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Abstract: Two groups produce a network good perceived by a third party, such as a police or military
institution, as a ‘public bad’, referred to as ‘crime’ for simplicity. These two groups, considered mafias,
are assumed to be antagonists, whether they are enemies or competitors in the same market, causing
harm to each other’s activities. This paper provides guidelines for the policymaker, typically the
police, seeking to minimize overall crime levels by internalizing these negative externalities. One
specific question is investigated: the allocation of resources for the police. In general, we recommend
a balanced crackdown on both antagonists, but an imbalance in group sizes may lead the police to
focus on the more criminal group.
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1. Introduction

The impact of networks on agents’ decisions has been a topic of ongoing interest across
various fields, ranging from sociology to economics and game theory. The pioneering work
by Ballester et al. [1], presenting a model incorporating positive and negative externalities,
has sparked considerable attention regarding the role of network influences in amplifying
or inhibiting agents’ efforts. Along with the properties of the utility functions chosen by the
authors, which make the model particularly relevant for crime settings, this combination of
externalities of both types invites us to consider groups of criminals. Other noteworthy
contributions, including perspectives on delinquent behavior or social norms, are found in
works by Calvó-Armengol and Zenou [2], Cao et al. [3], Calvó-Armengol et al. [4], Ballester
et al. [5], Ushchev and Zenou [6]. The current paper explores a specific issue related to
the coexistence of positive and negative externalities within a network, specifically when
society is polarized. We apply the classical structure of Harary [7] to capture society’s
separation into two rival mafias, with externality being positive within groups and negative
across groups.

1.1. Motivation

The initial model of Ballester et al. [1] allowed for perfectly heterogeneous network
influences. In the context of a balanced network (the directed graphs version of Harary [7]),
this heterogeneity collapses into two groups, within which externalities are positive, and
across which externalities are negative.

In the context of delinquent networks, the issue indeed revolves around competition
between gangs. While both gangs contribute to crime within their groups, they may also
engage in inter-gang conflicts, such as competing for the control of the drug market and
impeding on each other’s activities, thereby diminishing their overall criminal activities.
From society’s perspective, only aggregate crime level matters, and one may wonder
how civil society, as proxied by the police, could instrumentalize the conflict, possibly by
brokering deals with gangs for social peace.
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Throughout the paper, we use the term ‘crime’ for simplicity and because the setting is
relevant enough to deserve particular interest. However, our results could accommodate a
broader range of similar strategic interactions: a military opposition between two republics
within a federation, cyberattacks between rival hackers, or any strategic interaction that
hampers the rivals’ activities. We may consider the collaboration between two countries in
military, scientific, energy, or diplomatic ventures perceived as a threat to a third country.
This third country might contemplate opposing both countries to thwart their activities—
whether on a diplomatic or military basis, adopting a ‘realpolitik’ stance, reaching an
agreement with one to oppose the other, or sparking a conflict against only one.

Returning to criminal activity, and by investigating the allocation of resources in the
government’s fight against gangs, our goal is to elucidate the contradicting effects at play to
reach a society’s crime level as low as possible. The particular setting of a three-player game—
two mafias and the police—establishes the context at a high level of aggregation and allows us
to address, in place of the police, the problem of internalizing negative externalities, thereby
reducing the overall level of crime. This question will be examined from the perspective of
resource allocations, with the police choosing which group to direct its action against.

As compared with Ballester et al. [1], whose main contribution is to identify and remove
the ‘key player’, i.e., the one with the highest inter-centrality (which is not necessarily the one
exerting the highest effort), our approach differs and operates at a lower level of granularity.
More specifically, in Ballester et al. [1], there is no cost analysis for the police intervention,
even though targeting the key player may prove costly since, for example, reconstituting a
delinquent network is a real possibility, especially in prisons. Our approach aggregates the
activities of agents to encompass a group decision-making aspect and proposing guidelines
based on the group’s autarkic activities for a third party with the power to impact the game.
When gangs are of equal size, we demonstrate that the optimal strategy for the third party is
to equally share the resources invested in cracking down on crime against the two groups.
However, under the hypothesis of our model, we also show that these results are sensitive to
the inequality in the activity/size of the groups and that unequal sizes may turn into exclusive
attention against the group of the highest activity, referred to as “the strongest group” (or
the “most criminal”), as measured by its autarkic activity (the strongest group is therefore not
necessarily the one with the highest cardinality).

Finding the most adequate intervention will surely depend on the type of network
and the groups under investigation, but our aggregate approach provides more flexibility
by favoring a more diffuse intervention. Even though the removal of the key player could
be extended to key groups, as done in Temurshoev [8], and even when computational
issues can be successfully addressed in practice, mistakes could have severe implications
in terms of resource utilization. Also, bounded information and rationality issues exert
severe limitations on the key player approach. On the contrary, since our analysis only
needs to know the aggregate crime levels of gangs, it is situated at a coarser granularity: in
the presence of limited information about the exact architecture of the network, the police
only needs to know the aggregate level of crime, not the exact interactions of criminals.

1.2. Related Work

Generally speaking, the broad notion of network influence designates structured interac-
tions. In some circumstances, the word ‘influence’ may refer to information considerations, as
seen in the context of rumors [9], votes [10–13], diffusion [14–16], opinion formation [17–23],
status [24], homophily [25], learning [26], cultural traits [27], epidemiological tensions [28],
collective games [29], or information extraction [30–32], not forgetting the anthropological
studies on mimikry behavior by Girard [33,34,35,36], where imitation departs from rational
decisions but now emerges either from the attribution of prestige perceived by the imitator in
a model or from contagion in a society under crisis searching for a scapegoat.

In Ballester et al. [1], where effort equates with crime and externalities with influ-
ences, positive and negative influences receive different interpretations. A positive in-
fluence exacerbates crime, while a negative one, a notion related to but distinct from
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‘anti-conformism’ [37–39] or anti-coordination [40–42], plays down on agents’ level of
action. We can think of a ‘first-mover advantage’ over meeting a demand, e.g., in a drug
market. This flexible model, which we will rely on to investigate the particular problem of
competing gangs, encapsulates various situations under standard assumptions.

The Ballester et al. [1] model belongs to the family of models with continuous ac-
tions/opinions and static decisions: there is no ‘repeated game’ dimension, as we could
find, e.g., in opinion formation models [17,22,43–45], mainly focusing their interest on
opinion reversal and diffusion [25,46,47], including in development economics [16]. Its
main technical difficulty is the nonnegativity of actions, raising the delicate question of
the interiority of equilibrium and the actual network of active players (see, for example,
Bramoullé and Kranton [48] for a standard model on a similar framework).

Among the other workhorse models of this literature, the key paper of Bramoullé et al. [49]
also investigates public goods in networks in the vein of Ballester et al. [1] and Ballester and
Zenou [50], where the network good is actually a kind of ‘public bad’. The problem had already
been investigated in the context of groups by Buchholz et al. [51]. In an economy, one group
perceives the action as good and the other as bad. Other frameworks have also been proposed,
e.g., Cabrales et al. [52], encompassing network formation and the productive side in a single
spillover model.

Though the key player does not play a role in our model, the aggregation of in-
dividual activities remains dependent on the network’s topology, and this topology is
typically a sociological dimension of the problem. Therefore, we have to mention the
theory of social power, where the position in the network is central; see, for exam-
ple, Friedkin [53], de Swart and Rusinowska [54], van den Brink and Steffen [55]. In con-
trast with models like that of Acemoglu et al. [56], where leaders are specifically designed,
leadership may also emerge from centrality, which ties the notion of power to topological
considerations [53,57–60]. In the literature on social and economic networks, the role of an
agent’s position in the network in the outcome of a game is a standard field of investigation;
we refer to Jackson [61], Bramoullé et al. [62] for two authoritative reviews of theoretical
models on social and economic networks.

1.3. Organization of the Paper

The paper is structured as follows. The outlines of the Ballester et al. [1] model and
the specific setting we will be studying are exposed in Section 2. Policy recommendations
for the police are discussed in Section 3. Section 4 concludes with the limitations of our
model and some perspectives.

2. The Model

Our model adapts Ballester et al. [1,5] in a specific setting involving two rival groups.
We consider crime networks as a practical application of the model, given that the properties
of the utility functions align well with the impact of agents’ actions (not only utilities)
based on whether these actions originate from allies or enemies, as we will see below. A
notable departure from the concerns addressed by Ballester et al. [1] is that we focus on
examining aggregate levels within groups rather than targeting a key player. In particular,
the significance of the network’s architecture is only relevant in terms of its consequences
on an aggregate scale.

We denote by N the set of n agents (criminals) in a network. Agents are located on an
undirected and unweighted network described by the adjacency matrix G. If agent j ̸= i
is a neighbor of i then gij = 1, otherwise gij = 0. The set of neighbors of i is denoted by
Ni, i.e., Ni := {j | gij ̸= 0}. Each agent i exerts a level of effort xi ≥ 0 and obtains utility
ui(xi, x−i), where x−i is the vector of efforts exerted by other agents (we use bold lowercase
letters for vectors).
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The utility functions are taken quadratic:

ui(xi, x−i) = xi −
1
2

x2
i + ∑

j∈Ni

βijxixj, (1)

where βij denotes the nature and intensity of the externality between agents i and j.
In interpretation, when βij > 0 efforts are strategic complements and when βij < 0

efforts are strategic substitutes. This observation, specific to the family of bilinear utility
functions, is the one that justifies their use to model delinquent networks. Individual effort
is then identified with crime. A positive network influence βij > 0 can be thought of as an
incentive to commit crime (commonly known as ‘bad company’) or, e.g., as an exacerbation
of violence between criminals. On the contrary, βij < 0 can be thought of as the control of a
drug market, where some criminals’ actions impede others’ actions.

An agent i seeks to maximize their payoffs and has a best-response function:

xi = fi(x−i)
def
= max

(
0, 1 + ∑

j∈Ni

βijxj

)
. (2)

At a Nash equilibrium x∗ = (x∗1 , . . . , x∗n) of the game, each agent’s action is a best-response
to their neighbors’ actions, that is, x∗i = fi(x∗−i) for each agent i ∈ N.

We now apply the Ballester et al. [1] model to our two competing groups model.
The society is partitioned into two groups, A and B, of sizes nA and nB. To simplify the
computations:

• We restrict our analysis to two concurrent groups, i.e., that exert negative externalities
on each other (communitarian model with two groups).

• All externalities are of the same intensity within group δ ≥ 0 and inter-group −µ ≤ 0.
• We consider the ’full inter-connection case’, where any two agents of different groups

are linked. One interpretation of the full interconnection case is that inter-group
confrontations are uniform in the sense that the aggregate crime production of the
opposite group hurts each agent. Another interpretation is probabilistic: µ represents
the probability of facing each agent of the opposite group.

From the assumptions above (in particular, since for i ∈ A, B ∩Ni = B, by the full
inter-connection case), we can rewrite (1) as follows. If i ∈ A, then:

ui(xi, x−i) =

[
xi −

1
2

x2
i + δxi ∑

j∈A∩Ni

xj − µxi ∑
j∈B

xj

]
. (3)

Similarly, if i ∈ B, then:

ui(xi, x−i) =

[
xi −

1
2

x2
i + δxi ∑

j∈B∩Ni

xj − µxi ∑
j∈A

xj

]
. (4)

Let Γ[AA] = I − δGA where GA denotes the adjacency matrix of the network of
interactions within group A and lets Γ[BB] = I − δGB where GB denotes the adjacency
matrix of the network of interactions within group B. Let us write

Γ =

[
Γ[AA] Γ[AB]
Γ[BA] Γ[BB]

]
,

where Γ[AB] and Γ[BA] denote the links connecting A to B and B to A. Since we assume the
‘full inter-connection case’, it holds that all the entries of Γ[AB] and Γ[BA] are µ. In our model,
a Nash equilibrium is interior when all agents in the network exert a strictly positive level
of effort (crime).
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Property 1. When it exists, the interior Nash equilibrium x∗ verifies:

Γx∗ = 1,

where 1 is the vector whose all coordinates are 1.

Proof. Indeed, at an interior Nash equilibrium x∗, it follows from the best response func-
tions that for an agent i ∈ A it holds that :

x∗i = 1 + δ ∑
j∈A∩Ni

x∗j − µ ∑
j∈B

x∗ j. (5)

and for an agent i ∈ B, it holds that:

x∗i = 1 + δ ∑
j∈B∩Ni

x∗j − µ ∑
j∈A

x∗j . (6)

By re-arranging (5) and (6) we obtain

Γx∗ = 1.

Let us define xA := Γ−1
[AA]

1 and xB := Γ−1
[BB]1. We also consider xA := 1T · xA and

xB := 1T · xB, which represent the autarkic crime levels in groups A and B, respectively
(note that the expression 1T · y denotes the sum of the entries in the vector y). The next
result provides a closed-form expression of the production of crime x∗, as a function of the
autarkic productions of crime xA and xB, namely, the crime levels produced if each of the
two groups was alone, or if they were not impeding on each other’s actions (µ = 0). In
the sequel, we will also write x∗ := 1T · x∗ the total quantity of crime, or (total) crime level,
defined as the sum of all individual contributions (both groups together). x∗ is arguably
the only relevant crime index from the police perspective, aiming to achieve the highest
possible level of societal safety.

Theorem 1 is based on two assumptions: first, that negative externalities are not
excessively high, and second, the positive-definiteness of the matrix of interactions Γ, that
ensures a unique Nash equilibrium.

Theorem 1. Assume that µ ≤ 1
max(xA ,xB)

and Γ is positive-definite. Then, there exists a unique
Nash equilibrium, which is interior, and which has an expression as follows:

x∗ =
1

1 − µ2xAxB
·
(
(1 − µxB) · xA
(1 − µxA) · xB

)
=:
(

x∗A
x∗B

)
.

Proof. The proof of Theorem 1, together with all the subsequent proofs, appears in the
Appendix A.

We will now provide a sufficient condition on the interaction network that ensures
that Γ is positive definite, as stipulated in Theorem 1. Given a matrix G, let λmax(G) denote
its largest eigenvalue and λmin(G) denote its lowest eigenvalue.

Proposition 1. Assume that 1 − δ max(λmax(GA), λmax(GB)) − µ
√

nAnB > 0. Then, Γ is
positive definite.

It follows from Theorem 1 that when, for example, xA < xB, Group A (the group with
the smaller autarkic crime level) is impacted by a higher reduction factor than Group B.

We are now in a position to express, in Proposition 2, the crime level x∗ as a function
of each group’s autarkic activities, along with a few of its properties.
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Proposition 2. Under the assumptions and with the notations of Theorem 1:

(i) The crime level x∗ is:

x∗ =
(1 − µxB)xA + (1 − µxA)xB

1 − µ2xAxB
=

xA + xB − 2
µ

1 − µ2xAxB
+

2
µ

.

(For µ ̸= 0 in the second equality.)
(ii) x∗ ≤ xA + xB.
(iii) Suppose that xA + xB is fixed. Then, x∗ − (xA + xB) attains its maximum when xA = xB.

Proposition 2 shows how much the links between the two groups reduces the total
crime level. We also proved that, given a fixed sum of the autarkic levels of crime, the
maximum total crime reduction is achieved when the two groups have identical autarkic
crime levels (Proposition 2iii).

Example 1. Let us investigate the case of regular networks within each group to push the computa-
tions forward. We assume that internal networks for the groups are regular of degrees rA and rB,
respectively. Then, xA and xB can be expressed in terms of the degree of the regular network and
the discount factor (see Allouch [63], Proposition 7): xA = 1

1−δrA
1, xB = 1

1−δrB
1, and therefore

xA = nA
1−δrA

and xB = nB
1−δrB

. We obtain:

x∗ =
(1 − δrA − µnA)nB + (1 − δrB − µnB)nA

(1 − δrA)(1 − δrB)− µ2nAnB
.

If, for example, we have nA = nB = 4 and rA = rB = 2, then we obtain:

xA = xB =
4

1 − 2δ
and x∗ =

8
1 − 2δ + 4µ

. (7)

From (7), we see that policies decreasing the emulation factor δ (we can think, for example, of an
“education approach” aimed at increasing the opportunity cost of engaging in terrorist activities1)
unambiguously decreases the crime level. However, very interestingly, if the police had a choice
between decreasing the emulation factor δ by ϵ or increasing the inter-group fight intensity µ by ϵ,
the latter policy will outperform the former policy.

Let us end this example with one question: What is the effect of degrees of unbalance on the
aggregate level of crime? Let us redo the computations with nA = nB = n but with potentially
different degrees rA andrB, such that rA + rB = K, where K is a constant (also even):

x∗ =
2n − δK − 2µn2

(1 − δrA)(1 − δK + δrA)− µ2n2 .

dx∗

drA
=

−(2n − δK − 2µn2)(δ2K − 2δ2rA)

((1 − δrA)(1 − δK + δrA)− µ2n2)2 ,

which is null if and only if rA = K
2 , that is, rA = rB. This extremum represents a minimum. The

total quantity of crime is minimized when groups possess identical internal degrees. In interpretation,
the equality of internal degrees results in similar crime levels for the two groups, exacerbating losses
on both sides and ultimately leading to a reduced total quantity of crime.

Scenario 1. Given our focus on the internalization of negative externalities, there is a compelling
case for concern regarding the unification of the groups. It is crucial to assess whether these groups
may share common interests and, specifically, to gauge the strength of the threat that they might
abruptly merge into a single mafia. The more similar the groups, the more pronounced the threat
becomes. From the perspective of law enforcement, what would be the consequences if, instead of
opposing each other, the two groups were to unite? (In a sense, what is the incentive for ‘making
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mischief’?) We calculate the total quantity of crime by replacing µ with −µ. Consequently, the total
quantity of crime in the unified case is as follows:

y∗ =
(1 + µxB)xA + (1 + µxA)xB

1 − µ2xAxB
=

xA + xB + 2
µ

1 − µ2xAxB
− 2

µ
.

As a consequence, the premium of causing mischief is given by:

y∗ − x∗ =
4µxAxB

1 − µ2xAxB
.

It is noteworthy that, at a given total autarkic production of crime (for a given xA + xB), the more
equal the groups are (xA ≈ xB), the higher the fighting premium is from the perspective of the police.
This observation aligns with the findings of Example 1.

3. Consequence for the Police: Focusing or Splitting the Resources?

In this section, our goal is to answer the question: Where should the police allocate its
resources to minimize the quantity of crime?

We will explore two extreme cases. In Scenario 2, the effect on crime in both groups is
assumed to be proportional to the effort of the police. This assumption reflects a situation
where the police conducts random controls against drugs, implements reinforced patrols,
or takes any action characterized by the absence of scale. In Scenario 3, the effect depends
on the mafia size. This multiplicative assumption involves attributing an effect on crime
proportional to the group’s size being fought against. This aims to represent a situation
where there are ‘economies of scale’ concerning the effort of the police, such as in scenarios
involving infiltration or cybersecurity measures against a specific threat type, where the
difficulty of dismantling a network does not depend much on its size. In reality, the impact
of spending is likely to be a combination of these two extreme scenarios.

In both scenarios, the police is assumed to have a budget that it divides into two
parts. Specifically, an amount ϵ ∈ [0, 1] is allocated to combat Group A, and an amount
1 − ϵ ∈ [0, 1] is allocated to combat Group B. It is essential to note that the quantitative
effect, i.e., how efficient this crackdown on crime actually is, is not considered at a higher
level of policy-making. No parliament responsible for budget approval contemplates the
expected impact of cracking down on crime, which would need to be balanced with other
types of spending for the public sector. Nevertheless, we present, in our simulations, the
actual impact on crime levels of an optimal policy.

Scenario 2 (An impact on crime with proportional effects). As a first extreme assumption, the
present scenario assumes the decrease in crime to be directly proportional to the resources, meaning
that spending ϵ results in a decrease in crime of L · ϵ, for some constant L. For xA ̸= xB, let us first
treat the case µ = 0. In the absence of police, the crime level is simply the sum of autarkic levels:
x∗ = xA + xB. Under police action, we have x∗ = (xA − Lϵ) + (xB − L(1− ϵ)) = xA + xB − L,
which does not depend on ϵ: all repartitions of resources are equivalent for the police in terms of
decision making. However, the crime level depends linearly on L; as we will see in Figure 1b,c, the
effect is more sophisticated when µ ̸= 0, which is the case we examine now. Applying the first
equality of Proposition 2, if x∗ is interior, then:

x∗ =
(1 − µ(xB − L(1 − ϵ)))(xA − Lϵ) + (1 − µ(xA − Lϵ))(xB − L(1 − ϵ))

1 − µ2(xA − Lϵ)(xB − L(1 − ϵ))
.

The derivative with respect to ϵ of the total amount of crime is:

dx∗

dϵ
=

Lµ((L − xB − xB)µ + 2)(2Lϵ − L + xB − xA)

(1 − µ2(xA − Lϵ)(xB − L(1 − ϵ)))2 ,

whose only root is:
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ϵ∗ =
1
2
− ∆

2L
, where ∆ = xB − xA.

When ∆ is sufficiently small, we obtain ϵ∗ ∈]0, 1[ (sharing the resources, i.e., interior solution).
More precisely, the optimum is interior if and only if ∆ ≤ L, that is, when group imbalance is
not too high, or the police is sufficiently efficient. Otherwise, we obtain a corner solution: all
resources are directed towards the fight against the strongest group, e.g., when xB > xA, against
Group B (ϵ∗ = 0). The second-order conditions can be easily checked, as the numerator of the
derivative is linear in ϵ. This result implies for the police that, as the groups’ unbalance is growing,
in order to reach a minimal level of total crime, it should direct relatively more resources against
the strongest group. Remarkably, the parameter µ plays no role in the decision making (though it
obviously impacts the crime level x∗). The arg min of x∗(ϵ) for different parameters of µ is displayed
in Figure 1b,c. The requirement for the crime level to be positive translates into xA + xB ≥ L,
otherwise, the police should not spend all the available resources to bring the total level of crime to
zero. This remark, as we will see, also holds in the next scenario (with the scale effects of spending
on crime).

(a) Scenario 2. arg minϵ x∗(ϵ, xA, L) (d) Scenario 3 (scale effect). arg minϵ x∗(ϵ, xA, µ)

(b) Scenario 2. x∗(ϵ∗) with µ = 0.01 and the no
spoiling condition. Color code in (a).

(e) Scenario 3 (scale effect). x∗(ϵ∗). Color code
in (c).

Figure 1. Cont.
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(c) Scenario 2. x∗(ϵ∗) with µ = 0.05 and the no
spoiling condition. Color code in (a).

Figure 1. arg minϵ x∗ and x∗ in Scenarios 2 and 3. In these simulations, we fix xB = 10.

Scenario 3 (An impact on crime with economies of scale). The other extreme assumption is
to set the decrease in crime as multiplicative, i.e., to be proportional to the resources spent against
crime. We assume that by spending a proportion ϵ of its resources on Group A, the police brings
the autarkic crime level xA to xA − ϵxA = (1 − ϵ)xA. Similarly, the autarkic level xB becomes
ϵxB. The idea is to endow the police with a lump sum that exactly suffices to suppress each group
separately, independently of their size, allocating the full resources. In a first approach, we may
assume that xA = xB, a special case which has the advantage of being tractable. We consequently
denote xA = xB = x. Applying Proposition 2(i):

x∗ =
[1 − µϵxB](1 − ϵ)xA + [1 − µ(1 − ϵ)xA]ϵxB

1 − µ2ϵ(1 − ϵ)xAxB
=

x − 2
µ

1 − µ2ϵ(1 − ϵ)x2 +
2
µ

.

(With µ ̸= 0 for the second equality.)
The minimum total level of crime x∗ is obtained at ϵ = 1

2 . The police should spread its
resources equally between the two groups when they are of similar size, implying that there is no
reason for the police to break the symmetry of the problem by favoring one group over the other
(which would have been the case with a concave symmetrical function).

For xA ̸= xB, let us first treat the case µ = 0. In the absence of police, the total level of crime
is the sum of the autarkic levels: x∗ = xA + xB. Let us now investigate the case xA ̸= xB. Also
assume that µ ≤ 1

max(xA ,xB)
(hypothesis of Theorem 1). One first remark is that, whatever the

allocation that the police is choosing, even if not optimal, it should not reach a total level of crime
higher than the autarkic level of the largest group. Indeed, assuming xA > xB:

xA − x∗ = xA − [1 − µϵxB](1 − ϵ)xA + [1 − µ(1 − ϵ)xA]ϵxB

1 − µ2ϵ(1 − ϵ)xAxB

=
xA(1 − µ2ϵ(1 − ϵ)xAxB)− [1 − µϵxB](1 − ϵ)xA − [1 − µ(1 − ϵ)xA]ϵxB

1 − µ2ϵ(1 − ϵ)xAxB

=
ϵ(xA − xB)− µ2ϵ(1 − ϵ)x2

AxB + 2µϵ(1 − ϵ)xAxB

1 − µ2ϵ(1 − ϵ)xAxB

=
ϵ[(xA − xB) + µϵxAxB(2 − µxA)]

1 − µ2ϵ(1 − ϵ)xAxB
≥ 0.

A fortiori, this inequality must hold at optimum. We can check this fact in Figure 1e (all curves
below xB = 10 for xA ≤ 10, and below the 45◦ line for xA ≥ 10). Clearly, this inequality did not
hold in the last scenario, where the total level of crime, even at optimal resources allocation, did
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not display a similar concave pattern. We are now searching for the optimal allocation of resources.
We calculate:

dx∗

dϵ
= −

(xAx2
B − x2

AxB)µ
2ϵ2 + (2x2

AxBµ2 − 4xAxBµ)ϵ − x2
AxBµ2 + 2xAxBµ − xB + xA

(1 − xAxBµ2(1 − ϵ)ϵ)2 . (8)

The numerator is a binomial in ϵ, whose roots in C are:

ϵ± =
x2

AxBµ − 2xAxB ±√
xAxB(xAxBµ − xA − xB)

(xAx2
B − x2

AxB)µ
.

Imposing xB ≥ xA, only ϵ+ can possibly be a positive root, and then, the numerator being a
binomial in ϵ, the second-order conditions can be easily checked: this value of ϵ would correspond
indeed to a minimum. The case ϵ+ > 1 (and when therefore the police sets ϵ∗ = 1) is reached when
µ is sufficiently small, more precisely, if and only if µ ≤ 2xAxB+xA+xB

x2
AxB+(xAxB)3/2 =: M(xA, xB), for which

the bound is found to be decreasing in xB, meaning that for xA fixed, the corner solution is reached
for lower values of µ as the sizes of the groups become more unbalanced. Let us investigate when
ϵ+ ≤ 1. The arg min of x∗(ϵ) for different parameters of µ is displayed in Figure 1d and the value
of f (ϵ∗)) is displayed in Figure 1e. Notice that the value xA at which f (ϵ∗) reaches zero does not
coincide with the reaching of a corner solution for arg minϵ x∗ (it is smaller). Typically, even by
directing all its resources against one of the two gangs (the strongest one), the other gang is not
annihilated, except if it is weak enough.

One noticeable qualitative difference between the two scenarios is that the scale-free one
(Scenario 2) displays symmetry around xA = xB and not the multiplicative scenario (Scenario 3).
Nonetheless, the similarity of optimal behaviors in both scenarios confirms the robustness of
the model.

4. Conclusions

Now that the different effects at play have been clarified, the police have more cards in
hand to assess the situation. We have demonstrated that the police should spread resources
when the group sizes are similar, and direct relatively more resources towards the strongest
group otherwise. Furthermore, we have shown that the more alike the groups are, the more
the police gains from cracking down on crime. We end this paper with a clarification of our
model’s limitations and a list of perspectives.

4.1. Limitations of the Model

We identify at least three primary limitations of the model:

• While µ can be proxied and arguably estimated, the question arises: how would the
police observe autarkic activities?

• Agents exerting complementary efforts, such as those belonging to the same gang,
typically communicate closely. Thus, a more nuanced approach to the problem exists
beyond simply targeting groups or key players. We would assume that connected
criminals face correlated probabilities of being captured, not only because they could
betray each other but simply because they are involved in the same criminal activities.
Mathematically, if βij > 0 (indicating that agent j increases agent i criminal activity),
then if j is caught, and i should face a higher probability of being caught as well.

• The model can be argued to be excessively quantitative. In contrast to Calvó-Armengol
and Zenou [2], which proposes a model where criminals perceive more expected
benefits in crime than in the job market, and where agents first decide whether to
participate in the job market or the crime market and then determine the level of
crime to engage in, our model lacks a qualitative dimension of delinquency. Exerting
a strictly positive level of crime, even a small one, is still being involved in crime.
Being active should significantly differ from not being active. The absence of a binary
decision on criminal activity participation somehow bypasses the decision-making
aspect of criminal behavior, the moral dimension of criminality and its sociological
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implications, along with the intricate dynamics of crime and activity within mafias
(including the snowball effect of illegal activities).

4.2. Perspectives

• A more in-depth exploration of the nature of crime is essential. For instance, consider
focusing on the quantity of drugs purchased on the drug market. While the negative
externality effectively portrays the substitution effect (where a drug consumer shifting
from one gang diminishes the sales of another), it fails to adequately represent the
heightened competition that should result in a more intense conflict between gangs.
This negative externality lacks the depth to capture the potential escalation into a more
ferocious fight. It prompts us to question the specific crime under investigation and
whether we intend to disregard inter-gang murders in our model.

• Numerous traditional games on networks are static, including this one. Dynamic and
endogenous games on agents’ behavior and link formation align more closely with
the actual challenges faced by the police in their fight against criminality.

• Finally, it is crucial to recall that, in real life, the network is not fixed. For instance, the
war against terrorism is not only focused on eliminating terrorists but also involves
shaping the perception of conflicts in the eyes of social groups with access to the media.
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Appendix A

Proof of Theorem 1. Since Γ is positive definite, it follows from standard results in the
literature [49,67] that there exists a unique Nash equilibrium. One approach for the proof is
to state the problem as a Linear Complementarity Problem ( LCP) L(−1, Γ):

“Determine x ≥ 0 such that

Γx − 1 ≥ 0 and (Γx − 1)Tx = 0.′′

This problem has a unique solution, which is the unique Nash equilibrium.
Now, we will show that the Nash equilibrium is interior if µ ≤ min( 1

xA
, 1

xB
). Indeed,

an interior Nash equilibrium needs to obey the first-order conditions:

For i ∈ A:
dui(xi)

dxi
= 0 ⇔ 1 − xi + δ ∑

j∈Ni∩A
xj − µ ∑

j∈B
xj = 0.

For i ∈ B:
dui(xi)

dxi
= 0 ⇔ 1 − xi + δ ∑

j∈Ni∩B
xj − µ ∑

j∈A
xj = 0.
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Equivalently,

x∗ = Γ−1 · 1 =

[
Γ[AA] Γ[AB]
Γ[BA] Γ[BB]

]−1

· 1.

We will apply the formula of the inverse of the partitioned matrix Horn and Johnson [68].
Indeed, since Γ[AA] and Γ[BB] are also invertible, the inverse of Γ writes:

(Γ)−1 =

(
(Γ[AA] − Γ[AB]Γ

−1
[BB]Γ[BA])

−1 −(Γ[AA] − Γ[AB]Γ
−1
[BB]Γ[BA])

−1Γ[AB]Γ
−1
[BB]

−(Γ[BB] − Γ[BA]Γ
−1
[AA]

Γ[AB])
−1Γ[BA]Γ

−1
[AA]

(Γ[BB] − Γ[BA]Γ
−1
[AA]

Γ[AB])
−1

)
(A1)

We want to express x∗ as a function of xA, xB, xA(= 1T
A · xA), xB(= 1T

B · xB). Recall
that the non-diagonal terms of Γ[AA] and Γ[BB] are non-negative. We have:

Γ[AB] = µ1A1T
B and Γ[BA] = µ1B1T

A

Hence, we have:
Γ[AB](Γ

−1
[BB])Γ[BA] = µ2xB1A1T

A,

And:

Γ[BA](Γ
−1
[AA]

)Γ[AB] = µ2xA1B1T
B.

Applying the Sherman-Morrison [68,69]:

(Γ[AA] + Γ[AB]Γ
−1
[BB]Γ[BA])

−1 = (Γ[AA] + µ2xB1A1T
A)

−1 = Γ−1
[AA]

+
µ2xB

1 − µ2xB1T
AΓ−1

[AA]
1A

Γ−1
[AA]

1A1T
AΓ−1

[AA]

= Γ−1
[AA]

+
µ2xB

1 + µ2xB1T
AΓ−1

[AA]
1A

· xA1T
AΓ−1

[AA]
= Γ−1

[AA]
+

µ2xB

1 − µ2xAxB
· xA1T

AΓ−1
[AA]

and

(Γ[BB] − Γ[BA]Γ
−1
[AA]

Γ[AB])
−1 = Γ−1

[BB] +
µ2xA

1 − µ2xAxB
· xB1T

BΓ−1
[BB].

Therefore,

x∗ =

(1 + µ2xAxB
1−µ2xAxB

)(1 − µxB) · xA

(1 + µ2xAxB
1−µ2xAxB

)(1 − µxA) · xB

 =
1

1 − µ2xAxB

(
(1 − µxB) · xA
(1 − µxA) · xB

)
.

Proof of Proposition 1. Let

D =

[
Γ[AA] 0

0 Γ[BB]

]
.

From Weyl’s inequality theorem [68,70], it holds that:

λmin(Γ) ≥ λmin(D) + λmin(Γ − D).

Since Γ[AA] = I − δGA, Γ[BB] = I − δGB and D is diagonal, it holds that:

λmin(D) = 1 − δmax(λmax(GA), λmax(GB)).

Since 1
µ (Γ − D) is the adjacency matrix of a complete bipartite network, it holds that

λmin(Γ − D) = −µ
√

nAnB.
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Hence, Γ is positive definite since

λmin(Γ) ≥ 1 − δ max(λmax(GA), λmax(GB)))− µ
√

nAnB > 0.□

Proof of Proposition 2.

(i) Straightforward from Theorem 1.

(ii) x∗ < xA + xB ⇔ (1−µxB)xA+(1−µxA)xB
1−µ2xAxB

< xA + xB ⇔ (xA + xB)− 2µxAxB < (xA +

xB)− µ2xAxB(xA + xB) ⇔ µ < 2
xA+xB

= 2
1

1/xA
+ 1

1/xB

=: H( 1
xA

, 1
xB
), the harmonic

mean of 1
xA

and 1
xB

. But, since µ ≤ 1
max(xA ,xB)

it also holds that µ < H( 1
xA

, 1
xB
).

(iii) Let us fix xA + xB = K. We have:

x∗ − (xA + xB) =
K − 2

µ

1 − µ2xA(K − xA)
+

2
µ
− K,

which attains its maximum when xA = xB = K
2 .

Notes
1 The classical idea according to which aid (for example, in the form of education) creates reservation utility is tested, e.g., in Azam

and Thelen [64]; according to Azam [65], the effect of education on the opportunity cost can be mitigated by the ’revelation’
of their type to potential terrorists. One can also mention Collier and Hoeffler [66], who investigate a utility-based model and
conditions under which rebels have an interest in sparking a civil war. A version of our model capturing the decision-making of
people to engage in gangs would be a significant improvement, as we suggest in the perspectives section.
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