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Abstract: The automatic delineation and segmentation of the brain tissues from Magnetic Resonance
Images (MRIs) is a great challenge in the medical context. The difficulty of this task arises out of the
similar visual appearance of neighboring brain structures in MR images. In this study, we present
an automatic approach for robust and accurate brain tissue boundary outlining in MR images. This
algorithm is proposed for the tissue classification of MR brain images into White Matter (WM),
Gray Matter (GM) and Cerebrospinal Fluid (CSF). The proposed segmentation process combines
two algorithms, the Hidden Markov Random Field (HMRF) model and the Whale Optimization
Algorithm (WOA), to enhance the treatment accuracy. In addition, we use the Whale Optimization
Algorithm (WOA) to optimize the performance of the segmentation method. The experimental
results from a dataset of brain MR images show the superiority of our proposed method, referred to
HMRF-WOA, as compared to other reported approaches. The HMRF-WOA is evaluated on multiple
MRI contrasts, including both simulated and real MR brain images. The well-known Dice coefficient
(DC) and Jaccard coefficient (JC) were used as similarity metrics. The results show that, in many
cases, our proposed method approaches the perfect segmentation with a Dice coefficient and Jaccard
coefficient above 0.9.

Keywords: brain tissue segmentation; HMRF method; WOA; classification

1. Introduction

In the human body, the most complex organ is the brain. It is responsible for coordi-
nating and controlling many bodily activities and every process that regulates the body.
Alzheimer’s disease, epilepsy, encephalitis, meningitis, and brain abscesses and tumors are
different forms of brain disease [1].

In recent years, the manual examination and interpretation of images obtained from
various imaging modalities such as Radiography, Magnetic Resonance Imaging (MRI), and
Computed Tomography (CT) have become challenging and intensive processes. This under-
scores the fact that that automatic image analysis by several operations is a necessity [2–4].
MRI brain segmentation helps in detecting brain diseases, analyzing brain changes, identi-
fying pathological areas, and measuring and visualizing the anatomical structures of the
brain. Furthermore, brain segmentation is a difficult task due to the homogeneities and
correlations of image intensity among brain tissues. Nevertheless, many research method-
ologies have been proposed for brain tissue MR image segmentation. For example, Qaiser
Mahmood et al. [5] present a fully automatic unsupervised segmentation algorithm called
BAMS, where a combination of the Bayesian method and Adaptive Mean-Shift (BAMS)
are applied to real multimodal MR images to segment brain tissues into four regions:
White Matter (WM), Gray Matter (GM), Cerebrospinal Fluid (CSF), and background. In the
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last step, the authors used the voxel-weighted kmeans clustering algorithm to merge the
homogeneous regions obtained in the previous steps.

In another work, Henri A. Vrooman et al. [6] proposed a brain segmentation process
based on an automatically trained kNN classifier. This kNN classification method incorporates
voxel intensities from a T1-weighted MRI scan and a FLAIR sequence scan. In [7], the authors
introduced a hybrid approach based on techniques for brain MRI segmentation. The method
utilizes the Gabor transform for computing features of brain MRI. Subsequently, these features
are subjected to classification using various classifiers, including Incremental Supervised
Neural Network, K-NN, Probabilistic Neural Network (PNN), and Support Vector Machine
(SVM). A drawback of these approaches [5–7] is that they may give poor tissue classifications
in the presence of noise, and that they are computationally expensive.

In recent years, there has been more research in the field of brain tumor MR image
segmentation. For example, the study of Jalab H A et al. [8] presented and evaluated a novel
convolutional neural autoencoder designed for brain tumor segmentation using semantic
segmentation principles. The evaluation was conducted on a dataset consisting of 3064 T1-
weighted Contrast-Enhanced Magnetic Resonance Images. In [9], Hasan AM et al. used
three techniques to precisely pinpoint the area of pathological tissues in volumetric MRI
brain scans: the first one is a three-dimensional active contour model without boundaries,
the second one is a multi-layer perceptron neural network adopted as a classifier, and the
third one is a bounding box-based genetic algorithm. The most important limitations that
make brain tumor segmentation [8,9] a challenging task are the varieties of the shape and
intensity of tumors, along with the probability of inhomogeneity within tumorous tissue.

The Hidden Markov Random Field Model is a segmentation algorithm popularly
used in image segmentation, such as by Ahmadvand et al. [10], Jianhua et al. [11], Shah
Saurabh [12], and Mingsheng Chen [13]. A combination of fuzzy clustering and the MRF
model was presented by Mingsheng Chen et al., where the Fuzzy C-Means (FCM) algorithm
was combined with the MRF model to filter the effect of noise and to increase the integrity of
segmented regions. An additional work using the HMRF model for segmenting brain tissue
was presented by Alansary et al. [14], in which the authors proposed the unsupervised
learning of different brain structures from T1-weighted MR brain images, by using the
Maximum A posteriori Probability (MAP) estimate with a joint Markov–Gibbs Random
Field Model (MGRF). In [15], the authors proposed the optimization of the MRFM by
using the Broyden–Fletcher–Goldfarb–Shanno algorithm to segment brain tissues. In [16],
a generalization of the HMRF model with the Expectation Maximization (EM) method
was applied and tested on brain MRI data. These hybrid methods are used to significantly
decrease computational time in comparison to classical MRF. However, they often lack
accurate segmentation of MRI brain tissue.

Some other studies used a Fuzzy C-Means algorithm to improve the segmentation
accuracy of brain images. For example, in [17], the authors used an improved multi-view
FCM with an adaptive learning mechanism to segment brain images.

In some references, brain segmentation methods based on deep learning techniques
have been proposed in brain segmentation, such as by Zhao L et al. [18], Brudfors
Mikael et al. [19], and Bento M [20]. For example, Lee B et al. [21] introduced a non-
overlapping patch-wise U-net architecture to remedy the drawbacks of the conventional
U-Net with greater retention of local information. On the other hand, Renukadevi [22]
et al. proposed a medical image classification with a Histogram and Time–Frequency
Differential Deep Learning method using brain Magnetic Resonance Imaging. First, a
supervised training method was applied by an intensity-oriented Histogram to prepare the
feature extraction step. Then, time and frequency factors were applied to the pre-processed
features to obtain a set of features. These features are used in the Differential Deep Learn-
ing process. The main drawback of these approaches is their expensive computational
cost, as the training process needs to be repeated multiple times. Other researchers have
used hybrid approaches combining deep learning with fuzzy logic to segment MRI brain
tumors. For example, in [23], the authors propose a novel approach combining fuzzy
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logic-based edge detection and U-Net CNN classification for brain tumor detection. This
work demonstrates superior performance in identifying meningioma and non-meningioma
brain images, outperforming existing methods in terms of performance metrics. But the
analysis provided in this work lacks a detailed analysis of the drawbacks associated with
the fuzzy logic-based edge detection or U-Net CNN classification methods used for the
brain tumor detection process.

Among the optimization algorithms that have appeared in the 1980s used in images
segmentation, we can cite metaheuristics methods. In the study proposed in [24], a biologi-
cally inspired ant colony algorithm was proposed to optimize the thresholding technique
for MR brain image segmentation, but the thresholding methods faced some limitations
that decreased the overall accuracy of the segmentation method. On the other hand, Thuy
Xuan Pham et al. [25] presented an optimization method that combines metaheuristic
methods (cuckoo search and particle swarm optimization algorithms) and an HMRF model
to provide brain tissue segmentation. The authors of this work applied their model to
both simulated and real MR images. This method is limited by its tendency to increase
computational complexity due to the problem of selecting an appropriate value for the
parameter β, as well as the running time for both the ICS and IPSO algorithms.

On the other hand, many techniques have been proposed suggested to aid in detect-
ing brain lesions and diseases. The authors in [26] have proposed a pre-trained U-Net
encoder–decoder system to extract ischemic stroke lesions (ISLs), using image processing
techniques on brain MRI slices from the ISLES2015 database. This study achieved high
Jaccard, Dice, and accuracy values on a dataset of 500 images. However, the main limitation
of this approach is that the number of test images may not fully represent the variability
in ischemic stroke lesions and increasing the training dataset size may introduce biases
or artifacts in the segmentation process. Ramya, J et al. [27] present a novel method for
Alzheimer’s disease classification using MRI data. This method focuses on image process-
ing techniques such as 2D Adaptive Bilateral Filtering, the ECLAHE algorithm for image
enhancement, and feature extraction using GLCM and PCA. The paper lacks comparisons
with other advanced classification techniques, and the proposed method presents high
computational complexity. Rangaraju et al. [28] introduce a novel deep learning-based
method for automated Alzheimer’s disease detection using 3D brain MRI data, where the
authors used a Patch Convolutional Neural Network and Octave convolution for feature
identification and spatial redundancy reduction. The limitation of this method is that the
accuracy metric may not be adequate for evaluating the model’s efficacy if the dataset has
an uneven distribution of classes.

In this proposal, our concern is to solve the problem of segmenting brain MR images
into three tissues: GM, WM, and CSF, without apparent disease. To attain this objective,
the whale optimization algorithm (WOA) is employed to optimize the HMRF model,
offering an automated segmentation tool for brain MR images. Then, the proposed method
performance evaluation is achieved on ground truth images from the BrainWeb and Internet
Brain Segmentation Repository (IBSR) databases, using the Dice coefficient metric (DC)
and the Jaccard coefficient (JC).

The overall contributions of this paper are as follows:

- A new optimization method applied to MRI image segmentation.
- A novel technique using the combination of HMRF and the WOA is proposed.
- The proposed method improves the accuracy of segmenting brain images into three

tissues: GM, WM, and CSF.
- This manuscript primarily focuses on brain tissue segmentation to aid experts

and radiologists.

The efficacy of the HMRF-WOA is tested on six datasets with various parameters
collected from BrainWeb and the IBSR. The experimental results demonstrate remarkable
performance when segmenting different types of homogeneous and heterogeneous tissues.
By employing this architecture, our aim is to achieve improved accuracy, efficiency, and
reliability compared to existing state-of-the-art models.
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This paper is organized as follows: In Sections 2 and 3, we give a detailed explanation
of the HMRF model and Whale Optimization Algorithm. The algorithm design (HMRF-
WOA) is presented in Section 4, followed by the experimental results and discussions in
Section 5, and the conclusion in the last section.

2. Hidden Markov Random Field Model

The Hidden Markov Random Field model is a stochastic process whose state sequence
can be indirectly deduced from observations. The MRF includes a set of random variables.
Let y be the observed image (i.e., the image for segmentation) and x the hidden image (i.e.,
the resulting segmented image). Both images (y and x) are formed of L sites or positions
set; we note these sites as S = {s1, s2. . ., sL}.

So, we consider that y = {y1, y2,. . ., yL} is the image to be segmented, where ys is one of
the pixel values and x = {x1, x2,. . ., xL} is the resulting segmented image, where xs is one of
the pixel classes. We consider Ey = {0. . . 255} and Ex = {1. . . K} to be the gray-level intensity
space and the discrete space, respectively, where K denotes the number of homogeneous
zones in the image. In classification methods, pixels are organized based on these gray
levels. The random variables Y = (y1. . .,yL) and X = (x1,. . ., xL) adopt their values from Ey
and Ex, respectively.

We propose to use the HMRF model to segment the image y by searching for the
optimal realization x* of X by maximizing the posteriori probability value P[X = x/Y = y].

x* = argmax{P[X = x/Y = y]}, x ∈ Ex (1)

which is written by the law of Bayes:

P(X = x / Y = y) =
P(Y = y / X = x) .P(X = x)

P(Y = y)
(2)

where P(Y = y/X = x) indicates the probability distribution of Y = y; given that X = x has
occurred, it is called likelihood. P(X = x) is the preliminary probability of X = x based on
prior knowledge. The denominator P(Y = y) is the probability of Y = y occurring; it is called
the evidence.

For each site, we associated a descriptor which represents a gray level. Any family
V(s) possessing the following properties was labelled as a neighborhood system:

• Where s /∈ V(s)
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t ∈ V(s), the neighborhood relationship is symmetrical.

The most frequently used neighborhoods are either the four or the eight nearest
neighbors: they are referred to as the first- and second-order neighborhoods, respectively.
The neighborhood relationship between sites is the clique c ∈ C. (C represents the set of all
potential cliques.)

A Random Field X is identical to a Gibbs distribution (Hammersley–Clifford theo-
rem) [29] if the joined probability distribution is:

P(X = x) = W−1 exp(−H(X = x)) (3)

where W−1 = ∑x exp(−H(X = x)) is a normalization function, also called the partition
function, and H is a nearly constant energy which decomposes into the sum of potential Uc
functions associated with cliques c ∈ C.

H(X = x) = ∑c ∈ C U(XC ) (4)

Equation (3) becomes:

P(X = x) =
exp(U(XC))

∑c ∈ C exp(U(XC ))
(5)
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In the image space, we take the second-order neighborhood system as the interactions
system between pixels (i.e., 8 neighbors of each pixel), so we have 8 cliques for each pixel.
A pair of neighboring pixels (i, j), defined as a clique potential, is used as a factor in the
energy function U(Xc) of the Potts model [30]. In this Potts model, the energy function is
generally based on the interactions between neighboring pixels, and the formula for this
energy function for image segmentation using this Potts model is written as:

Uc(xi, xj
)
= β

(
1 − V(xi , xj

))
(6)

where i and j are indices of the neighboring pixels.
β is a weight associated with the pair of neighboring pixels (a constant).
xi, xj are the classes assigned to pixels i, j, respectively.
V(xi, xj) is a function which equals 1 if the two pixels of the clique belong to the same

class and 0 otherwise.

V(xi , xj
)
=

{
1 i f xi = xj

0 i f xi ̸= xj
(7)

The fundamental assumption of the HMRF model is that for any configuration x of X,
the random variables Y are conditionally independent, and the distribution of the pixels
follows the normal law, i.e., there is an independence between classes, and the field of
observations can be modeled by the following function:

P(Y = y / X = x) = ∏s∈S P(Ys= ys /Xs = xs) (8)

Given that P(Ys= ys /Xs = xs) follows the Gaussian distribution, it can be written as:

P(Ys= ys /Xs = xs) =
1√

2πσ2
xs

exp

[
−
(
ys − µxs

) 2

2σ2
xs

]
(9)

where µxs is the mean and σxs is the standard deviation.
According to Equations (8) and (9), we obtain:

P(Y = y / X = x) = ∏s∈S
1√

2πσ2
xs

exp

[
−
(
ys − µxs

) 2

2σ2
xs

]

With

1√
2πσ2

xs

= exp

ln

 1√
2πσ2

xs

 and ln

 1√
2πσ2

xs

 = −ln
(√

2πσ2
xs


Then, we obtain

P(Y = y / X = x) = ∏s∈S

(
exp

(
−ln

(√
2πσ2

xs

))
.exp

[
−
(
ys − µxs

) 2

2σ2
xs

])

P(Y = y / X = x) = ∏
s∈S

exp

(
−ln

(√
2πσ2

xs

)
−
(
ys − µxs

) 2

2σ2
xs

)

P(Y = y / X = x) =exp

[
−
[
∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − µxs

) 2

2σ2
xs

]]]
We come back to Bayes’ law in Equation (2), with P(Y = y) being the constant value C,

and obtain:
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P(X = x / Y = y) =
1
C

exp

[
−
[

∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − µxs

) 2

2σ2
xs

]]]
.exp

[
β∑

c∈C

[
1 − V(xi , xj

)]]

P(X = x / Y = y) = C′.exp

[
−
[

∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − µxs

) 2

2σ2
xs

]]]
.exp

[
β∑

c∈C

[
1 − V(xi , xj

)]]

P(X = x / Y = y)= C′.exp

[
−
[
∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − µxs

) 2

2σ2
xs

]]
+ β∑c∈C

[
1 − V(xi , xj

)]]


P(X = x / Y = y) = C′. exp(−φ(x, y))

φ(x, y) = ∑
s∈S

[
ln
(√

2πσ2
xs

)
+

(ys−µxs)
2

2σ2
xs

]
+ β ∑

c∈C

[
1 − V(xi , xj

)]
where C′ is a positive constant and β is used to control the size of homogeneous regions
and the interaction between their sites. µxi

, σxi are the mean and standard deviation of the
class xi, respectively (i.e., the ith region Ωi = {s / xs = i} in the image). Then, µxi

, σxi are
described as follows:  µi =

1
|Ωi| ∑s∈Ωi

ys

σi =
√

1
|Ωi|∑s∈Ωi

(ys − µi)
(10)

Once we know all the parameters of the HMRF model, we can perform the segmenta-
tion itself, i.e., find the value to maximize the probability P(X = x/Y = y), which is equivalent
in this context to minimize φ(x, y) such that x∗ = argmin { φ(x, y)}.

To seek a given pixel class xs, we can consider an approximation of the exact segmenta-
tion using optimization techniques. Furthermore, we can obtain the optimal segmentation
x∗(x1, . . . xs . . . xL) through µ∗ (µ1, . . .µi, . . . ,µk) by classifying ys into the same category of
the nearest mean µi of µ (i.e., xs = i if the nearest mean of ys is µi). We seek µ∗ instead of
x∗ and the optimal means value µ∗ as follows:

µ∗ = argmin{φ(µ)} (11)

where φ(µ) is defined as:

φ(µ) = ∑s∈S

[
ln
(√

2πσ2
xs

)
+

(
ys − µxs

) 2

2σ2
xs

]
+ β∑c∈C

[
1 − V(xi , xj

)]
(12)

This objective function (Equation (12)) is simply a formula that can be applied in the
optimization process. Accordingly, in the section below, we will define the optimization
method applied in this work.

3. Whale Optimization Algorithm

The Whale Optimization Algorithm is among the latest bio-inspired optimization
algorithms. It is proposed for optimizing numerical problems [31]. Humpback whales
are among the largest and oldest animals in the world; they are highly intelligent animals
that feel emotion and never sleep [32–34]. This algorithm emulates the intelligent foraging
behavior of this animal. This hunting comportment is called the bubble net feeding method
and is an exclusive method of hunting that can only be observed in humpback whales.

In recent years, a large number of works in the literature have applied the WOA for
optimization in several fields, such as [35–39]. In order to perform optimization, including
the exploitation and exploration phases, the mathematical model is explained below. For
more details, please refer to [31,40].
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Step 1: Encircling Prey phase
When the prey’s location is identifiable, humpback whales start to circle their prey.

Then, the humpback whales create bubble nets to catch their prey. Xt
i =

(
xt

i,1 . . . xt
N,D

)
denotes the place of the ith whale at time t (iteration value), with i ∈ [1. . .N], where N
represents the whale population and D is the dimensions of the problem. In the search zone,
the whales consider the target prey or prey in the close vicinity as the optimal solution;
during this phase, other whales seek to come closer to the best search agent and update
their position using Equation (13).

D = |C.X∗(t)− Xi(t)| (13)

Xi(t + 1) = X∗(t)− A.D (14)

where t indicates the present iteration, the parameter Xi(t) denotes the position of each
individual i at the tth iteration, X*(t) signifies the optimal global position at the tth iteration,
and | | is the absolute value. Equations (15) and (16) are used to define the factor vectors A
and C, respectively:

A = 2ar − a (15)

C = 2r (16)

a = 2.
(

1 − t
Tmax

)
(17)

The parameter (a) linearly declines over the course of the iteration from 2 to 0, and r is
a random value in [0, 1].

Step 2: Bubble-Net Attacking Method (Exploitation Phase)
Two mechanisms are designed to mathematically model the predation behavior of

humpback whales, which can be described as follows:

1. Shrinking encircling mechanism: According to Equation (15), the decrease in the value
of A depends on the decrease in the value of the control parameter a. Note that the
search agent approaches the current optimal solution when the value of the random
variable A is set in the range [−1, 1].

2. Spiral updating position: To capture food, humpback whales take a spiral-shaped
path around their prey. Equations (18) and (19) are used to reproduce the helix-shaped
movement of humpback whales and to calculate the distance between the whale and
the prey, respectively:

Xi(t + 1) = D′. ebl .cos (2π.l) + X∗(t) (18)

D′ = |X∗(t)− Xi(t)| (19)

where D′ is the distance between the whale and prey (the best solution obtained so far), b is
a constant that defines the logarithmic shape, and l is a random value in [−1, 1]. During
the iterations of the algorithm, the movement behavior of humpback whales is either
shrinking encircling or spiral movement. For this behavior, assuming a probability of 50%,
the mathematical model can be described as follows:

Xi(t + 1) =


X∗(t)− A.D i f p < 0.5

D′. ebl .cos (2π.l) + X∗(t) i f p ≥ 0.5
(20)

where p is an arbitrary value in [0, 1].
Step 3: Search for Prey (Exploration Phase)
In the exploration phase, the search is performed randomly. First, one of the whales’

populations is selected randomly to allow the global search, then according to this randomly
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chosen population the position of the search is updated. In this phase, it is necessary to use
the random values of the parameter A higher than 1 or lower than −1 to obligate the search
agent to move far away from a reference whale. The model’s equations are expressed
as follows:

D = |C.Xrand − X | (21)

Xi(t + 1) = Xrand − A.D (22)

where Xrand represents a random position vector chosen from the available whales in
the population.

As mentioned earlier, the Whale Optimization Algorithm (WOA) is one of the lat-
est swarm-based algorithms and it showed high performance when addressing various
optimization problems, such as an analysis of medical image segmentation [41] and opti-
mization tasks [42]. Recently, the WOA gained significant attention from researchers due
to its ability to be quickly implemented and its requirement of only a few parameters to
fine-tune [43]. The simplicity of this method and its success in solving some optimization
problems attracted our attention to employ it to address MRI brain segmentation problems.

The WOA depends on the initial values of the population obtained by a set of random
solutions. First, the WOA takes the initial values randomly, whereas, during iterations, the
search agents optimize their positions accorded by the randomly selected search agent or
based on the current optimal solution. The current solution is calculated according to the
fitness function values as the optimal solution. To apply this algorithm and track its steps,
a new hybrid method was proposed to solve the optimization issues called HMRF-WOA, a
proposed hybrid algorithm that links the steps of the WOA with the HMRF model. The
HMRF-WOA is depicted in the next section.

4. HMRF and Whale Optimization Algorithm (HMRF-WOA)

This section explains the connection between the Hidden Markov Random Field
Model and the Whale Optimization Algorithm. As discussed in Section 2, MRF is one
of the most effective methods for achieving image segmentation of images using the
maximum a posterior (MAP) criterion. However, due to some problems such as noise,
overlapping regions, and low contrast in medical images, MRF seems to be inadequate.
Moreover, in order to accurately identify the class of a given pixel, we can consider an
approximation of the exact segmentation using optimization techniques. In addition, to
seek a given pixel class, we can consider an approximation of the exact segmentation using
optimization techniques. For these reasons, we employed WOA as an optimizing tool to
aid in segmenting MR brain images. WOA is utilized to define the optimal class of pixel in
brain MR images.

Therefore, by combining MRF- and WOA-based methods, we can leverage the advan-
tages of both techniques to significantly improve the accuracy of segmentation and also to
address issues related to low contrast in MRI images. Additionally, we can achieve optimal
segmentation by considering the mean and standard deviation of each class. So, pixels are
classified into the same category as the nearest mean, and during the algorithm iterations,
the best solution is selected based on the fitness function values (Equation (12)) referenced
in Section 2. This objective function serves to quantify the proximity of a solution to the
optimal solution.

Moreover, the brain tissue segmentation problem can be solved by the HMRF-WOA
method, where the objective function given in Equation (12) can converge or close in on
the optimal solution. The HMRF-WOA initiates using a random value of the populations
with predefined search elements (X1. . .Xi. . .Xn), and each one has a set of predefined value
of the initial locations Xi = (Xi1,. . . Xij. . .Xik). Through the iterations of the algorithm, we
calculated, for each search agent i, the new position by the fitness function, obtaining a set
of positions for all populations and conserving the best set of positions.

Let µi(t) = (µi1(t),. . ., µij(t),. . ., µik(t)) be the best location visited by the search agent i
until the time t calculated by the fitness function, which allows us to define its own resulting
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segmented image xi(t) = (xi1(t),. . .,xis(t),. . .,xiM(t)) by using its location µi(t), where xis(t) = j,
on the condition that the mean µij(t) is nearest to ys. After identifying the optimal search
element by its best position µi, other search elements will adjust their positions towards the
best search element. Consequently, the best position obtained by the population thus far is
µ = (µ1, . . . , µi, . . . µk).

Our proposed segmentation method of brain MRIs by the HMRF-WOA has the fol-
lowing main steps (Algorithm 1).

Algorithm 1: The main steps of our proposed segmentation method of brain MRIs by the
HMRF-WOA.

Input: Initialize randomly a population Xi

1. Initialization of the search elements (agents Xi) and i = 1, 2. . .n.
2. For each element i, compute the fitness value by Equation (12).
3. X* designed the best search element.
4. Do while (t ≤ number of iterations) is true.
5. For each i in the population of the search agents
6. These parameters (a, A, C, l, and p) are updated.
7. If (p < 0.5)
8. If (|A| < 1)
9. The current search agent’s position is updated by Equation (14)
10. Else if (i.e., |A| ≥ 1)
11. A random search agent (Xrand) is selected.
12. The current search agent’s position is updated by Equation (22).
13. End if
14. Else if (i.e., p ≥ 0.5)
15. The current search agent’s position is updated by Equation (18).
16. End if
17. End for
18. Check that if any search agent exceeds the boundaries of the search space and make

the correction.
19. Recompute the fitness value of all the population (each search agent) by Equation (12).
20. Getting better solution, update X*.
21. Increment the iteration (t).
22. End while

Output: The optimal solution is X*.

5. Experimental Results

In this part of the manuscript, we will explain the segmentation method results in
detail. Our proposed method is a hybrid algorithm that links the HMRF model and the
WOA metaheuristic algorithm, called HMRF-WOA, and our goal is to classify each pixel
of the brain tissues into four categories: WM, GM, CSF, and background. To obtain this
result, firstly, we applied the median filter to reduce noise with a structure of [3 × 3]
and to improve the segmentation results to achieve a high quality. Then, we started our
proposed HMRF-WOA process to research each region in the image and obtain its optimal
mean intensity.

One of the most successful research approaches is acquiring appropriate data for
testing the proposed methods, which often presents a major challenge for researchers,
especially in studies related to the human body. BrainWeb provides a valuable resource for
the research community by offering a set of realistic simulated brain MR image volumes
(Simulated Brain Database, SBD) with reference data (ground truth). These databases
are particularly suitable for brain tissue research. For this reason, we have chosen these
datasets as they offer a sufficient amount of data for brain image segmentation and are
highly appropriate for our purpose.
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5.1. Datasets

In this experimental phase, we chose two datasets of the MR images, including both
T1-weighted simulated and real 2D MRI brain images. The Simulated Brain Database
(SBD) was downloaded from the BrainWeb database [44], which can be accessed at this
link (https://brainweb.bic.mni.mcgill.ca/brainweb/), accessed on 20 October 2022. On the
one hand, we have five BrainWeb databases with different input image parameters. Table 1
below contains all these parameters.

Table 1. The parameters of the databases used in the proposed method.

Databases Types Dimensions Noises (%) INU * (%) Voxels (mm)

1 Brainweb 181 × 217 × 181 0 0 1 × 1 × 1

2 Brainweb 181 × 217 × 181 3 20 1 × 1 × 1

3 Brainweb 181 × 217 × 181 5 20 1 × 1 × 1

4 Brainweb 181 × 217 × 181 7 20 1 × 1 × 1

5 Brainweb 181 × 217 × 181 9 40 1 × 1 × 1

6 IBSR 256 × 256 × 63 - - 1 × 3 × 1

* Intensity non-uniformity = INU.

On the other hand, the real MR images with T1-weighted modality, known as the
Internet Brain Segmentation Repository (IBSR), were collected from the 20 normal MR
brain datasets, which are available at (https://www.nitrc.org/projects/ibsr/), accessed on
20 October 2022, where the input image parameters were dimensions = 256 × 256 × 63 and
voxels = 1 × 3 × 1 mm. In totality, six datasets with various parameters were considered as
input data to apply our algorithm.

5.2. Performance Measures

With the purpose of interpreting the HMRF-WOA’s performance, this manuscript uses
two measures which are most often used in the evaluation of medical volume segmentation:
the Dice coefficient metric (DC) [45] and the Jaccard coefficient (JC) [46].

5.2.1. Dice Coefficient (Dice)

This is a metric based on overlap that directly evaluates the similarity between a
segmented image and a ground truth image. If the value of DC equals or is close to 1, this
indicates the best performance of the method.

Dice=
2. area o f overlap

total area
=

2.TP
2.TP + FP + FN

(23)

5.2.2. Jaccard Coefficient (JC)

JC is an evaluation index that summarizes the area of overlap between two groups
of binary segmentations. This metric is defined as the ratio of intersection over union of
the ground truth image and the resulting segmented image. A higher result of this metric
signifies a better result. The JC index is defined as follows:

JC =
area o f overlap
area o f union

=
TP

TP + FP + FN
(24)

where TP, FP, and FN are the true positive, the false positive, and the false negative,
respectively.

Furthermore, the parameter called β in the fitness function (Equation (12)) can influ-
ence the performance of the algorithm. In this case, it is necessary to fix the coefficient β
when the weights present a part of the energy of the model. We chose β = 1 in this work.
Table 1 defines the different databases used in our proposed method.

https://brainweb.bic.mni.mcgill.ca/brainweb/
https://www.nitrc.org/projects/ibsr/
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5.3. Discussion

The accuracy of any segmentation method depends on several factors, including the
choice of the proposed technique, and a number of its parameters, such as the dataset, num-
ber of regions to be segmented or classified, the number of iterations, and the workstation
configuration. Within this framework, we have achieved superior segmentation results
compared to other methods (see Tables 2–4). This is due to the use of prior knowledge.

Table 2. Mean DC values of the simulated MR brain images (BrainWeb).

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

GM

HMRF-WOA 0.982 0.974 0.953 0.955 0.935

HMRF-BFGS 0.973 0.942 0.918 NA * NA *

MV-FCM 0.885 0.876 0.866 0.854 0.836

Amiri et al. [47] 0.975 0.960 0.930 0.925 0.895

AWSFCM NA * 0.895 0.836 0.809 NA *

WMT-FCM NA * 0.9508 0.9219 0.8818 NA *

WM

HMRF-WOA 0.997 0.990 0.986 0.986 0.976

HMRF-BFGS 0.991 0.969 0.951 NA * NA *

IMV-FCM 0.952 0.950 0.938 0.929 0.918

Amiri et al. [47] 0.960 0.950 0.920 0.920 0.880

AWSFCM NA * 0.865 0.836 0.813 NA *

WMT-FCM NA * 0.9729 0.9550 0.9306 NA *

CSF

HMRF-WOA 0.979 0.977 0.951 0.952 0.968

HMRF-BFGS 0.960 0.939 0.919 NA * NA *

IMV-FCM 0.850 0.844 0.837 0.870 0.813

Amiri et al. [47] 0.970 0.960 0.940 0.930 0.925

AWSFCM NA * 0.692 0.672 0.658 NA *

WMT-FCM NA * 0.9628 0.9424 0.9090 NA *

* The performance of the method for this tissue was not reported.

Table 3. Mean JC values of simulated MR brain images from BrainWeb.

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

GM

HMRF-WOA 0.966 0.944 0.925 0.916 0.879

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.797 0.781 0.765 0.753 0.722

Amiri et al. [47] 0.959 0.920 0.880 0.860 0.820

AWSFCM NA * 0.787 0.742 0.726 NA *

WM

HMRF-WOA 0.995 0.987 0.977 0.973 0.953

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.904 0.892 0.877 0.858 0.835

Amiri et al. [47] 0.925 0.915 0.870 0.850 0.800

AWSFCM NA * 0.760 0.743 0.721 NA *
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Table 3. Cont.

Tissue Method Database 1 Database 2 Database 3 Database 4 Database 5

CSF

HMRF-WOA 0.961 0.949 0.927 0.914 0.939

HMRF-BFGS NA * NA * NA * NA * NA *

IMV-FCM 0.707 0.679 0.670 0.675 0.718

Amiri et al. [47] 0.925 0.920 0.920 0.885 0.860

AWSFCM NA * 0.520 0.516 0.485 NA *

* The performance of the method for this tissue was not reported.

Table 4. Mean DICE coefficient values of MR brain images from the IBSR.

Tissue Method Mean Dice

GM

HMRF-WOA 0.916

hMRF-BFGS 0.859

PLA-SOM 0.780

Amiri et al. [47] 0.863

Gardens2 0.740

KPSFCM 0.80

WM

HMRF-WOA 0.856

hMRF-BFGS 0.855

PLA-SOM 0.740

Amiri et al. [47] 0.814

Gardens2 0.720

KPSFCM 0.81

CSF

HMRF-WOA 0.459

hMRF-BFGS 0.381

PLA-SOM 0.230

Amiri et al. [47] 0.423

Gardens2 0.230

KPSFCM 0.31

As mentioned before, the images of the first five datasets in Table 3 were used to
evaluate the performance of the HMRF-WOA. Figures 1–5 show some slices of a T1-
weighted image (slices: 84, 95, 105, 108, 120). These brain images correspond to the
slices under different types of conditions, such as database type, dimension image, noise
level, intensity non-uniformity level, and slice thickness (mm). In Table 1, rows 1 to 5
summarize the parameters of Figures 1–5, respectively. Figure 6 represents the ground
truth segmentation of slices 84, 95, 105, 108, and 120. In this figure, each column contains
the three tissues, GM, WM, and CSF, of each slice. Figures 7–11 show the segmentation
results, where the four tissues (BG, GM, WM, and CSF) are shown with different colors.
The yellow, red, and green colors represent the segmented regions of GM, WM, and CSF,
respectively. As we can also see from these figures, the resulting segmented images in
Figures 7–11 are almost close to the initial images in Figures 1–5.
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HMRF-BFGS 0.991 0.969 0.951 NA * NA * 
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Amiri et al. 

[47] 
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CSF 
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Amiri et al. 
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0.970 0.960 0.940 0.930 0.925 

AWSFCM NA * 0.692 0.672 0.658 NA * 
WMT-FCM NA * 0.9628 0.9424 0.9090 NA * 

* The performance of the method for this tissue was not reported. 

Figure 10. Segmentation results of the images illustrated in Figure 4.

Computers 2024, 13, x FOR PEER REVIEW 14 of 23 
 

     
#84 #95 #105 #108 #120 

Figure 10. Segmentation results of the images illustrated in Figure 4. 

     
#84 #95 #105 #108 #120 

Figure 11. Segmentation results of the images illustrated in Figure 5. 

Table 2. Mean DC values of the simulated MR brain images (BrainWeb). 

Tissue  Method 
Database 

1 Database 2 Database 3 Database 4 Database 5 

GM 

HMRF-WOA 0.982 0.974 0.953 0.955 0.935 
HMRF-BFGS 0.973 0.942 0.918 NA * NA * 

MV-FCM 0.885 0.876 0.866 0.854 0.836 
Amiri et al. 

[47] 
0.975 0.960 0.930 0.925 0.895 

AWSFCM NA * 0.895 0.836 0.809 NA * 
WMT-FCM NA * 0.9508 0.9219 0.8818 NA * 

WM 

HMRF-WOA 0.997 0.990 0.986 0.986 0.976 
HMRF-BFGS 0.991 0.969 0.951 NA * NA * 

IMV-FCM 0.952 0.950 0.938 0.929 0.918 
Amiri et al. 

[47] 
0.960 0.950 0.920 0.920 0.880 

AWSFCM NA * 0.865 0.836 0.813 NA * 
WMT-FCM NA * 0.9729 0.9550 0.9306 NA * 

CSF 

HMRF-WOA 0.979 0.977 0.951 0.952 0.968 
HMRF-BFGS 0.960 0.939 0.919 NA * NA * 

IMV-FCM 0.850 0.844 0.837 0.870 0.813 
Amiri et al. 

[47] 
0.970 0.960 0.940 0.930 0.925 

AWSFCM NA * 0.692 0.672 0.658 NA * 
WMT-FCM NA * 0.9628 0.9424 0.9090 NA * 

* The performance of the method for this tissue was not reported. 

Figure 11. Segmentation results of the images illustrated in Figure 5.

Hence, we have demonstrated the high performance of our method, despite existing
artifacts on the MR brain images. To evaluate the performances of the HMRF-WOA
more clearly, two criteria were used to compare the similarities between the manual (GT)
and automatic segmentations: DC and AC, which are described in the previous section.
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The results are summarized in Tables 2 and 3. Moreover, Figures 12–17 illustrate the
comparison of the DC and JC coefficients between five approaches: HMRF-BFGS, IMV-FCM,
Amiri et al. [47], AWSFCM [48], WMT-FCM [49], and HMRF-WOA. According to these
figures, the test results show that the present approach brings satisfactory results compared
with the literature methods for all brain tissues.
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Figure 13. Dice coefficient of WM (BrainWeb dataset) for each algorithm [47].

With regard to the T1-weighted MRI brain datasets, the performance of the HMRF-
WOA was evaluated for 20 normal subjects. Figure 18 shows some slices of one subject
(slices 20, 28, 32, 35, and 39); Figure 18a presents the initial slices images, (b) represents the
ground truth segmentation, and (c) shows the HMRF-WOA segmentation results.
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Figure 14. Dice coefficient of CSF (BrainWeb dataset) for each algorithm [47].
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Figure 16. Jaccard coefficient of WM (BrainWeb dataset) for each algorithm [47].
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Figure 18. Segmentation results of IBSR dataset: (a)—initial images; (b)—ground truth images;
(c)—segmentation results.

Table 4 below illustrates the Mean DC values of the MR brain images from the IBSR
obtained by our proposed method (HMRF-WOA) and the literature methods. In this
assessment, we have added other approaches, such as PLA-SOM [50], Gardens2 [51],
andKPSFCM [52], for GM, WM, and CSF segmentation. All the comparative methods
shown in this table use the same database images. So, this comparison shows that the
HMRF-WOA performed significantly better than the other methods.

The graphical presentation of the mean DC index for the three tissues (CSF, WM, and
GM) between our proposed method and the literature methods is shown in Figure 19.
This comparison shows that the average DC index of the GM and CSF segmentations is
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strongly improved in the IBSR dataset. On the other hand, the average DC indexes of the
WM segmentations between our method and hMRF-BFGS suggests that the improvement
is slight.
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As shown, these analyses confirmed the accuracy and the robustness of our automatic
method. In addition, the proposed method, called HMRF-WOA, outperforms the literature
methods used for our comparison.

The qualitative analysis provides a visual representation of the segmentation ap-
proaches. The visual comparison of the resulting images using the HMRF-WOA appears to
be more similar to the reference image (ground truth), where Figures 1–5 show the GM,
WM, and CSF tissue regions of the reference image with higher values of noise levels (3,
5, 7, and 9%) and intensity non-uniformity levels (20, 40%), whereas Figures 7–11 show
the subject images obtained using the proposed technique. However, this result shows
that with higher values of noise and intensity non-uniformity, the algorithm, with its
hyperparameters, is able to segment the tissue regions correctly.

Moreover, Figure 18 illustrates the segmentation results of the proposed algorithm
using MR brain images from the IBSR database. Figure 18a presents the slices of the
original brain image; Figure 18b is the ground truth slice images; and Figure 18c shows the
segmented brain MR images using the HMRF-WOA approach on the sample image of one
subject. GM is shown in yellow, WM in red, CSF in green, and the background in blue.

Therefore, these analyses confirmed the accuracy and the robustness of our automatic
method. In most cases, we achieved acceptable results using these brain datasets.

In this framework, the HMRF-WOA incorporates three hyperparameters:

1. The weight β associated with the pair of neighboring pixels is a positive constant
that controls the size of homogeneous regions. Also, increasing the value of the β

parameter e can increase the contribution of the neighboring sites in the estimation of
the class of a given pixel. So, we chose β = 1 as we obtained a good performance for
the segmentation method using this value.

2. The whale population size parameter represents the total number of whales used in
the WOA to optimize the MRI image segmentation. We have tested three values of
this parameter (10, 20, and 30). Using 20 search agents gave the best accuracy result
and a good computational cost compared to other values.

3. The number of iterations represents the number of loops used to evaluate the HMRF-
WOA process. We tested values ranging between 5 and 40 iterations. The best result
was obtained with 20 iterations.

The choice of these parameters shows its effect on the performance of the HMRF-WOA.
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Computational Complexity Analysis

Computing time serves as a crucial measure for justifying the computational effective-
ness of any method. Our proposed approach with these hyperparameters showed a good
efficiency and a better performance compared to other segmentation methods. However,
a notable drawback of this method is its computational complexity. A critical limitation
arises from the selection of hyperparameters, where the balance between computational
cost and accurate results must be carefully considered. Another limitation is that we have
not tested the algorithm’s performance to evaluate its generalizability on other MRI types
or imaging modalities.

In addition to this, the computational complexity of the algorithm is computed
as follows:

1. Initializing the whale population is O(N), where N is the size of the population.
2. Computing the fitness value of the initial population is O(N).
3. Obtaining the best solution is O(N2).
4. Iteration, updating whale population, and evaluating fitness are O(2N).
5. Iteration and obtaining the best solution are O(N2).

Therefore, the total time complexity of HMRF-WOA is:

O(2N) + O (N2) + maxiter (O (2N) + O(N2)) == (maxiter + 1) (O (N2 + 2N))

where maxiter is the maximum number of iterations used as the termination criteria for
the algorithm.

6. Conclusions

Efficient methods of segmentation and classification are some of the most challenging
tasks for physicians and radiologists. The automation of these methods thus occupies a
major proportion of research in the domain of medical imaging.

The motive of medical image processing for handling human organs is to precisely
segment or classify the tissue regions to make operations easier.

In this study, a novel combination of the HMRF model and a whale optimization
algorithm (WOA) are applied to segment the images of two well-known brain datasets:
BrainWeb and IBSR. We conclude that our HMRF-WOA outperforms all the other methods
or techniques compared in this study, where the assessment results of the segmented tissues
as illustrated in all the figures indicate that the HMRF-WOA can precisely segment the
brain tissues at different noise levels, despite the presence of the intense inhomogeneity
in the input images. Overall, comparing the proposed method with the results of other
techniques shows that the method can yield an acceptable result for GM, WM, and CSF
segmentation. The results are summarized in Tables 2 and 3.

This increased robustness and accuracy of our HMRF-WOA optimization method-
based MRI brain segmentation technique will hopefully help the application of MR image
segmentation techniques, such as measuring the anatomical structures measurement of the
brain, surgical planning, and image-guided interventions.

In the future, we would like to hybridize the WOA method with other techniques to
show their main benefits and to achieve higher performances in the treatment process.
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