imitate-the-average heuristic will be
tested, firstly, against the standard Cournot heuristic, i.e., firms best-respond to average
population past play, and secondly, against ‘rational’ players, i.e., players that understand
that they are facing a distribution of updating players types (heuristics) and, consequently,
they respond optimally to the expected configuration of types in the market. We show that,
even if the imitate-the-average tends to stabilize the Cournot equilibrium (the thresholds
for which instability sets in is typically higher, ceteris paribus, in comparison to models of
heterogeneous learning without imitation), the differential costs of the more sophisticated
heuristic over the simpler one rest critical for the instability threshold number of players,
as well as for the non-equilibrium dynamics around Cournot-Nash equilibrium.

Outside the oligopoly realm, learning rules evolution has also been investigated in two-
person, strategic games. Ref. [14] look at the interplay of three heuristics—best-response,
imitate-the-majority, imitate-the-minority—and show that it may generate complex, non-
Nash equilibrium attractors, such as limit cycles, even in simple, 2 × 2 Coordination games.
Ref. [15] finds that, in a coordination game with endogenous updating of myopic best-
response imitate-the best heuristic, the efficient equilibrium is selected. Ref. [16] also
considers 2 × 2 coordination games, but with a threewise ecology of best-reply, better-
reply and imitate-the best action among the sample of past play and prove that the risk-
dominant equilibrium is selected for small sample sizes. Ref. [17] studies the evolution of
bargaining rules (i.e., pie-sharing demands rules) via an external stability argument, by
which incumbent rules should do better than mutant demands, reminiscent of the concept
of ESS of [18]. To this rule evolution literature, we contribute the study of a threewise
ecology of heuristics—naive best-reply, equilibrium (rational) play and imitate-the-average
past play—which, to the best of our knowledge, has not been investigated before. It would
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be a direct exercise to apply our methodology to the simple 2 × 2 coordination games that
the previous work on heterogenous learning rules has focused on.

A somewhat parallel stream of literature deals with the evolution of preferences4 as
the underlying factor upon which selection acts and which, in turns determines the actual
strategy choice in the game played. Pioneered by [19], who shows that utility-maximization
(homo economicus) may be just one among many preferences types selected by evolution
in the quest of adaptation to environment, this “indirect evolutionary approach” was
developed further in the context of two-person games by, e.g., [20,21]. They look at stable
configurations of preferences-game equilibria and document the striking possibility that
non-Nash outcomes and non-maximizing preferences can be stable, evolutionarily. In
the IO literature, Ref. [22] use this indirect approach to show that owners’ preferences
overs managers’ incentives do not always converge to profit-maximization, but may favor
sales maximization, in Cournot competition or even sales minimization, in differentiated
Bertrand oligopolies. Relatedly, Ref. [23] prove that oligopolists’ preferences may evolve
towards total surplus (producer and consumer) maximization, rather than the (narrow)
profit-maximization, assumed by the rational producer theory.

Our approach is largely driven by the quest for understanding the behaviour of
boundedly rational players, disciplined by the evolutionary selection operating at the
level of behavioral rules. In particular, the question of whether learning converges to
the Counot equilibrium, in an environment with competing and costly learning rules.
Therefore, we put forth, three ecologies of heterogeneous heuristics (Cournot vs. Imitation,
Rational vs. Imitation, Rational vs. Cournot vs. Imitation). Both the fixed fractions and
evolutionary switching between heuristics scenarios, are discussed. Our concern is, first
and foremost, the role and performance of the imitate-the-average heuristic within a given
menu of heuristics, and, secondly, if for a given configuration of heuristics, the Cournot-
Nash equilibrium is (un)stable. Unlike, for instance, Ref. [10], our imitate-the-average rule
does not always outperforms Cournot, or sophisticated (rational) play, but may co-exist
with other heuristics in equilibrium. In contrast to the strong convergence result in [8],
complicated, non-Cournotian equilibrium limit sets (two-cycles, strange attractors) may
emerge once learning heterogeneity is endogenized.

Main findings are that, first, the stability of Cournot equilibrium critically depends on
the cost advantage of the ‘stable’ heuristic (imitation) vis-a-vis the unstable one (Cournot
myopic best-reply): when the (relatively) cheaper behavioral rule is imitation, the dynamics
converge to a situation where most firms use this behavioral rule and all firms produce
the Cournot-Nash equilibrium quantity, for market sizes for which homogeneous Cournot
play is known to destabilize the interior equilibrium (e.g., triopoly). However, instability
eventually sets in, if the number of firms passes a higher threshold (n = 7). In the case
when the relatively cheaper heuristic is unstable, complicated endogenous fluctuations
may already occur for n = 3, in particular, when the evolutionary pressure is high. The
nonlinearity causing this erratic behavior comes from the endogenously updating of the
fractions, because in our leading example the oligopoly specifications were linear. Secondly,
when rational firms compete with imitators, in the particular scenario of linear inverse
demand and constant marginal cost, the system is always stable regardless of the game
and behavioral parameters. Last, in the case when rational firms, Cournot firms and
imitators compete, the stability depends on the differential cost of the rational plays versus
the Cournot and imitation heuristics, as well as on the magnitude of the evolutionary
pressure. For very large intensity of selection (β → ∞) and for costly rational choice and
costless Cournot and imitation rules, we are able to recover analytically the n = 7 instability
threshold in the pairwise contest Cournot vs. imitation.

The remainder of this paper is organized as follows, in Section 2 the theoretical
framework is introduced, namely the quantity-setting oligopoly, the menu of heuristics
and the population evolutionary dynamics. In Section 3 the evolutionary dynamics will
be investigated under exogenous population fractions whereas in Section 4 the stability of
systems made of two learning rules will be investigated, under endogenous population
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dynamics. In Section 5 the model extended to a three heuristics environment, with rational
players, Cournot and imitators competing and switching learning heuristics, according to
their relative performance. Finally, we conclude in Section 6.

2. Set-Up

Consider a finite population of firms who are competing on the market for a certain
good, each discrete-time period all producers have to decide their production plans for the
next period. However, instead of simultaneously choosing the supplied quantities directly,
the firms act according to behavioral rules that exactly prescribe the quantity to be supplied.
Before the evolutionary model is studied a brief review of the traditional, static Cournot
model will be given.

Consider a symmetric Cournot oligopoly game, where qi denotes the quantity supplied
by firm i, where i = 1, . . . n. Next to that let Q = ∑n

i=1 qi be the aggregated production.
Furthermore let P(Q) denote the twice differentiable, nonnegative and non-increasing
inverse demand function and let C(qi) denote the twice differentiable non-decreasing cost
function, which is the same for all firms. For firm i the resulting profit function from the
above described model is given by

πi(qi, Q−i) = P(qi + Q−i)qi − C(qi), i = 1, . . . n (1)

where Q−i = ∑j ̸=i qj. Assume that the profit function of a firm is strictly concave in its
own output qi. The profit maximizing strategy of firm i, taking the quantity supplied by
the competitors as given, results in the well-known best-reply function for firm i, which is
given by

qi = Ri(Q−i) = Argmax
qi

[P(qi + Q−i)qi − C(qi)].

Due to symmetry, all firms have the same best-reply function R(·). Moreover, the
symmetric Cournot-Nash equilibrium quantity q∗ corresponds to the solution of

q∗ = R((n − 1)q∗).

In the sequel, we will restrict the analysis to oligopolies displaying an unique, interior
Nash equilibrium, the so called Type I oligopoly in [6]5. This very general class includes, as
special cases, oligopolies with linear demand and (i) constant, (ii) increasing and (iii) even
decreasing marginal costs, as long as marginal costs do not decrease too fast, compared
to the demand function. In Type I duopolies most learning processes (Cournot best-reply,
adaptive dynamics, fictititous play, etc) are known to converge to the unique, interior fixed
point. This is not the case for the Type II duopolies6. It is the main reason why we focus
on the Type I oligopolies, as we want to isolate the instability built into the the oligopoly
game itself from the destabilizing forces that reside in the heuristics’ of choice and their
updating mechanism.

The original Cournot specification of [1] falls within the class of Type I oligopoly and
will be used as leading example: an oligopoly game with linear inverse demand and linear
costs, given by

P(qi + Q−i) = a − b(qi + Q−i) and C(qi) = cqi, i = 1, . . . n

respectively. First, in order to have a strictly concave profit function assume that b > 0.
Furthermore, for strictly positive prices we assume that qi <

a
nb (so that aggregate output

Q < a
b and P(Q) > 0). For these specifications of the inverse demand function and cost

function the reaction function is given by

qi = R(Q−i) =
a − c

2b
− 1

2
Q−i = q∗ − 1

2
(Q−i − (n − 1)q∗). (2)
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Note that if the other firms produce on average more (less) than the Cournot-Nash
equilibrium quantity, firm i reacts by producing less (more) than that quantity.

Straightforward calculations show that in this case the Cournot-Nash equilibrium
quantity, aggregated production, price and profit are equal to q∗ = a−c

b(n+1) , Q∗ = a−c
b

n
n+1 ,

P∗ = a+nc
n+1 and π∗ = π(q∗i , Q∗

−i) =
(a−c)2

b(n+1)2 .
Traditional Cournot analysis refers to a static environment. However, in a dynamic

setting the reaction function introduced above can be used to study the so called Cournot-
dynamics where firms best-reply to their expectations

qi,t = R(Qe
−i,t), i = 1, . . . n

where qi,t denotes the quantity supplied by player i in period t and Qe
−i,t stands for player’s

i expectations about her opponents’s total output at time t. The symmetric Cournot-
Nash equilibrium where all firms produce q∗ is stable under the Cournot-dynamics if
(n − 1)|R′∗)| < 1.

Main interest is on how firm i decides to play q∗ and, more specifically, what does firm i
believe about Q−i when the production decision has to be made. Our key assumption is that
firms are choosing their expectation-formation rule (heuristic) based on its performance.

2.1. Learning Heuristics

In the Cournot oligopoly game the producers have to form expectations about oppo-
nents’ production plans. Based on this expectation firms decide how much to produce
the next period. One approach is to assume complete information, i.e., rational firms with
common knowledge of rationality. This implies that firms have perfect foresight about com-
petitors’ aggregated production plan, i.e., Qe

−i,t+1 = Q−i,t+1. This results in the following
production plan:

qi,t+1 = R(Q−i,t+1), i = 1, . . . n.

Alternatively one may consider rules that require less information, for example
Qe

−i,t+1 = Q−i,t. This results in the following production plan:

qi,t+1 = R(Q−i,t), i = 1, . . . n (3)

where firms expect that aggregated production in the next period equals current aggregated
production. This is the so called Cournot adjustment heuristic. It is an straightforward
exercice to show that, if all firms use the Cournot heuristic, the Cournot-Nash equilibrium
is a locally asymptotically stable7 fixed point of system (3) whenever

λ(n) ≡ (n − 1)|R′∗| < 1, (4)

where λ(n) is defined as the largest eigenvalue of the Jacobian, evaluated at the equilibrium.
Leading example. From Equation (2) it can easily be seen that R′(Q∗

−i) = − 1
2 , meaning

that if others’ aggregated output increases by one unit, the Cournot-Nash firms decrease
their output by 1

2 units. From stability condition (4) it follows that the Cournot-Nash
equilibrium is stable for this specification only when n = 2 and unstable when n > 3 (and
neutrally stable, resulting in bounded oscillations, for n = 3). The reason for this instability
is ‘overshooting’: if aggregated output is above (below) the Cournot-Nash equilibrium
quantity, firms react by reducing (increasing) their output. For n > 3 this aggregated
reduction (increase) in output is so large that the resulting deviation of aggregated output
from the equilibrium quantity is larger in the next period than in the current, and so on.

It is a broadly supported idea that not all producers best-reply to their expectations.
Experiments [5] show that people often imitate others’ behavior. A heuristic that possibly
seizes this production plan is the so called imitation-the-average heuristic. Imitators believe
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that “everyone else can’t be wrong” and will therefore produce the average of the other
players’ production in the next period, i.e.,

qi,t+1 =
Q−i,t

n − 1
, i = 1, . . . , n. (5)

Local stability of the Cournot-Nash equilibrium with only imitation firms depends
on the eigenvalues of the Jacobian matrix of the system of Equation (5) evaluated at that
Cournot-Nash equilibrium q∗. This Jacobian matrix is given by

J|q∗ =


0 1

n−1 · · · 1
n−1

1
n−1 0

...
...

. . . 1
n−1

1
n−1 · · · 1

n−1 0

. (6)

Imitators only respond to other firms’ production and do not respond to their own
production, therefore all diagonal elements are equal to zero. If one competitor increases
current production by one unit, an imitator will increase next production with 1

n−1 unit,
therefore all off-diagonal elements are equal to 1

n−1 . The Jacobian matrix (6) thus has
n − 1 eigenvalues equal to − 1

n−1 and one eigenvalue equal to (n − 1) 1
n−1 = 1 which is

the largest in absolute value. Therefore it follows immediately that the Cournot-Nash
equilibrium is neutrally stable independent of n and game structure (demand and cost
function). The reason for this is that if one producer changes his production plan the
economy will stabilize to a new equilibrium unequal to q∗ and will remain at this new
equilibrium until one producer deviates again. In fact this system has infinitely many
neutrally stable equilibria, namely if qi = q† ∀i, the system is neutrally stable for all q†.

2.2. Population Dynamics

In the previous section it was shown how the supplied quantities evolve over time
under the Cournot and the imitation heuristic. In this section it will be explained how the
population fractions evolve over time. Let us first introduce the vector ηt which has entries
equal to ηk,t, which is the fraction of the population that uses heuristic k at time t. Thus for
every time t, ηt denotes the K-dimensional vector of fractions for each strategy/heuristic
and belongs to the K-dimensional simplex ∆K = {ηt ∈ RK : ∑K

k=1 ηk,t = 1; 0 ≤ ηk,t ≤ 1 ∀k}.
We will now describe how the fractions ηk,t evolve over time. It is assumed that the choice of
a behavioral rule is based on its past performance, capturing the idea that more successful
rules will be used more frequently.

Evolutionary game theory deals with games played within a (large) population over a
long time horizon. Its main ingredients are its underlying game, e.g., the Cournot one-shot
game, and the evolutionary dynamic class which defines a dynamical system on the state
of the population. The evolutionary dynamical system depends on current fractions ηt and
current fitness Ut. In general, such an evolutionary dynamic in discrete time, describing
how the population fractions evolve, is given by

ηk,t+1 = K(Ut, ηt) (7)

with Ut = (U1,t, . . . , UK,t)
′ the vector of average utilities and ηt = (η1,t, . . . , ηK,t)

′ the factor
of fractions. To make sure that the population dynamics is well-behaved in terms of
dynamic implications we assume that K(·, ·) is continuous, nondecreasing in Uk,t, and such
that the population state remains in the K-dimensional unit simplex ∆K. One widely used
evolutionary dynamic in the literature on learning in games is the Logit Dynamics (see,
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e.g., [26] for an extensive treatment). It can be derived from discrete choice/random utility
models and it specifies that fractions of different heuristics are updated according to

ηk,t+1 =
eβUk,t

K

∑
j=1

eβUj,t

, k = 1, . . . , K. (8)

The parameter β represents the intensity of selection, and it captures the idea of
boundedly rational play, since individuals do not necessarily select the rule that yields the
highest utility. Notice that in the extreme case where β = 0 we have completely random
behavior: the noise is so large that observed average utility is equal for all behavioral
rules. Each behavioral rule is thus chosen with equal probability: ηk,t = 1

K ∀k. In the
other extreme case, when β → ∞, everybody switches to the most profitable strategy
each period8.

In case of equal costs of the heuristics, equilibrium fractions are thus given by
η∗

k = 1
K ∀k, since production is equal and thus profits are equal.

In the leading examples we will focus on the Logit evolutionary dynamics. Firstly,
because the Logit rule is a standard tool in economics for modelling boundedly rational choice,
and, secondly, because it displays nice regularity/continuity conditions (0 ≤ ηk ≤ 1).

3. Heterogeneity in Behavior in Cournot Oligopolies

In this Section we introduce heterogeneity in production decision’ heuristics. In a
population game set-up, n firms are randomly picked, from a large population of firms in
which a fraction ηk plays according to heuristic k. We first focus on pairwise competition
between two heuristics, Cournot vs. Imitation and Rational vs. Imitation, respectively,
under the no switching scenario. The assumption of fixed shares η for each period will be
relaxed in Section 4.

3.1. Cournot vs. Imitation Firms with Fixed Fractions

In order to facilitate studying the aggregate behavior of a heterogeneous set of in-
teracting quantity-setting-heuristics we study the Cournot model as a population game.
Consider a large population of firms from which in each period groups of n firms are
sampled randomly and matched to play the one-shot n-player Cournot game. We assume
that a fixed fraction of η of the large population of firms uses the Cournot heuristic and the
others use the imitation heuristic. After each one-shot Cournot game, the random matching
procedure is repeated, leading to new combinations types of firms. The distribution of
possible samples follows a binomial distribution with parameters n, and η. Below the ex-
ample Cournot vs. Imitation firms will be discussed again but now under the assumption
of random matching.

Suppose that a fraction of η of the population of the firms uses the Cournot heuristic
and observes the population-wide average quantity q̄t and best responds to it,
qC

t+1 = R((n − 1)q̄t), where qC
t is the quantity produced by each Cournot firm in pe-

riod t. Consequently a fraction of η firms of the large population makes use of the the
imitation heuristic. Making use of the law of large numbers, the average quantity played in
period t can be expressed as

q̄t = ηqC
t + (1 − η)qI

t .

Recall that imitate-the-average firms produce, in the next period, the other firms’ aver-
age quantity, produced in the current period qI

i,t+1 =
Q−i,t
n−1 . Again, by a law of large numbers

we obtain Q−i,t
n−1 → q̄twhen n → ∞. Therefore we obtain the following quantity dynamics

qC
t+1 = R((n − 1)(ηqC

t + (1 − η)qI
t ))

qI
t+1 = ηqC

t + (1 − η)qI
t .

(9)
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Note that this is a 2-dimensional dynamical system which dimension cannot be re-
duced. Furthermore the Cournot-Nash equilibrium is not the unique equilibrium of the
homogeneous, imitation rule, in fact all quantities are. The Cournot-Nash equilibrium is,
however, still the unique equilibrium quantity of the heterogeneous heuristics dynamical
system (9).

Proposition 1. The Cournot-Nash equilibrium, where all firms produce the Cournot-Nash quantity
(q∗, q∗), is a locally stable fixed point for the model with exogenous fractions of Cournot and imitation
firms if and only if

|1 − η + η(n − 1)(R′∗)| < 1. (10)

Proof. It can easily be shown that the Jacobian matrix, evaluated at the Cournot-Nash
equilibrium (q∗, q∗), is given by(

(n − 1)ηR′∗ (n − 1)(1 − η)R′∗

η 1 − η

)
. (11)

The corresponding eigenvalues are λ1 = 0 and λ2 = 1 − η + η(n − 1)R′∗. Here λ2 is
the largest eigenvalue in absolute value. Thus the system is stable if |λ2| < 1, this is the
condition stated in the proposition.

Leading example. Here R′∗ = − 1
2 substituting this in Equation (10) gives, after

some simplification

n <
4 − η

η
. (12)

Meaning that an economy with as much Cournot firms as imitators (η = 1
2 ) is stable if

n < 7. Next to that as found earlier, an economy with only Cournot firms (η = 1) is stable
if n < 3. Furthermore, an economy where close to all firms use the imitation heuristic, but
some Cournot firms exist (η close to zero), the economy is always stable.

3.2. Rational vs. Imitation Firms with Fixed Fractions

In this section we focus on the dynamics when there is competition between rational
and imitation firms. We set the fraction of rational firms equal to η. A fully rational firm is
assumed to know the fraction of imitation firms. Moreover, it knows exactly how much all
firms will produce. However, we assume that it does not know the composition of firms
in its market (or has to make a production decision before observing this). The rational
quantity dynamics therefore have the following structure

qR = Argmax
qi

E[P(qi + Q−i)qi − C(qi)].

It forms expectations over all possible mixtures of heuristics resulting from randomly
drawing n − 1 other players from a large population, of which each with chance η is a
rational firm too, and with chance 1 − η is an imitator. Rational firm i therefore chooses
quantity qi such that his objective function, its own expected utility

UR
t (qi,t|qR

t , qI
t , η) = ∑n−1

k=0

(
n−1

k

)
ηk(1 − η)n−1−k[P((n − 1 − k)qI

t + kqR
t + qt,i)qt,i − C(qt,i)], (13)

is maximized given the production of the other players and the population fractions. Here
qR

t is the symmetric output level of all of the other rational firms in period t, and qI
t is

the output level of all of the imitation firms. The first order condition for an optimum is
characterized by equality between marginal cost an expected marginal revenue. Typically,
marginal revenue in the realized market will differ from marginal costs.



Games 2024, 15, 8 9 of 26

Given the value of qI
t and the fraction η, all rational firms coordinate on the same

output level qR
t . This gives the first order condition

δUR
t (qi,t|qR

t , qI
t , η)

δqi,t
= 0,

which equals to:
n−1

∑
k=0

(
n − 1

k

)
ηk(1 − η)n−1−k×

[P((n − 1 − k)qI
t+(k + 1)qR

t ) + qR
t P′((n − 1 − k)qI

t + (k + 1)qR
t )− C′(qR

t )] = 0.

(14)

Let the solution9 to Equation (14), the rational play quantity be given by qR
t = HR(qI

t , η),
the full system of equations is thus given by

qR
t+1 = HR(qI

t+1, η) = HR(ηqR
t + (1 − η)qI

t , η)

qI
t+1 = ηqR

t + (1 − η)qI
t .

(15)

It is easily checked that if the imitators play the Cournot-Nash equilibrium quantity
q∗, or if all firms are rational, the rational firms will play the Cournot-Nash equilibrium
quantity, that is HR(q∗, η) = q∗, for all η and HR(qI , 1) = q∗ for all qI . Moreover, if a
rational firm is certain it will only meet imitation firms (that is η = 0), it plays a best
response to the currently average played quantity, that is HR(qI

t , 0) = R((n − 1)qI
t ), for all

qI
t . In the remainder we will denote the partial derivatives of HR(q, η) with respect to q and

η by HR
q (q, η) and HR

η (q, η) respectively.

Proposition 2. The Cournot-Nash equilibrium, where all firms produce the Cournot-Nash quantity
(q∗, q∗), is a locally stable fixed point for the model with exogenous fractions of rational and imitation
firms if and only if

|ηHq(q∗, η) + 1 − η| < 1. (16)

Proof. In order to determine the local stability of the equilibrium (q∗, q∗) where all firms
produce the Cournot-Nash quantity, we need to determine the eigenvalues of the Jacobian
matrix of system (15), evaluated at the equilibrium. It can be shown that this Jacobian
matrix is given by

J|q∗ ,q∗ =

(
ηHq(q∗, η) (1 − η)Hq(q∗, η)

η 1 − η

)
, (17)

which has eigenvalues λ1 = ηHq(q∗, η) + 1 − η and λ2 = 0. Consequently the system is
locally stable when |λ1| < 1, this is exactly the condition stated.

Leading example. In the leading example the implicit function defining qR
t (Equation (14))

when using that

n−1

∑
k=0

(
n − 1

k

)
ηk(1 − η)n−1−k = 1 and

n−1

∑
k=0

(
n − 1

k

)
ηk(1 − η)n−1−kk = (n − 1)η

boils down to

qR
t+1 = HR(qI

t+1, η) =
a − c

b(2 + (n − 1)η)
− (n − 1)(1 − η)

2 + (n − 1)η
(ηqR

t + (1 − η)qI
t ).

The system of equations for the leading example is given by

qR
t+1 = HR(qI

t+1, η) =
a − c

b(2 + (n − 1)η)
− (n − 1)(1 − η)

2 + (n − 1)η
(ηqR

t + (1 − η)qI
t )

qI
t+1 = ηqR

t + (1 − η)qI
t .

(18)
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The eigenvalues of this system are given by λ1 = 0 and λ2 = 1 − η − (n−1)(1−η)η
2+(n−1)η , thus

the system is stable if |λ2| < 1. Since 0 ≤ (n−1)(1−η)η
2+(n−1)η < 1, this stability condition always

holds and the economy is always stable in the linear-linear oligopoly.

4. Evolutionary Competition between Two Heuristics

In this Section we develop an evolutionary version of the model outlined in Section 3,
i.e., relaxing the assumption that η is fixed. As before in ever period t, n firms play the
n-player Cournot game. We now assume that the fractions of firms using a heuristic
η evolves over time according to a general monotone selection dynamic, capturing the
idea that heuristics that perform relatively better are more likely to spread through the
population. Under the assumption of random interactions, the fitness of heuristic k is
determined by averaging the payoffs from from each interaction with weights given by the
chance of that specific state minus the information cost of using the heuristic. Denoting
with Πt the expected payoff vector in period t, its entries—individual payoff or fitness in
biological terms—of strategy 1 is given by:

Π1,t = F(q1,t, q2,t, ηt) =

n−1

∑
k=0

(n − 1)!
k!(n − 1 − k)!

ηk
t (1 − ηt)

n−1−kP((k + 1)q1,t + (n − 1 − k)q2,t)q1,t − C(q1,t), (19)

and with expected profits for heuristic 2 given by Π2 = F(q2, q1, 1 − η). If the population
of firms and the number of groups of n firms drawn from that population are large enough,
average profits will be approximated well by these expected profits, which we will use
therefore as a proxy for average profits from now on.

There might be a substantial difference in sophistication between different heuristics.
As a consequence some heuristics may require more information or effort to implement
than others. Therefore we allow for the possibility that heuristics involve information cost
Ck ≥ 0, k ∈ {C, I}, that may differ across heuristics. Fitness of a heuristic is then given
by the average profits generated in the game minus the information costs of acquiring
heuristic k, Uk = Πk − Ck. We only use the realized profit to determine the fitness measure
of a behavioral rule. The fitness measure can be generalized by weighting the utility of the
past M periods, yielding similar results [27]. We assume that the above fitness measures Uk
are publicly observable.

Having the fitness measure we are ready to introduce the population dynamics. Let
the fraction of firms using the first heuristic be given by η in period t. This fraction evolves
endogenously according to an evolutionary dynamic which is an increasing function in the
difference between the current fitness of the two heuristics and current fraction, that is

ηt+1 = K(U1,t − U2,t) = K(∆U1,t).

The map K : R → [0, 1] is a continuously differentiable, monotonically increasing
function with K(0) = 1

2 , K(x) + K(−x) = 1, meaning that it is symmetric around x = 0,
limx→−∞K(x) = 0 and limx→∞K(x) = 1.

In the following two subsections we will derive two dynamical versions of the two
models discussed in Section 3 and investigate their stability. First we investigate the stability
of the Cournot-Nash equilibrium for the model with endogenous fractions of Cournot and
imitation firms and second we investigate the stability of the Cournot-Nash equilibrium
for the model with endogenous fractions of rational and imitation firms.

4.1. Cournot vs. Imitation Firms with Endogenous Switching

The dynamics in this section consists of three equations, two equations describing the
quantity dynamics: the production of the Cournot firms and the production of the imitation
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firms. Next to that we need one equation to describe the dynamics of the population fraction.
The population and quantity dynamics look like the following system of three equations:

qC
t+1 = R((n − 1)(ηtqC

t + (1 − ηt)qI
t )),

qI
t+1 = ηtqC

t + (1 − ηt)qI
t

ηt+1 = K(∆Ut),

(20)

where ∆Ut = UC,t − UI,t. Note that this is a 3-dimensional dynamical system which
dimensions cannot be reduced. Furthermore, the Cournot-Nash equilibrium quantity q∗ is
the unique equilibrium quantity of the complete dynamical system. Let η∗ be the unique
equilibrium fraction of Cournot players, such that η∗ = K(−C), with C = CC − CI , the
differential cost of the Cournot over the Imitation heuristic. For the general, monotone
selection population dynamics K(·) we obtain the result stated in the proposition below.

Proposition 3. For C ≥ 0, i.e., costlier Cournot than Imitation heuristic, the Cournot-Nash
equilibrium (q∗, q∗) along with the equilibrium fractions η∗ = K(−C), is a locally asymptotically
stable, fixed point for the model with endogenous fractions of Cournot and imitators where all firms
produce the Cournot-Nash quantity, firms if and only if∣∣η∗R′((n − 1)q∗)(n − 1) + 1 − η∗∣∣ < 1 (21)

Proof. See Appendix A.

Leading example. The equilibrium quantities are given by q∗. Here R′∗ = − 1
2 ,

filling this in Equation (21) gives the stability condition for the leading example. Thus
the equilibrium (q∗, q∗, η∗) is stable when n < 4−η∗

η∗ . In the equilibrium, when all firms
produce the same quantity, profits are equal and therefore the equilibrium fraction under
Logit dynamics simplifies to η∗ = e−βC

e−βC+1
. For C > 0 (strictly positive cost differential of

Cournot over imitation heuristic) and very large intensity of selection β → ∞, η∗ → 1
2

and, therefore stability threshold becomes n < 710. The same critical instability threshold n
obtains for C = 0 coupled with any level of the intensity of selection β.

In Figure 1 the model is simulated under Logit-dynamics with intensity of choice
parameter β, as in [26]. Panel (a) depicts a period-doubling route to chaotic quantity
dynamics as the number of firms n increases. The first period-doubling bifurcation is for
n = 7 as calculated analytically. Panel (b) displays oscillating time series of produced
quantity by the Cournot and imitation firms and the equilibrium quantity fraction q∗. As
one can see the Cournot quantities are fluctuating more than the imitation quantities. The
stabilizing effect of the imitation firms is here clearly visible, when Cournot firms produce
more (less) then the Cournot-Nash equilibrium quantity, the imitation firms produce less
(more) than the Cournot-Nash equilibrium quantity and therefore decrease the aggregated
deviation from the equilibrium. Panel (c) displays the resulting Cournot profit differential
ΠC −ΠI . Panel (d) displays the resulting oscillating time series of the Cournot and imitation
fractions. In Panel (e) a phase portrait is shown for the Cournot heuristic whereas in
Panel (f) a phase portrait for the imitation heuristic is shown. In Panel (g) the largest
Lyapunov exponent for an increasing number of firms is shown. Game and behavioural
parameters are equal set to: n = 10, a = 17, b = 1, c = 1, CC = 0, CI = 0, β = 0.05.
Initial conditions are set equal to: qC

0 = 0.8, qI
0 = 0.8, η0 = 0.5. When the evolutionary

pressure increases, the system evolves to an equilibrium different from the Cournot-Nash
equilibrium where the imitation firms produce more than the Cournot-Nash equilibrium
whereas the Cournot firms produce less. Imitation profits are therefore much higher and as
a consequence the complete population switches to the imitation heuristic.
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Figure 1. Linear n-player Cournot game with endogenous fraction dynamics.

The bifurcation diagram is re-plotted in Figure 2 under the same game and behavioral
parameters and initial conditions, the only difference is that now β = 3. When 1.7 < n < 2.8
the imitation firms produce more then the Cournot-Nash equilibrium quantity while the
Cournot firms produce less. This results in higher profits for the imitators and therefore the
complete populations switches to imitators (η = 0). When 2.8 ≤ n ≤ 3.2 all firms produce
the Cournot-Nash equilibrium quantity again, therefore profits and thus fractions are equal.
When n > 3.2, the imitation firms produce again more then the equilibrium quantity while
the Cournot firms produce less, except when n is close to 3.65, then all firms produce the
Cournot-Nash equilibrium quantity. Finally, when n > 5.6 the imitation firms produce so
much that the Cournot firms decide to produce nothing (qC = 0).
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Figure 2. Bifurcation diagram (qt, n) with β = 3.

4.2. Rational vs. Imitation Firms with Switching

As in the previous section, we need a 3-dimensional system to describe the dynamics
of the model. The rational firms produce each period such that their expected profit
is maximized whereas an imitator produces in the next period the currently average
played quantity.

The rational quantity dynamics therefore have the following structure

qR
t = Argmax

qi

E[P(qi,t + Q−i,t)qi − C(qi,t)].

It forms expectations over all possible mixtures of heuristics resulting from randomly
drawing n − 1 other players from a large population, of which each with chance ηt is a
rational firm too, and with chance 1 − ηt is a imitator. Rational firm i therefore chooses
quantity qi such that his objective function, its own expected utility

UR
t (qi,t|qR

t , qI
t , ηt) = ∑n−1

k=0

(
n−1

k

)
ηk

t (1 − ηt)n−1−k[P((n − 1 − k)qI
t + kqR

t + qt,i)qt,i − C(qt,i)], (22)

is maximized given the production of the other players and the population fraction. Here
qR

t is the symmetric output level of each of the other rational firms in period t, and qI
t is

the output level of each of the imitator firms in period t. The first order condition for an
optimum is characterized by equality between marginal cost an expected marginal revenue.

Given the value of qI
t and the fraction ηt, all rational firms coordinate on the same

output level qR
t . This gives the first order condition

δUR
t (qi,t|qR

t , qI
t , ηt)

δqi,t
= 0,

which equals to
n−1

∑
k=0

(
n − 1

k

)
ηk

t (1 − ηt)
n−1−k×

[P((n − 1 − k)qI
t+(k + 1)qR

t ) + qR
t P′((n − 1 − k)qI

t + (k + 1)qR
t )− C′(qR

t )] = 0.

(23)

Let the solution to Equation (23) be given by qR
t = HR(qI

t , ηt), the full system of
equations is thus given by

qR
t+1 = HR(qI

t+1, ηt+1)

qI
t+1 = ηtqR

t + (1 − ηt)qI
t

ηt+1 = K(∆Ut).

(24)
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where ∆Ut = UR
t − U I

t . It is easily checked that if the imitators play the Cournot-Nash
equilibrium quantity q∗, or if all firms are rational, then the rational firms will play the
Cournot-Nash equilibrium quantity, that is HR(q∗, η) = q∗, for all η and HR(qI , 1) = q∗

for all qI . Moreover, if a rational firm is certain it will only meet imitation firms (that is
η = 0), it plays a best response to the currently average played quantity, that is HR(qI

t , 0) =
R((n − 1)qI

t ), for all qI
t . In the remainder we will denote the partial derivatives of HR(q, η)

with respect to q and η by HR
q (q, η) and HR

η (q, η) respectively.

Proposition 4. The Cournot-Nash equilibrium (q∗, q∗) is a locally stable fixed point for the model
with endogenous fractions of rational and imitation firms, where all firms produce the Cournot-Nash
quantity, if and only if

|η∗Hq(q∗, η∗) + 1 − η∗| < 1. (25)

Proof. See Appendix A.

Leading example. Since the stability condition is the similar to the condition derived
in Section 3.2, the equilibrium quantities (q∗, q∗) and rational play fraction η∗ is stable for
all n in this linear specification.

5. Rational vs. Cournot vs. Imitation with Switching Heuristics

In this section we combine the ideas that we gathered in Section 4. We will investigate
the dynamics when the three heuristics discussed before compete. As before every round
n firms are drawn from a large pool of firms to play the one-shot Cournot game. From
this large pool of firms a fraction ηR

t plays according to the rational strategy in period t,
a fraction ηC

t plays according to the Cournot heuristic in period t and consequently the
fraction of imitators in period t is determined by 1 − ηR

t − ηC
t . As in Section 4 the fitness

of a heuristic is determined by the average payoff minus the information cost of using
that heuristic. Again the average profits will be approximated by the expected profits but
in contrast to Section 4 the distribution of states now follows a multinomial distribution
instead of a binomial distribution. In general the average profit of a firm producing q1 and
competing with other firms that produce either q2 or q3 given the fractions η1 and η2 is
stated below, in this average profit approximation the profit in each state is weighted by
the chance of this state.

Π1,t = F(q1,t, q2,t, q3,t, η1,t, η2,t) =

∑
∆

(n − 1)!
k1!k2!(n − k1 − k2 − 1)!

ηk1
1,tη

k2
2,t(1 − η1,t − η2,t)

n−k1−k2−1× (26)

P((k1 + 1)q1,t + k2q2,t + (n − 1 − k1 − k2)q3,t)q1,t − C(q1,t).

The summation is over all possible combinations of k1 and k2, which stand for the
number of other firms producing q1 and q2 respectively, that is: ∆ = {k1, k2 ∈ I2 : 0 ≤ k1 ≤
n − 1; 0 ≤ k2 ≤ n − 1; 0 ≤ k1 + k2 ≤ n − 1}. Expected profits for heuristic 2 in period t are
given by F(q2,t, q1,t, q3,t, η2,t, η1,t), expected profits for heuristic 3 in period t are given by
F(q3,t, q2,t, q1,t, 1 − η1,t − η2,t, η2,t).

The complete dynamical system consists of five equations, three for the quantity
dynamics and two to describe how the fractions evolve. As in all previous sections, the
Cournot firms play in the next period a best-response to the current aggregated output of
the others, imitators play in the next period the average produced quantity by the others
in the current period. Rational players produce every period the quantity that maximizes
expected payoff given the fractions and production plans of all other firms (imitators,
Cournot players but rational players too). The rational firms produce expectations over all
possible mixtures of heuristics resulting from randomly drawing the n − 1 other players
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from the large population of firms. In this setting the rational objective function, its own
expected utility is of the following form:

UR
t (qi,t|x) =∑

∆
fk1,k2(n − 1, ηR, ηC)×

P(k1qR
t + k2qC

t + (n − 1 − k1 − k2)qI
t + qi,t)qi,t − C(qi,t),

(27)

with fk1,k2(n − 1, ηR, ηC) = (n−1)!
k1!k2!(n−k1−k2−1)! η

R
t

k1 ηC
t

k2(1 − ηR
t − ηC

t )
n−k1−k2−1 denotes the

multinomial distribution of three heuristics in the population of firms and
x = (qR

t , qI
t , qC

t , ηR
t , ηC

t ) the system’s state variables. The first order condition for an optimum
of (27) is characterized by equality between marginal cost an expected marginal revenue.

Given the value of qC
t qI

t ηR
t ηC

t , all rational firms coordinate on the same output level
qR

t . Differentiating Equation (27) with respect to qi,t gives the first order condition, which is
equal for all rational firms. This first order condition is given by:

δUR
t (qi,t|x)
δqi,t

= 0

which equals to:

∑
∆

fk1,k2(n − 1, ηR, ηC)×

[P((k1 + 1)qR
t + k2qC

t + (n − 1 − k1 − k2)qI
t )+

P′((k1 + 1)qR
t + k2qC

t + (n − 1 − k1 − k2)qI
t )q

R
t − C′(qR

t )] = 0. (28)

Let the solution to this be given by qR
t = HR(qC

t , qI
t , ηR

t , ηC
t ). The system of quantity

dynamics is thus given by

qR
t+1 = HR(qC

t+1, qI
t+1, ηR

t+1, ηC
t+1)

qC
t+1 = R((n − 1)(ηR

t qR
t + ηC

t qC
t + (1 − ηR

t − ηC
t )q

I
t )

qI
t+1 = ηR

t qR
t + ηC

t qC
t + (1 − ηR

t − ηC
t )q

I
t

(29)

Note that rational player plays such that expected marginal revenue equals marginal
cost at t + 1 and a Cournot firm plays such that its marginal revenue (of period t) equals
marginal cost (at period t). Therefore the Cournot heuristic is a lagged version of the
rational heuristic if and only if

P′RqR + ηCqC + (1 − ηR − ηC)qI) + qC) =

∑
∆

fk1,k2(n − 1, ηR, ηC)P′((k1 + 1)qR + k2qC + (n − 1 − k1 − k2)qI). (30)

Thus the Cournot heuristic is only a lagged version of the rational heuristic if the
inverse demand is linear. In this specific case the analysis become easier because this gives
the possibility to lower the dimension of the dynamical system.

It is easily checked that if the imitation and Cournot firms play the Cournot-Nash equi-
librium quantity q∗, or if all firms are rational, the rational firms will play the Cournot-Nash
equilibrium quantity, that is HR(q∗, q∗, ηR

t , ηC
t ) = q∗, for all ηR and ηC and

HR(qC
t+1, qI

t+1, 1, 0) = q∗ for all qC, qI . In the remainder we will denote by HR
qR , HR

qC ,

HR
qI , HR

ηR and HR
ηC the partial derivatives of HR(qC, qI , ηR, ηC) with respect to qR, qC, qI , ηR

and ηC respectively, evaluated at the equilibrium (q∗, q∗, q∗, ηR∗
ηC∗

), which we will denote
by x∗ in the remainder of this chapter for notational convenience.

Now that we have the quantity dynamics we can turn to the population dynamics.
These are related to the population dynamics from Section 4 but differ significantly since
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we are in a three heuristic environment now. The population dynamics, as in Section 4,
depend on relative fitness. Let the fraction dynamics be given by

ηR,t+1 = KR(∆UR
t , ∆UC

t )

ηC,t+1 = KC(∆UR
t , ∆UC

t ),
(31)

where ηR
t+1 is the fraction of rational firms in period t + 1 whereas ηC

t+1 is the fraction of
Cournot firms in that period. Denoting the rational, Cournot and imitation heuristics’ costs
by CR, CC, CI , respectively, we obtain ∆UR

t = (ΠR
t − CR)− (ΠC

t − CC), the difference in
average fitness of the rational and the Cournot heuristic, and, ∆UC

t = (ΠC
t − CC)− (ΠI

t −
CI) the difference in average fitness of the Cournot and the imitation heuristic. Note that
KR and KC are R2 → [0, 1] are continuously differentiable functions where the difference in
fitness of the rational and Cournot heuristics and the difference in fitness of the Cournot and
imitation heuristic are used as input. The difference in fitness of the rational and imitation
heuristic is not used as an input variable since this information is captured implicitly in the
other two differences. Note that KR is a monotonically increasing function in the first and
second element whereas KC is decreasing in the first element but increasing in the second
element. Furthermore, KR(0, 0) = KC(0, 0) = 1

3 . In the remainder of this chapter we denote
KR

1 and KR
2 the partial derivatives of KR with respect to the first and the second element

respectively and with KC
1 and KC

2 the partial derivatives of KC with respect to the first and
the second element respectively.

The full system of quantity and population dynamics is given by:

qR
t+1 = ϕ1 = HR(ϕ2, ϕ3, ϕ4, ϕ5)

qC
t+1 = ϕ2 = R((n − 1)(ηR

t HR(qC
t , qI

t , ηR
t , ηC

t ) + ηC
t qC

t + (1 − ηR
t − ηC

t )q
I
t )

qI
t+1 = ϕ3 = ηR

t qR
t + ηC

t qC
t + (1 − ηR

t − ηC
t )q

I
t

ηR
t+1 = ϕ4 = KR(∆UR

t , ∆UC
t )

ηC
t+1 = ϕ5 = KC(∆UR

t , ∆UC
t ).

(32)

Since a dynamical system can only depend on lagged variables we substituted
ϕ2, ϕ3, ϕ4, ϕ5 into HR(·). In order to determine the local stability of the unique, interior
equilibrium x∗, we need to determine the eigenvalues of the Jacobian matrix evaluated
at that equilibrium. The Jacobian of the general oligopoly-general selection dynamic K(·)
has very complicated eigenvalues which cannot be expressed in useful functions (see
Appendix A, Proof of Proposition 5, for the full Jacobi matrix), therefore we will restrain
the subsequent analysis to the linear-demand, linear-cost oligopoly with Logit Dynamics.

Leading example. We know that the Cournot heuristic is a lagged version of the
rational heuristic in this leading example since the inverse demand function is linear,
therefore the dimension of the dynamical system can be reduced by one. Note that only
the Cournot production is a lagged version of the rational production. The Cournot profits
and resulting fractions are in general not lagged rational profits and fractions. Therefore,
the restriction of the complete, 5-dim dynamical system to the linear-linear oligopoly with
Logit Dynamics becomes 4-dim

qC
t+1 = ϕ1(xt) =

1
2 + ηR(n − 1)

(
a − c

2b
− 1

2
(n − 1)(ηC

t qC
t + (1 − ηR − ηC)qI

t )

)
qI

t+1 = ϕ2(xt) = ηR
t ϕ1(x) + ηC

t qC
t + (1 − ηR − ηC)qI

t

ηR
t+1 = ϕ3(xt) =

eβ∆UR
t

eβ∆UR
t + 1 + e−β∆UC

t

ηC
t+1 = ϕ4(xt) =

eβ∆UC
t

eβ(∆UR
t +∆UC

t ) + eβ∆UC
t + 1

.

(33)
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This system has one unique equilibrium where all firms produces the Cournot-Nash
quantity q∗. Since production is equal at the equilibrium, profits are equal at the equilib-
rium. The equilibrium fractions are therefore a function of the information costs and the
evolutionary pressure, given by

ηR∗
=

eβ(CC−CR)

eβ(CC−CR) + 1 + e−β(CI−CC)
and ηC∗

=
eβ(CI−CC)

eβ(CI−CR) + e−β(CI−CC) + 1
.

For general heuristics’ costs—and, therefore, general fractions ηR∗ and ηC∗—the
eigenvalues of the corresponding Jacobian at the rest point are convoluted expressions of
model’s parameters, which cannot be meaningfully simplified. Nevertheless, because the
rational heuristic is more informationally- and computationally-intensive than the Cournot
and the imitation heuristics, it is reasonable to assume a strictly positive cost CR > 0
associated to its use, while setting the costs of the other two heuristics CC = CI = 0. We
obtain the following result:

Proposition 5. For costly, rational heuristic (CR > 0) and, costless, Cournot and imitation heuris-
tics (CC = CI = 0), the interior, Cournot-Nash equilibrium (q∗, q∗, q∗) along with equilibrium

fractions ηR∗ = e−βCR

e−βCR
+2

, ηC∗
= η I∗ = 1

e−βCR
+2

, is a locally stable fixed point for the model with
endogenous fluctuations between of rational, Cournot and imitation firms, if and only if

n < ψ(CR∗
β) =

7eCR β + 1
eCR β − 1

. (34)

From Equation (34) we notice first that, when information cost of the rational play CR

approaches zero, the system is stable for all market sizes n. If the cost differential of rational
vs. Cournot and imitation play is strictly positive (CR > 0) and intensity of selection
β → ∞ , the equilibrium is stable for n < 7. For, intermediate, finite β, the equilibrium
fractions (ηR∗, ηC∗, η I∗), as well as the instability threshold n are a function of both CR and β.
In the simulations below, CR = 1 and β = 3, the equilibrium

(
a−c

b(n+1) , a−c
b(n+1) , e−3

e−3+2 , 1
e−3+2

)
is stable when n < 7.42. When n = 7.42, the system undergoes its first bifurcation. The
largest eigenvalue is equal to −1 at the bifurcation, indicating that the first bifurcation is a
period-doubling bifurcation. This is confirmed by the simulations below.

The leading example is simulated in Figure 3. Panel (a) depicts the bifurcation diagram
for increasing number of firms n. The first period-doubling bifurcation appears, as calcu-
lated analytically for n = 7.42. For n = 11.85, the system undergoes a Hopf-bifurcation
which creates highly non-linear dynamics. For 13 ≤ n ≤ 14.4, the system is in a 10-cycle
whereas for n > 14.4 the system becomes chaotic again. Panel (b) displays oscillating
time series of produced quantity by the Cournot and imitation firms and the equilibrium
quantity fraction q∗. Since the rational quantity in period t + 1 equals the Cournot quantity
in period t this time series is not included. Panel (c) displays the resulting profits. Note
that ΠI

t > ΠR
t ∀t and ΠI

t ≥ ΠC
t ∀t. Panel (d) displays the resulting oscillating time series of

the fraction fractions. Due to the information cost the sophisticated rational firms do not
perform better than the Cournot and imitation firms resulting in low fractions of rational
firms. Moreover, since the imitation profit is at least as high as the Cournot profit, the
resulting imitation fraction is at least as high as the Cournot fraction. In Panel (e) the largest
Lyapunov exponent for increasing number of firms is shown whereas in Panel (f) the largest
Lyapunov exponent for increasing β is shown. Game and behavioural parameters are set
equal to: n = 19, a = 17, b = 1, c = 1, CR = 1, CC = 0, CI = 0, β = 3. Initial conditions are
set equal to: qR

0 = 0.3, qC
0 = 0.1, qI

0 = 0.25, ηR
0 = 0.5, ηC

0 = 0.2.
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Figure 3. Linear n-player Cournot competition between rational, Cournot and imitation firms with
endogenous fraction dynamics.

Last, Figure 4 shows some attractors of the evolutionary model for increasing evo-
lutionary pressure, with (quasi-)periodic motion just after the second bifurcation and
breaking of the invariant circles into a strange attractor as the number of firms further
increases. Similar ‘breaking of the invariant circles’ route to chaos appears for the rational
and Cournot series.
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6. Concluding Remarks

In this paper we set out to filling a gap in the literature on heterogenous heuristics in a
Cournot oligopoly with boundedly rational players. Partly motivated by the experimental
evidence for imitate-the-average behaviors in oligopoly games, our focus is on better under-
standing the role this specific imitation rule plays in a competitive Cournot environment,
populated by myopic best-reply and rational (equilibrium) firms. In a population game
framework- random re-matching of players, with fitness approximated by the expected
payoffs accruing in all possible realizations of opponents’ heuristic types—the interplay
between two model’s parameters—differential cost C between heuristics and intensity of
evolutionary selection acting upon heuristics β-determines the critical market size for which
the unique, interior Cournot-Nash equilibrium of the underlying oligopoly loses stability.

For the pairwise, evolutionary contests between heuristics we first showed that in
the case when Cournot firms compete with imitators, if C > 0 (imitation heuristic enjoys
a strict cost advantage over the myopic Cournot adjustment) and intensity of selection
β is very large (β → ∞ limit), then the Cournot equilibrium is locally stable for n < 7.
Absent the information costs’ differential (i.e., C = CC − CI = 0), the threshold on the
number of firms that changes the system from stable to unstable remains 7, irrespective
of the magnitude of the evolutionary pressure β. In contrast with the model comprising
Cournot players only (Cournot equilibrium already unstable for n = 3), the addition of
players using the relatively cheaper imitate-the-average heuristic, stabilizes the equilibrium.
Secondly, in the situation when rational firms compete with imitators, the system is always
stable, regardless of the information costs of the more sophisticated, rational choice.

For the full ecology of behavioral rules—rational firms, Cournot firms and imitators—we
are able to derive the (in)stability threshold on the number of firms for the linear inverse
demand-linear costs oligopoly with Logit Dynamics and for a particular configuration of
heuristics costs: costly rational heuristic (CR ≥ 0) and costless Cournot and imitation rules
(CC = CI = 0). On one hand, if rational plays is costless, the equilibrium is stable, for all
possible market sizes n. On the other hand, even for small, strictly positive CR, the interior,
Cournot equilibrium loses stability for n = 7 (in the β → ∞ limit) and for larger market
sizes n > 7 (in the case of finite β). Complicated endogenous fluctuations (two-cycles,
strange attractors) in the quantities played and the fractions of various heuristics may occur,
in particular, when the evolutionary pressure is high.

By deriving the stability conditions for our pairwise and threewise evolutionary
model, we conclude that introducing imitators tends to stabilize the dynamics, provided
that imitation is the least costly heuristics in the menu of potential learning rules.

At least two avenues seem promising for future research: firstly, our analysis deals
with Cournot oligopolies that display an unique, interior Cournot-Nash equilibrium, and,
therefore, we conjecture that our local stability analysis also holds globally. This is, of course,
not valid for the Type II oligopolies that display multiple—interior and boundary—Nash
equilibria. How the (in)stability of these equilibria, along with the relative size of their
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basins of attraction, vary with the market size n, under the full ecology of three, switching
heuristics proposed in this paper, remains an unexplored question.

Secondly, related to the implications of imitative behavior in heterogenous heuristics
environments, it would be worth considering alternative models of imitation. Our way of
modelling imitation favors the average play (imitate the average behavior in the population)
but other imitation rules well-studied in the literature may be envisaged. For instance,
a version of the imitation heuristic that copies the past production decision of the most
profitable firm from the entire population or one that imitates the successful players only
among the m closest neighbors (in a location model, à la Hotelling). In these alternative
imitation scenarios, coordination on a non-Cournot equilibrium—for instance, on the
Walrasian equilibrium as in [8] under the homogeneous, imitate-the-best play—may arise.
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Appendix A

Proof of Proposition 3. It can easily be shown that the Jacobian matrix of system (20),
evaluated at the equilibrium (q∗, q∗, η∗) is given by

J|q∗ ,q∗ ,η∗ =

(n − 1)η∗R′∗) (n − 1)(1 − η∗)R′∗) 0
η∗ 1 − η∗ 0
J31 J32

δK(∆Ut)
δηt

∣∣∣
q∗ ,q∗ ,η∗

. (A1)

The eigenvalues of this Jacobian matrix are, independently of J31 and J32 given by

λ1 = η∗R((n − 1)q∗)(n − 1) + 1 − η∗, λ2 =
δK(∆Ut)

δηt

∣∣∣∣
q∗ ,q∗ ,η∗

and λ3 = 0. (A2)

We could also show, that, at the equilibrium, λ2 = δK(∆Ut)
δηt

∣∣∣
q∗ ,q∗ ,η∗

= 0

∆Ut = △Πt − C, with C = CC − CI .

Denoting Ak(ηt) =
(n−1)!

k!(n−1−k)! η
k
t (1 − ηt)n−1−k and Dk

(
qC

t , qI
t , ηt

)
, the profit differential of

a Cournot over an Imitation firm in a market made of k-Cournot and n − k imitation players,
we obtain the expected profit differential across all realizations of the market structures

Dk
(
qC

t , qI
t , ηt

)
= {P[(k + 1)qC

t + (n − 1 − k)qI
t )]q

C
t − C(qC

t )} − {P[kqC
t + (n − k)qI

t )]q
I
t − C(qI

t )}.

△Πt = ΠC,t − ΠI,t =
n−1

∑
k=0

Ak(ηt)Dk

(
qC

t , qI
t , ηt

)
At equilibrium qC

t = qI
t = q∗, Dk(q∗, q∗, η∗) = 0, for ∀k and, therefore △Πt = 0

δK(∆Ut)
δηt

∣∣∣
q∗ ,q∗ ,η∗

= K′(−C) δ∆Ut
δηt

∣∣∣
q∗ ,q∗ ,η∗

, as △ Πt = 0

δ∆Ut
δηt

∣∣∣
q∗ ,q∗ ,η∗

= ∑n−1
k=0

[
δAk(ηt)

δηt
Dk

(
qC

t , qI
t , ηt

)
+ Ak(ηt)

δDk(qC
t ,qI

t ,ηt)
δηt

]
q∗ ,q∗ ,η∗

= 0
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as Dk(q∗, q∗, η∗) = 0, ∀k and Dk
(
qC

t , qI
t , ηt

)
does not depend on time t fraction ηt but only

on lagged fraction ηt−1, via qC
t and qI

t .
Therefore, for the system to be stable we need |λ1| = |η∗R((n − 1)q∗)(n − 1)+

1 − η∗| < 1.

Proof of Proposition 4. Since a dynamical system can only depend on lagged variables,
we substitute the second and third equation into the first. This gives us the following
system that depends only on lagged variables.

qR
t+1 = ψ1 = HR(ηtqR

t + (1 − ηt)qI
t , K(∆UR

t ))

qI
t+1 = ψ2 = ηtqR

t + (1 − ηt)qI
t

ηt+1 = ψ3 = K(∆UR
t ).

(A3)

In the equilibrium all firms produce the Cournot-Nash quantity q∗, therefore profits
are equal, hence the equilibrium fraction is given by η∗ = K(−C). In order to determine
the local stability of the equilibrium (q∗, q∗, η∗) where all firms produce the Cournot-Nash
quantity, we need to determine the eigenvalues of the Jacobian matrix of system (15),
evaluated at the equilibrium.

The partial derivatives of ψ2 with respect to qR
t , qI

t and ηt, evaluated at the equilibrium
are η∗, 1 − η∗ and 0 respectively.

Next, let us determine the partial derivatives of ψ3 with respect to qR
t , qI

t and ηt,
respectively. To that end, note that we can write the profit differential as

∆UR
t = ΠR

t − ΠI
t − C =

n−1

∑
k=0

Ak(ηt)Dk(qR
t , qI

t , ηt)− C,

with Ak(ηt) =
(

n−1
k

)
ηk

t (1 − ηt)n−1−k, which does not depend upon qR and qI , and

Dk(qR
t , qI

t , ηt) =P((k + 1)qR + (n − 1 − k)qI)qR − C(qR)

− [P(kqR + (n − k)qI)qI − C(qI)],
(A4)

which depends upon ηt through qR
t = H(qI

t , ηt). Note that Dk(qR
t , q∗, ηt) = 0, moreover the

partial derivatives of Dk(qR
t , qI

t , ηt), evaluated at the equilibrium (q∗, q∗, η∗) are given by

δDk(qR
t , qI

t , ηt)

δqR
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= [P′∗)q∗ + P(Q∗)− C′∗)]Hq(q∗, η∗) = 0,

δDk(qR
t , qI

t , ηt)

δqI
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= −[P′∗)q∗ − P(Q∗) + C′∗)] = 0,

δDk(qR
t , qI

t , ηt)

δηt

∣∣∣∣
(q∗ ,q∗ ,η∗)

= [P′∗)q∗P(Q∗)− C′∗)]Hη(q∗, η∗) = 0.

The second equalities follows from the fact that P′∗)q∗ + P(Q∗)− C′∗) = 0 is the first
order condition of any firm in a Cournot-Nash equilibrium. Furthermore Dk(q∗, q∗, η) = 0
for all η by the first order condition for a Cournot-Nash equilibrium. Using this it follows
immediately that:

δψ3

δqR
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
δ∆Ut

δqR
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
n−1

∑
k=0

Ak(η
∗)

δDk(qR
t , qI

t , ηt)

δqR
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= 0

(A5)
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and
δψ3

δqI
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
δ∆Ut

δqI
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
n−1

∑
k=0

Ak(η
∗)

δDk(qR
t , qI

t , ηt)

δqI
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= 0

(A6)

and

δψ3

δηt

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
δ∆Ut

δηt

∣∣∣∣
(q∗ ,q∗ ,η∗)

= K′(−C)
n−1

∑
k=0

[Ak(η
∗)

δDk(qR
t , qI

t , ηt)

δηt

∣∣∣∣
(q∗ ,q∗ ,η∗)

+
δAk(η)

δηt
Dk(qR∗

, qI∗
t , η∗)]

= 0.

(A7)

This leaves us to examine the partial derivatives of ψ1 with respect to qR
t , qI

t and ηt,
evaluated at the equilibrium.

δψ1

δqR
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= η∗HR
q (q

∗, η∗) +
δK(∆Ut)

δqR
t

Hη(q∗, η∗)

= η∗HR
q (q

∗, η∗)

(A8)

and
δψ1

δqI
t

∣∣∣∣
(q∗ ,q∗ ,η∗)

= (1 − η∗)HR
q (q

∗, η∗) +
δK(∆Ut)

δqI
t

Hη(q∗, η∗)

= (1 − η∗)HR
q (q

∗, η∗)

(A9)

and
δψ1

δηt

∣∣∣∣
(q∗ ,q∗ ,η∗)

= (q∗ − q∗)HR
q (q

∗, η∗) +
δK(∆Ut)

δηt
Hη(q∗, η∗)

= 0.

(A10)

Therefore the Jacobian matrix, evaluated at the equilibrium is given by

J|q∗ ,q∗ ,η∗ =

η∗HR
q (q∗, η∗) (1 − η∗)HR

q (q∗, η∗) 0
η∗ 1 − η∗ 0
0 0 0

 (A11)

which has eigenvalues λ1 = ηHq(q∗, η∗) + 1 − η∗, λ2 = 0 and λ3 = 0. Consequently the
system is locally stable when |λ1| < 1, this is exactly the condition stated in Proposition 4.
Note again the similarity with the condition in Section 3 where we fixed the fraction η.

Proof of Proposition 5. It can easily be shown that the partial derivatives of ϕ3 with respect
to qR, qC, qI , ηR and ηC, evaluated at the equilibrium are ηR∗

, ηC∗
, 1 − ηR∗ − ηC∗

, 0 and
0, respectively.

To determine the partial derivatives of ϕ4 and ϕ5 we need to determine the partial
derivatives of ∆UR

t and ∆UC
t . In accordance to Section 4.2 we can write the first profit

differential as
∆UR = ∑

∆
Ak(η

R, ηC)Dk(qR
t , qC

t , qI
t , ηR, ηC)− CR + CC,
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with Ak1,k2(η
R
t , ηC

t ) = (n−1)!
k1!k2!(n−k1−k2−1)! η

R
t

k1 ηC
t

k2(1 − ηR
t − ηC

t )
n−k1−k2−1, which does not

depend upon the produced quantities, and

Dk1,k2(q
R
t , qC

t , qI
t , ηR

t , ηC
t ) = P((k1 + 1)qR

t + k2qC
t + (n − k1 − k2 − 1)qI

t )q
R
t − C(qR

t )

− [P(k1qR
t + (k2 + 1)qC

t + (n − k1 − k2 − 1)qI
t )q

C
t − C(qC

t )].
(A12)

which depends upon ηR and ηC through qR
t = HR(qC

t , qI
t , ηR

t , ηC
t ). Note that Dk1,k2(q

∗, q∗, q∗, ηR
t , ηC

t )

= 0, ∀ ηR, ηC. Next to that the partial derivatives of Dk1,k2(x) evaluated at the equilibrium are
given by

δDk(qR
t , qC

t , qI
t , ηR, ηC)

δqR
t

∣∣∣∣∣
x∗

= [P′∗)q∗ + P(Q∗)− C′∗)]HR
qR(x∗) = 0

δDk(qR
t , qC

t , qI
t , ηR, ηC)

δqC
t

∣∣∣∣∣
x∗

= [P′∗)q∗ + P(Q∗)− C′∗)](HR
qC (x∗)− 1) = 0

δDk(qR
t , qC

t , qI
t , ηR, ηC)

δqI
t

∣∣∣∣∣
x∗

= [P′∗)q∗ + P(Q∗)− C′∗)]HR
qI (x∗) = 0

δDk(qR
t , qC

t , qI
t , ηR, ηC)

δηR

∣∣∣∣∣
x∗

= [P′∗)q∗ + P(Q∗)− C′∗)]HηR(x∗) = 0

δDk(qR
t , qC

t , qI
t , ηR, ηC)

δηC

∣∣∣∣∣
x∗

= [P′∗)q∗ + P(Q∗)− C′∗)]HηC (x∗) = 0,

(A13)

where the second equalities follow from the fact that P′∗)q∗ + P(Q∗) − C′∗) = 0 is the
first order condition of any firm in a Cournot-Nash equilibrium. Using this it follows
immediately that the partial derivatives of ϕ4 are given by:

δϕ4

δqR
t

∣∣∣∣
x∗

= KR
1 (C

C − CR, CI − CC)
δ∆UR

δqR
t

∣∣∣∣
x∗
+ KR

2 (C
C − CR, CI − CC)

δ∆UC

δqR
t

∣∣∣∣
x∗

= 0

(A14)

and

δϕ4

δqC
t

∣∣∣∣∣
x∗

= KR
1 (C

C − CR, CI − CC)
δ∆UR

δqC
t

∣∣∣∣∣
x∗
+ KR

2 (C
C − CR, CI − CC)

δ∆UC

δqC
t

∣∣∣∣∣
x∗

= 0

(A15)

and

δϕ4

δqI
t

∣∣∣∣
x∗

= KR
1 (C

C − CR, CI − CC)
δ∆UR

δqI
t

∣∣∣∣
x∗
+ KR

2 (C
C − CR, CI − CC)

δ∆UC

δqI
t

∣∣∣∣
x∗

= 0

(A16)

and

δϕ4

δηR
t

∣∣∣∣
x∗

= KR
1 (C

C − CR, CI − CC)
δ∆UR

δηR
t

∣∣∣∣
x∗
+ KR

2 (C
C − CR, CI − CC)

δ∆UC

δηR
t

∣∣∣∣
x∗

= 0

(A17)
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and

δϕ4

δηC
t

∣∣∣∣∣
x∗

= KR
1 (C

C − CR, CI − CC)
δ∆UR

δηC
t

∣∣∣∣∣
x∗
+ KR

2 (C
C − CR, CI − CC)

δ∆UC

δηC
t

∣∣∣∣∣
x∗

= 0.

(A18)

Furthermore, the partial derivatives of ϕ5 are given by

δϕ5

δqR
t

∣∣∣∣
x∗

= KC
1 (C

C − CR, CI − CC)
δ∆UR

δqR
t

∣∣∣∣
x∗
+ KC

2 (C
C − CR, CI − CC)

δ∆UC

δqR
t

∣∣∣∣
x∗

= 0

(A19)

and

δϕ5

δqC
t

∣∣∣∣∣
x∗

= KC
1 (C

C − CR, CI − CC)
δ∆UR

δqC
t

∣∣∣∣∣
x∗
+ KC

2 (C
C − CR, CI − CC)

δ∆UC

δqC
t

∣∣∣∣∣
x∗

= 0

(A20)

and

δϕ5

δqI
t

∣∣∣∣
x∗

= KC
1 (C

C − CR, CI − CC)
δ∆UR

δqI
t

∣∣∣∣
x∗
+ KC

2 (C
C − CR, CI − CC)

δ∆UC

δqI
t

∣∣∣∣
x∗

= 0

(A21)

and

δϕ5

δηR
t

∣∣∣∣
x∗

= KC
1 (C

C − CR, CI − CC)
δ∆UR

δηR
t

∣∣∣∣
x∗
+ KC

2 (C
C − CR, CI − CC)

δ∆UC

δηR
t

∣∣∣∣
x∗

= 0

(A22)

and

δϕ5

δηC
t

∣∣∣∣∣
x∗

= KC
1 (C

C − CR, CI − CC)
δ∆UR

δηC
t

∣∣∣∣∣
x∗
+ KC

2 (C
C − CR, CI − CC)

δ∆UC

δηC
t

∣∣∣∣∣
x∗

= 0.

(A23)

The Jacobian of the system, evaluated at the equilibrium x∗ is thus given by

J|x∗ =


HR

qR HR
qC HR

qI HR
ηR HR

ηC

J21 J22 J23 J24 J25
ηR∗

ηC∗
1 − ηR∗ − ηC∗

0 0
0 0 0 0 0
0 0 0 0 0

 (A24)

with
J21 = (n − 1)ηR∗

HR
qR R′∗)

J22 = (n − 1)
(

ηR∗
HR

qC + ηC∗)
R′∗)

J23 = (n − 1)
(

ηR∗
HR

qI + 1 − ηR∗ − ηC∗)
R′∗)

J24 = (n − 1)
(

HR
∣∣∣
x∗
+ ηR∗

HR
ηR − q∗

)
R′((n − 1)q∗)

J25 = (n − 1)
(

HR
∣∣∣
x∗
+ ηR∗

HR
ηC − q∗

)
R′((n − 1)q∗).
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The Jacobian of the system in the leading example evaluated at the equilibrium is
therefore given by

J|x∗ =


− (n−1)ηC∗

2+ηR∗
(n−1)

− (n−1)(1−ηR∗−ηC∗
)

2+ηR∗
(n−1)

J13 J14

ηC∗
(

1 − (n−1)ηR∗

2+ηR∗
(n−1)

)
(1 − ηR∗ − ηC∗

)

(
1 − (n−1)ηR∗

2+ηR∗
(n−1)

)
0 0

0 0 0 0
0 0 0 0

. (A25)

For the calculation of the eigenvalues J13 and J14 are irrelevant because the third and
fourth row contain only zeros. For CR > 0 and CC = CI = 0 the eigenvalues are a function
of n, β and CR only:

λ1 = λ2 = λ3 = 0 and λ4(n, CRβ) =
3eCR β − neCR β

n + 4eCR β + 1
.

For the system to be stable we need |λ4(n, CRβ)| < 1. Note that λ4 is always less than 1.
Rearranging gives the threshold number11 of firms ψ(CR∗

β) stated in the proposition.

Notes
1 Firms that display Cournot behaviour take the current period’s aggregate output of their competitors as a predictor for the next

period competitors’ aggregate output and best-respond to that.
2 In models with heterogeneous expectations producers can have different heuristics to adjust their production.
3 Essentially, a Cournot adjustment process with long memory, introduced by [7].
4 We thank an anonymous referee for pointing out this literature on preferences evolution as an alternative to modelling heuristics

(rules) evolution in game dynamics.
5 Sufficient conditions for the existence and uniqueness of the interior Cournot-Nash equilibrium are that P(·) is twice continuously

differentiable, nonincreasing and that C(·) is twice continuously differentiable, nondecreasing and convex, see [24].
6 Ref. [6] provide an example of a Type II duopoly (linear demand, and marginal costs decreasing faster than the demand). Such

Type II oligopolies display, in addition to the interior Cournot-Nash equilibrium, two boundary Nash equilibria with one of the
firms producing the monopoly output and the other producing nothing.

7 Throughout the paper, a (locally) asymptotically fixed point (or a steady state) x∗ is a fixed point of the dynamical system which
attracts all initial conditions in a neighborhood of x∗. Technically, x∗ is the ω− limit set of all initial conditions xε(0) that lie
within ε distance from it. A fixed point is locally asympt. stable (a sink) if all eigenvalues of the Jacobi matrix, evaluated at
the equilibrium, lie within the unit circle. If at least one eigenvalue lies outside the unit circle, the fixed point will be called
unstable [25].

8 Note that the population dynamics remains in the interior of the unit simplex for finite β. This implies that in each time period all
behavior rules are present in the population and no behavioral rule will ever vanish (this is the so-called no-extinction condition).
Furthermore, no new behavioral rules emerge from this model (this is the so-called no-creation condition). The property that the
simplex is invariant under the K(·) dynamic also ensures that fractions, and therefore quantities played, remain bounded.

9 This rational choice solution exists and is unique for standard assumptions as strictly concave inverse demand functions P(·)
and nondecreasing cost functions C(·). Outside this class of oligopolies, for the case of multiple (local) maxima, we make the
additional assumption that rational players are able to coordinate on the global maximum of the profit function.

10 Notice that in the opposite case C < 0 (i.e., Imitation is costlier than Cournot heuristic) and large selection pressure β → ∞
equilibrium fraction of Cournot players η∗ approaches 1 and we recover [1] instability threshold with Cournot only players,
n = 3.

11 Economically, this threshold number of firms can only be an integer but mathematically the number of firms can be treated as a
continuous variable.
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