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Simple Summary: We developed an attention-based whole slide image (WSI)-level classification
deep learning model employing surgically and endoscopically resected specimens to predict LNM in
T1 CRC. Our AI model with H&E-stained WSIs and without annotations showed good performance
power with the validation of an independent cohort in a single center. The area under the curve of
our model was 0.781–0.824, higher than that of previous artificial intelligence (AI) studies with only
WSIs. Our AI model, which showed the highest sensitivity (92.9%), reduced unnecessary additional
surgery by 14.2% more than using the current JSCCR guidelines (68.3% vs. 82.5%). This revealed the
feasibility of using an AI model with only H&E-stained WSIs to predict LNM in T1 CRC.

Abstract: According to the current guidelines, additional surgery is performed for endoscopically
resected specimens of early colorectal cancer (CRC) with a high risk of lymph node metastasis (LNM).
However, the rate of LNM is 2.1–25.0% in cases treated endoscopically followed by surgery, indicating a
high rate of unnecessary surgeries. Therefore, this study aimed to develop an artificial intelligence (AI)
model using H&E-stained whole slide images (WSIs) without handcrafted features employing surgically
and endoscopically resected specimens to predict LNM in T1 CRC. To validate with an independent
cohort, we developed a model with four versions comprising various combinations of training and
test sets using H&E-stained WSIs from endoscopically (400 patients) and surgically resected specimens
(881 patients): Version 1, Train and Test: surgical specimens; Version 2, Train and Test: endoscopic and
surgically resected specimens; Version 3, Train: endoscopic and surgical specimens and Test: surgical
specimens; Version 4, Train: endoscopic and surgical specimens and Test: endoscopic specimens. The
area under the curve (AUC) of the receiver operating characteristic curve was used to determine the
accuracy of the AI model for predicting LNM with a 5-fold cross-validation in the training set. Our
AI model with H&E-stained WSIs and without annotations showed good performance power with
the validation of an independent cohort in a single center. The AUC of our model was 0.758–0.830
in the training set and 0.781–0.824 in the test set, higher than that of previous AI studies with only
WSI. Moreover, the AI model with Version 4, which showed the highest sensitivity (92.9%), reduced
unnecessary additional surgery by 14.2% more than using the current guidelines (68.3% vs. 82.5%). This
revealed the feasibility of using an AI model with only H&E-stained WSIs to predict LNM in T1 CRC.
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1. Introduction

Colorectal cancer (CRC) is the second most fatal and the third most commonly di-
agnosed cancer worldwide [1,2]. However, CRC incidence and mortality have decreased
due to colonoscopy screening, surveillance, and high-quality endoscopic treatment [3–5].
Endoscopic resection is recommended as the first-line treatment for early CRC without
distant or lymph node metastasis (LNM). Although intramucosal CRC is not associated
with LNM, submucosal CRC exhibits LNM in approximately 10% of cases [6–10]. Therefore,
additional surgical resection is performed only when endoscopically resected specimens
show high-risk features (deep submucosal (SM) invasion, lymphovascular invasion (LVI),
tumor budding, or poorly differentiated histology) related to LNM [7,11–15]. However,
even though additional surgery is recommended based on the current guidelines, LNM
occurs in 2.1–25.0% of cases treated endoscopically and then surgically. In other words,
75–98% of additional surgeries are unnecessary [9,16–19]. The main challenge is to figure
out LNM before undergoing surgery. Several studies have attempted to identify a method
to predict LNM in patients with T1 CRC (tumor-invaded submucosa, according to the
Japanese Society for Cancer of the Colon and Rectum (JSCCR) and American Joint Com-
mittee on Cancer) to reduce the number of unnecessary surgeries and minimize the risk
of LNM. However, since low inter-observer agreement and limited indications of current
guidelines, it is nearly impossible to predict LNM through pathologic examination based
on Hematoxylin and eosin(H&E)-stained endoscopically resected specimen [20–22].

Recent studies have attempted to solve these problems using artificial intelligence
(AI) [23–27]. The two strategical approaches for AI-assisted assessment of the risk of
LNM in T1 CRC were pathologist-dependent and independent [28,29]. The pathologist-
dependent strategy used text-based data, which included the histologic features obtained
by a pathologist, such as depth of SM invasion, tumor differentiation, and LVI [23,25,30].
These test data-based AI models proved sufficient evidence with large cohorts and external
validation, outperforming the current guidelines. Nevertheless, there were still limitations,
such as varying pathologic criteria and standards among different guidelines and diagnostic
disagreement among pathologists. To address these issues, a pathologist-independent AI
model utilizing whole slide images (WSIs) has been reported. WSI-based AI models with
hematoxylin and eosin staining alone, including our previous study, were simplified and
less disruptive than current clinical best practices [26,27,31]. This strategy appears to be
ideal for overcoming inter-observer discrepancy, but a relatively low area under the curve
(AUC) compared to the pathologist-dependent method and external validation remain
a challenge.

Even though our previous study demonstrated the potential of using an AI with
H&E-stained WSIs from endoscopically resected specimens without handcrafted features
to predict LNM in patients with T1 CRC, our model had certain limitations [31]. WSIs from
endoscopically resected specimens had high-risk histological features of LNM because they
belonged to patients who underwent additional surgery after endoscopic treatment. So, the
previous model was unsuitable for predicting LNM in low-risk patients with T1 CRC. Also,
the study population was small (n = 400), and AUC was relatively low. To increase the
number of patients and WSIs from patients with low risk of LNM, we conducted a study
with AI training and testing by expanding the scope to include previously endoscopically
resected specimens from patients who underwent additional surgery due to the high
risk of LNM, as well as surgical specimens from patients who underwent surgery for
T1 CRC. Since the previous model lacked external validation with an independent cohort,
we wanted to perform extensive external validation with WSIs from multi-centers and
apply it to WSIs from T1 CRC patients who underwent endoscopic treatment. However, it
takes a lot of time to prepare WSI from multicenter and obtain a 5-year overall survival rate
in patients who have only undergone endoscopic treatment for T1 CRC. So, we conducted
a study using an alternative method instead of external validation. To validate with an
independent cohort in a single center, we aimed to develop an AI model with four versions
comprising various combinations of training and test sets using H&E-stained WSIs from
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surgical and endoscopically resected specimens. Because endoscopic resected specimens
contained only part of the SM layer while surgical specimens contained the entire layer of
the intestine, the two cohorts were independent of each other. Additionally, we aimed to
apply our AI program to predict LNM in T1 CRC samples.

2. Materials and Methods
2.1. Study Population

The inclusion criteria were (1) patients who underwent surgical resection for newly
diagnosed T1 CRC between 2003 and 2020 at the Samsung Medical Center or (2) patients
who underwent endoscopic treatment including endoscopic mucosal resection (EMR) and
endoscopic submucosal dissection (ESD) for newly diagnosed T1 CRC, and those who
underwent additional surgery based on the JSCCR guidelines [14] due to high risk of LNM
indicated by at least one of the following histologic features: positive resection margin, deep
SM invasion (SM depth > 1 mm, Sm2/Sm3 for sessile T1, and Haggitt 4 for pedunculated
T1 CRC), presence of LVI, poorly differentiated histology, or tumor budding: within
3 months after EMR/ESD from 2010 to 2018 at the Samsung Medical Center. The exclusion
criteria were as follows: (1) unavailable H&E-stained slide, (2) unclear H&E-stained slide
image for analysis, (3) no LN dissection, or (4) presence of synchronous invasive carcinoma.
The study protocol was approved by the Institutional Review Board of Samsung Medical
Center (2021-01-042-005). The requirement for informed consent from the patients was
waived due to the use of de-identified data routinely collected during hospital visits.

2.2. Clinicopathologic Features and Preparation of Whole Slide Images for the Study Population

Clinical data such as age at diagnosis, sex, body mass index, family history of CRC,
presence of comorbidities, smoking status, alcohol consumption, and tumor location were
reviewed. Additionally, pathologic features, such as the tumor size (length of cancer
component measured by excluding adenoma component), positive resection margin, depth
of SM invasion, LVI, histologic differentiation (based on the least differentiated component),
tumor budding, and microsatellite instability, were reviewed by a pathologist and used only
for comparison with the predictive performance of our model. Assessment of histological
differentiation was based on the least high-grade pattern of the carcinoma, which often
co-exists with dominant elements of low-grade patterns. Immunostaining with D2–40 was
occasionally performed for lymphatic vessel to determine whether it was a true lymphatic
or an iatrogenic empty space caused by tissue being pushed in the process of specimen
fixing in formaldehyde and making into slide.

Surgical and endoscopically resected specimens were fixed in formaldehyde and
embedded in paraffin. Tissue specimens were cut into sections with 3 µm that were placed
on the slides. During preparation, the artifact was removed from ethanol and a 50 ◦C
floating hot water tank. H&E-stained specimen slides were scanned using a VENTANA
iScan HT scanner (Roche Diagnostics, Basel, Switzerland) at ×20 magnification.

2.3. Deep Learning Artificial Intelligence Model Development

The deep learning method used in this study is the same as that employed in our
previous study [31]. We developed an attention-based WSI-level classification deep learning
model to predict whether a WSI is LNM positive or negative (Figure 1). The model was
trained for a binary classification task, where the input was a WSI, and the output was the
probability of the WSI being LNM-positive.
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Figure 1. Pipeline of the approach for classifying lymph node metastasis. WSI, whole slide image.

The model is an end-to-end neural network comprising a deep convolutional neural
network (DCNN), attention module (AM), and classification module (CM) [32,33]. The
DCNN was pre-trained with patches labeled as positive (patches from LNM positive WSIs)
or negative (patches from LNM negative WSIs) to learn features in histopathological images
in advance and to function as a patch image feature extractor (FE) [34]. The AM computes
an attention score (AS), between 0 and 1, for each patch image in a WSI; the sum of these
scores is equal to 1. An attention mechanism was used to visualize the spatial distribution of
ASs of the WSIs. A higher AS indicates that the patch image is relatively more informative
and has a greater influence on the final classification decision.

The model’s inferencing details are as follows: For a given WSI, all tissue regions are
patched in a tiling manner and used as input for the DCNN FE, which compresses and
encodes each patch image into a 512-dimensional feature vector (FV). The FVs are further
aggregated into a single WSI-level FV (WSI deep feature) with 512 dimensions using their
weighted average determined by the AS, computed by the AM [32]. The final WSI deep
feature is then input into the CM to obtain the final prediction for LNM.

2.4. Statistical Analysis

Continuous variables are expressed as medians with interquartile ranges (IQRs) and
analyzed using Student’s t-test and the Mann–Whitney U test. Statistical significance was
set at p < 0.05. All statistical analyses were performed using SPSS software version 28 for
Windows (SPSS Inc., Chicago, IL, USA).

The AI performance was evaluated using the AUC receiver operating characteristic
curve (ROC). ROC is a probability curve, and AUC represents the degree or measure of
separability. It showed how much the model was capable of distinguishing between classes.

To validate our model in case of a lack of other hospital WSI, we developed a model
with four versions of training and test set combinations using endoscopically and surgically
resected specimens: Version 1, Train and Test: surgical specimens; Version 2, Train and Test:
endoscopic and surgically resected specimens; Version 3, Train: endoscopic and surgical
specimens and Test: surgical specimens; and Version 4, Train: endoscopic and surgical
specimens and Test: endoscopic specimens.

We performed a five-fold cross-validation (CV) on the training set, preserving the
percentage of each class to determine how well our approach worked on each fold. Conse-
quently, each of the five models trained in CV was applied to the held-out test set, and the
results were obtained by averaging the output predictions. By comparing our AI model
with a model using clinicopathological features, we trained a random forest (RF) classifier
with 500 trees to predict LNM [35]. RF is a versatile and widely used machine learning
algorithm that constructed multiple decision trees and combined their outputs for robust
and accurate predictions.
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The optimal cut-off sensitivity and specificity of each model were evaluated using
the Youden index, the maximum potential effectiveness of a diagnostic biomarker, and a
common summary measure of the ROC curve [36]. And we used McNemar’s tests, non-
parametric test used to analyze paired nominal data, to compare predictive performances
between our model and JSCCR guidelines, the most widely used guidelines in Asia.

3. Results
3.1. Baseline Characteristics of the Study Population

A total of 1737 patients with T1 CRCs (1046 surgical resections and 691 endoscopic
resections followed by surgery) were eligible for this study, and 456 patients were excluded.
Thus, 1281 patients (881 surgical resections and 400 endoscopic resections followed by
surgery) were analyzed (Figure 2). Their baseline clinicopathological characteristics are
presented in Table 1. The median age at CRC diagnosis was much younger in patients
with endoscopic resection followed by additional surgery (59.0; IQR, 52.0–65.0) than in
patients with surgical resection (60.0; IQR, 52.0–69.0). Men accounted for 59.6% of the total
population. The percentage of patients with a family history of CRC, ex-/current smoker,
or alcohol ex-/current drinker was higher in endoscopic resection followed by additional
surgery. Patients without a family history of CRC accounted for 89.2% of the patients.
High-risk pathologic features related to LNM, including LVI, tumor budding, positive
resection margin, and microsatellite instability, were more in patients with endoscopic
resection followed by additional surgery than surgical resection.
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Patients with CRC and LNM accounted for 6.6% (n = 58) of patients with surgical
resection and 17.8% (n = 71) of patients with endoscopic resection followed by additional
surgery. LN yield, the total number of LNs retrieved after surgery was 22,022. The LN
ratio, the ratio of positive LNs out of the total removed, was 1.24% (273/22,022). In our
study, an average of 17 LNs were retrieved in each surgery. When we compared the past
group (patients who underwent surgery in 2003–2010) and the recent group (2011–2020), an
average of 16 LNs were retrieved per surgery in the past group, and 18 LNs were retrieved
per surgery in the recent group.
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Table 1. Baseline characteristics of study population.

Endoscopic Resection Followed
by Additional Surgery (n = 400)

Surgical Resection
(n = 881)

Total Negative LNM
(n = 329)

Positive LNM
(n = 71)

Negative LNM
(n = 780)

Positive LNM
(n = 101)

p
Value *

Clinical features

Age at diagnosis Year (IQR) 60.0 (52.0–68.0) 59.0 (52.0–65.0) 60.0 (52.0–68.0) 60.0 (52.0–69.0) 59.0 (52.0–67.0) 0.041

Sex
Male 764 (59.6) 193 (58.7) 46 (64.8) 467 (59.9) 58 (57.4)

0.504Female 517 (40.4) 136 (41.3) 25 (35.2) 313 (40.1) 43 (42.6)

Body mass index kg/m2 (IQR) 24.1 (22.2–26.1) 23.9 (22.0–26.1) 24.8 (23.3–27.4) 24.1 (22.2–26.0) 24.8 (23.0–26.0) 0.704

Presence of
comorbidity

No 795 (62.1) 217 (66.0) 36 (50.7) 477 (61.2) 65 (64.4)
0.299Yes 486 (37.9) 112 (34.0) 35 (49.3) 302 (38.7) 36 (35.6)

Family history of
CRC

No 1143 (89.2) 294 (86.3) 61 (85.9) 708 (90.8) 90 (89.1)
0.014yes 138 (10.8) 45 (13.7) 10 (14.1) 72 (9.2) 11 (10.9)

Smoking status
No 912 (71.2) 214 (65.0) 43 (60.6) 588 (75.4) 67 (66.3)

<0.001Ex-smoker 201 (15.7) 59 (17.9) 10 (14.1) 104 (13.3) 23 (22.8)
Yes 168 (13.1) 56 (17.0) 18 (25.4) 88 (11.3) 11 (10.9)

Alcohol
consumption

No 809 (63.2) 192 (58.4) 31 (43.7) 523 (67.1) 63 (62.4)
<0.001Ex-drinker 71 (5.5) 27 (8.2) 9 (12.7) 29 (3.7) 6 (5.9)

Yes 401 (31.3) 110 (33.4) 31 (43.7) 228 (29.2) 32 (21.7)

Tumor location
Left side 913 (71.3) 241 (73.3) 50 (70.4) 542 (69.5) 80 (79.2)

0.236Right side 368 (28.7) 88 (26.7) 21 (29.6) 238 (30.5) 21 (20.8)

Pathologic
features

Size of cancer mm (IQR) 15.0 (10.0–22.0) 10.0 (7.3–14.0) 8.0 (7.0–12.0) 20.0 (15.0–25.0) 16.5 (14.3–25.0) <0.001

Depth of
SM invasion

µm (IQR) 1775.0 1800.0 1500.0
N/A(1000.0–2200.0) (1075.0–2300.0) (1000.0–2000.0)

SM1 340 (38.6) 318 (40.8) 22 (21.8) N/A
SM2 218 (24.7) 185 (23.7) 33 (32.7)
SM3 323 (36.7) 277 (35.5) 46 (45.5)

Differentiation Well 760 (59.3) 182 (55.3) 55 (77.5) 480 (61.5) 43 (42.6) 0.210
Moderate 485 (37.9) 133 (40.4) 14 (19.7) 286 (36.7) 52 (51.5)

Poorly 36 (2.8) 14 (4.3) 2 (2.8) 14 (1.8) 6 (5.9)

Lympho-
vascular invasion

No 1030 (80.4) 243 (73.9) 49 (69.0) 691 (89.6) 47 (46.5)
<0.001Yes 251 (19.6) 86 (26.1) 22 (31.0) 89 (11.4) 54 (53.5)

Tumor budding No 1084 (84.6) 289 (87.8) 62 (87.3) 667 (85.5) 66 (65.3)
0.021Yes 197 (15.4) 40 (12.2) 9 (12.7) 113 (14.5) 35 (34.7)

Positive resection
margin

No 1167 (91.1) 235 (71.4) 51 (71.8) 780 (100) 101 (100)
<0.001Yes 114 (8.9) 94 (28.6) 20 (28.2) 0 0

Microsatellite
stability

Stable 915 (71.5) 82 (25.0) 28 (39.4) 667 (85.5) 89 (88.1)
<0.001Unstable 86 (6.7) 8 (2.4) 2 (2.8) 69 (8.8) 7 (6.9)

Unknown 279 (21.8) 238 (72.6) 41 (57.7) 44 (5.6) 5 (5.0)

* p-value: difference between endoscopic resection followed by additional surgery (n = 400) and surgical resection
(n = 881). LN, lymph node; IQR, interquartile range; CRC, colorectal cancer; SM, submucosal; N/A; not applicable;
SM1, upper third, if depth of submucosal invasion was pragmatically divided in equal thirds according to Kudo
classification; SM2, middle third; SM3, lower third.

3.2. Train and Test Set in Model with Four Versions

A total of 2604 WSIs (184 positive LNM and 1139 negative LNM) from 881 surgical
specimens (102 positive LNM and 791 negative LNM) and 400 endoscopically resected
specimens (82 positive LNM and 348 negative LNM) were used to develop the model. A
summary of the four versions is presented in Table 2.

In Version 1, 893 WSIs (102 positive LNM and negative 791 LNM) from 881 surgical
specimens were randomly split into training and test sets in a ratio of 4:1 at the patient
level. Accordingly, 80 and 21 patients with positive LNM and 624 and 156 with negative
LNM were assigned to the training and test sets, respectively.
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Table 2. Composition of number of patients and WSI according to lymph node metastasis in the
training and test set of artificial intelligence model with four versions.

LNM Previous
Study Version 1 Version 2 Version 3 Version 4

Training (5 fold) set

+ No of patients 57 80 137 137 137
+ No of WSI 63 81 144 144 144
− No of patients 263 624 887 887 887
− No of WSI 277 634 911 911 911

Test set

+ No of patients 14 21 35 21 14
+ No of WSI 19 21 40 21 19
− No of patients 66 156 222 156 66
− No of WSI 71 157 228 157 71

WSI, whole slide image; LNM, lymph node metastasis; Version 1, train and test: surgical specimen; Version 2,
train and test: endoscopic and surgical specimen; Version 3, train: endoscopic and surgical specimen and test:
surgical specimen; Version 4, train: endoscopic and surgical specimen and test: endoscopic specimen.

In Version 2, 1323 WSIs (184 positive LNM and negative 1139 LNM) from 881 surgical
specimens and 400 endoscopically resected specimens were randomly split into training
and test sets in a ratio of 4:1 at the patient level. Accordingly, 137 and 35 patients with
positive LNM and 887 and 222 patients with negative LNM were assigned to the training
and test sets, respectively.

In version 3, 1144 WSIs (165 positive LNM and negative 1068 LNM) from 881 surgical
specimens and 400 endoscopically resected specimens were randomly split into the training
set and surgical specimens were randomly split into the test set in a ratio of 6:1 at the
patient level. Accordingly, 137 and 21 patients with positive LNM and 887 and 156 patients
with negative LNM were assigned to the training and test sets, respectively.

In Version 4, 1145 WSIs (163 positive LNM and 982 negative LNM) from 881 surgical
specimens and 400 endoscopically resected specimens were randomly split into the training
set and endoscopically resected specimens were randomly split into the test set in a ratio of
13:1 at the patient level. Accordingly, 137 and 14 patients with positive LNM and 887 and
66 patients with negative LNM were assigned to the training and test sets, respectively.

3.3. Area under the Curve for Predicting Lymph Node Metastasis

The AUCs for predicting LNM in T1 CRC using the AI model with histopathological
images of endoscopic and surgical specimens and RF with clinicopathological features
are shown in Table 3. Our model showed better prediction performance, with an AUC of
0.758–0.830 for the training set and 0.781–0.824 for the test set, than that of the model with
clinicopathological features (AUC 0.516–0.683 in the test set). The ROC curves of the AI
model are shown in Figure 3. The sensitivity and specificity of each version were 71.4%
and 92.9% for version 1, 71.4% and 84.2% for version 2, 76.2% and 85.9% for version 3, and
92.9% and 57.6% for version 4 respectively.

Table 3. Area under the curve of artificial intelligence model, compared to random forest with
clinicopathologic features predicting of lymph node metastasis in in T1 CRC.

Cross-Validation on Train Set Previous Study Version 1 Version 2 Version 3 Version 4

Attention-base
WSI-level
classification deep
learning model

1 0.772 0.829 0.780 0.770 0.766
2 0.781 0.901 0.863 0.904 0.789
3 0.683 0.827 0.771 0.779 0.741
4 0.780 0.723 0.783 0.803 0.736
5 0.724 0.882 0.836 0.890 0.760

Average of five-folds 0.747 0.830 0.806 0.828 0.758
Test set 0.764 0.814 0.822 0.824 0.781
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Table 3. Cont.

Cross-Validation on Train Set Previous Study Version 1 Version 2 Version 3 Version 4

RF with
clinicopathologic
features *

1 0.598 0.659 0.653 0.728 0.512
2 0.574 0.713 0.722 0.704 0.712
3 0.703 0.710 0.739 0.728 0.746
4 0.631 0.729 0.725 0.712 0.721
5 0.623 0.670 0.647 0.666 0.593

Average of five-folds 0.626 0.696 0.697 0.708 0.657
Test set 0.598 0.701 0.635 0.683 0.516

WSI, whole slide image; RF, random forest; Version 1, train and test: surgical specimen; Version 2, train and test:
endoscopic and surgical specimen; Version 3, train: endoscopic and surgical specimens and test: surgical specimen;
Version 4, train: endoscopic and surgical specimens and test: endoscopic specimen. * Clinicopathological features
included age at diagnosis, sex, body mass index, presence of comorbidities, family history of CRC, smoking status,
alcohol consumption, tumor location, size of cancer, depth of submucosal invasion, lymphovascular invasion,
histologic differentiation, tumor budding, and microsatellite instability.
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Figure 3. Area under the ROC curve for attention-based WSI-level classification deep learning model
for predicting lymph node metastasis in T1 colorectal cancer. (A) Previous model, (B) Version 1,
(C) Version 2, (D) Version 3, (E) Version 4 ROC, receiver operating characteristic; WSI, whole-slide
image; Version 1, train and test: surgical specimen; Version 2, train and test: endoscopic and surgical
specimen; Version 3, train: endoscopic and surgical specimens and test: surgical specimen; Version 4,
train: endoscopic and surgical specimens and test: endoscopic specimen; AUC: area under the curve;
Avg: average.

3.4. Predictive Performance of Model with Four Versions vs. That of JSCCR Guidelines

We compared the performance of our model (four versions) with that of JSCCR
guidelines using the test set (Table 4). JSCCR guidelines recommend that additional
colorectal surgery be performed when endoscopically resected specimens show at least
one of the high-risk features of LNM. JSCCR guideline did not allow any LNM of T1 CRC,
which resulted in unnecessary additional surgery. It meant that this strategy showed 100%
sensitivity and 0% specificity. On the other hand, to reflect reality as much as possible,
we used the sensitivity and specificity of our model determined through the Youden
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index instead of setting it at 100% sensitivity to not allowing false negatives. The rate of
unnecessary additional surgery attributable to misdiagnosing patients with negative LNM
as having positive LNM was anticipated to be from 42.3% to 68.3% by our model with four
versions and 82.5 to 88.1% by the JSCCR guidelines. Based on the results of the analysis,
our model avoided at least 14.2% of unnecessary additional surgeries than predicted using
the current JSCCR guidelines.

Table 4. Predictive value of our artificial intelligence model with four versions and JSCCR guideline
for lymph node metastasis in patients with T1 colorectal cancer.

Artificial
Intelligence JSCCR p Value

Version 1

Sensitivity (%) 71.4 100 <0.001
Specificity (%) 92.9 0 <0.001

PPV (%) 57.7 11.9 <0.001
Accuracy (%) 90.4 11.9 <0.001

Unnecessary additional
Surgery (%) 42.3 88.1 <0.001

Missed LNM (%) 28.6 0 <0.001

Reduced unnecessary
additional surgery (%) * 45.8

Version 2

Sensitivity (%) 71.4 100 <0.001
Specificity (%) 84.2 0 <0.001

PPV (%) 41.7 13.6 <0.001
Accuracy (%) 82.5 13.6 <0.001

Unnecessary additional
Surgery (%) 58.3 86.4 <0.001

Missed LNM (%) 28.6 0 <0.001

Reduced unnecessary
additional surgery (%) 28.1

Version 3

Sensitivity (%) 76.2 100 <0.001
Specificity (%) 85.9 0 <0.001

PPV (%) 42.1 11.9 <0.001
Accuracy (%) 84.7 11.9 <0.001

Unnecessary additional
Surgery (%) 57.9 88.1 <0.001

Missed LNM (%) 23.8 0 <0.001

Reduced unnecessary
additional surgery (%) 30.2

Version 4

Sensitivity (%) 92.9 100 <0.001
Specificity (%) 57.6 0 <0.001

PPV (%) 31.7 17.5 <0.001
Accuracy (%) 63.8 17.5 <0.001

Unnecessary additional
Surgery (%) 68.3 82.5 <0.001

Missed LNM (%) 7.1 0 <0.001

Reduced unnecessary
additional surgery (%) 14.2

* Reduced unnecessary additional surgery when using the artificial intelligence model, compared to JSCCR
guidelines. JSCCR, Japanese Society for Cancer of the Colon and Rectum; Version 1, train and test: surgical
specimen; Version 2, train and test: endoscopic and surgical specimen; Version 3, train: endoscopic and surgical
specimens and test: surgical specimen; Version 4, train: endoscopic and surgical specimens and test: endoscopic
specimen; PPV, positive predictive value; LNM, lymph node metastasis

3.5. Attention Score

The attention mechanism interprets the effect of each patch on the final WSI-level
decision using a scoring system. The calculated ASs of WSIs for positive LNM are displayed
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as a heatmap, highlighting regions of interest (ROIs), where ASs were normalized using a
simple min-max normalization method (Figure 4). Sample patch images of LNM-positive
WSIs are shown in Figure 4B. The prominent features of the sample patch images with high
ASs were tumor budding and micropapillary patterns.
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4. Discussion

The risk of LNM in T1 CRC is associated with the following histological risk factors
in endoscopically resected specimens: LVI, tumor budding, histological grade, and depth
of SM invasion. In cases of high-risk LNM, additional surgery is recommended based
on the current guidelines. However, the risk of LNM in T1 CRC after additional surgery
with LN dissection is estimated to be 6–14% [37]. Therefore, to avoid unnecessary surgery,
it is important to predict LNM using endoscopically resected specimens before surgery.
However, it is almost impossible to predict LNM based on pathological evaluation using
only H&E-stained, endoscopically resected specimens. To address this issue, several recent
studies have used AI models to determine the histological risk of LNM [23,24,26,38,39].
However, these DL models are still in the early stages of development and require extensive
external validation [28,29,40].

In our previous study, we developed a prediction model analyzing H&E-stained WSIs
for LNM in T1 CRC using DL without manual pixel-level annotation. Compared to existing
studies, this study had the strengths of a relatively large target group that underwent
additional surgery after endoscopic resection, resulting in better AUCs for predicting LNM
with H&E-stained WSI information alone. Although the previous study included high-risk
histological features of LNM, the absolute number of enrolled patients was small. Moreover,
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as it was difficult to perform an external validation using scanned WSIs from other hospitals
in a relatively short time, no external validation was performed. Consequently, we planned
to validate our model using not only endoscopic specimens but also surgical specimens.
To increase the number of patients and WSIs from patients with low risk of LNM, we
included patients who underwent surgery between 2003–2020, a longer study period than
those who underwent endoscopic resection followed by surgery (2010–2018). Massive
surgical specimens that were performed when surgery was the only treatment option for
T1 CRC showed a lower risk of LNM compared to endoscopic resected specimens. Indeed,
pathologic characteristics of patients with surgical resection showed a lower risk of LNM
than in patients with endoscopic resection, followed by surgery. Therefore, as an alternative
to the independent cohort, we trained and tested the model in four versions and assessed
its performance.

We developed an AI model with a DL program to predict LNM in T1 CRC using
surgical and endoscopic specimens. The AUCs of our DL model were 0.758–0.830 for
the training set and 0.781–0.824 for the test set, which were improved compared with the
previous model (AUC: 0.747 in training and 0.767 in testing sets). This could be explained
by the fact that surgical specimens contained much more tissue and information than
endoscopically resected specimens, and over 1000 WSIs were used for analysis compared
with previous studies. Among four versions, Version 3 (train: endoscopic and surgical
specimens, test: surgical specimens), which contained surgical specimens in both training
and test sets, had the highest performance power. However, all versions of the AI model
showed acceptable AUC ranges for predicting LNM in patients with T1 CRC. On the other
hand, RF with clinicopathological features showed a lower AUC (0.516–0.701) than the AI
model. Only Version 1 (training and test: surgical specimen) had an AUC barely greater
than 0.7.

Among four versions, Version 4 (train: endoscopic and surgical specimens, test:
endoscopic specimens) was the closest to the actual prediction target. Because the ultimate
goal of the AI model was to predict LNM in patients who were only treated with endoscopic
treatment for T1 CRC, however, considering the study results, it could be assumed that
test with endoscopic resected specimen was difficult to predict LNM. The AUC of RF with
clinicopathologic features was the lowest (0.516) in Version 4. The AUC of Version 4 was the
lowest among the four versions, even though the difference was not significant. However,
it was remarkable that the AI model with Version 4 had the greatest improvement of AUC
(0.265), compared to RF with clinicopathologic features, among the four versions. Thus,
our newly developed model showed the possibility of application in clinical practice for
LNM prediction.

In a previous study, when we compared the AI model with JSCCR guidelines, we
ideally set the cutoff threshold of the AI model at 100% sensitivity not to allow missed LNM,
like JSCCR guidelines. As a result, the previous model reduced unnecessary additional
surgeries by 15.1% than the current JSCCR guidelines. However, setting the cutoff threshold
at 100% sensitivity might not reflect reality, so we used the Youden index for setting
the cutoff in our present study. The present model avoided 14.2–45.8% of unnecessary
additional surgeries than predicted using the current JSCCR guidelines while allowing
missed LNM, which ranged from 7.1 to 28.6%. The AI model that reduced unnecessary
additional surgery allowed more missed LNM. So, careful interpretation of results was
needed. Considering, acceptable the lowest rate of missed LNM, the ultimate target
population, and the improvement of AUC using the AI model, the AI model with Version
4 was compatible with clinical practice to predict LNM in T1 CRC. It reduced 14.2% of
unnecessary additional surgeries than predicted using the current JSCCR guidelines while
allowing 7% of missed LNM.

Previous studies using AI to determine the risk of LNM on histology showed AUC
ranging between 0.567 and 0.938, consistent with our results (0.781–0.824) [26,27,31,38,39,41].
Most studies included clinicopathologic variables and/or additional immunohistochem-
istry performed by pathologists. However, several recent studies have demonstrated the
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potential of applying DL to predict LNM in T1 CRC using H&E-stained WSIs without
a histological assessment [26,27,31]. This pathologist-independent strategy may be the
focus of the next era of T1 CRC management [29]. Similarly, our AI model also used WSIs
without annotation and included a large number of T1 CRC cases (n = 1281). The model
was validated using an independent cohort at the same institution and showed the best
AUC among the AI models using only WSI.

In contrast to previous studies, Kasahara et al. developed an AI model with
80–85% accuracy using biopsy specimens and mucosal layer of the surgical specimens
in the absence of biopsy specimens to predict patients with T1 CRC without LNM and
their LNM risk before treatment, and select appropriate procedure before treatment [41].
The study suggests that biopsy specimen characteristics are associated with LNM risk.
However, they implemented a weakly supervised model with a small number of patients
and images of the site of choice for each ROI selected by the pathologist. Our previous
study was conducted using high-risk histological features of LNM and was unsuitable for
predicting LNM in low-risk patients with T1 CRC. However, 10.1% of the present study
population had LNM, consistent with previous Japanese studies on long-term outcomes of
CRC (10.8–12.4%) [42,43]. Additionally, the sensitivity and specificity of the present model
were improved compared to our previous study. Therefore, it might be acceptable to apply
our AI model to predict LNM in patients with low-risk T1 CRC.

Even though depth of SM invasion and tumor budding were risk factors of LNM, the
meaning of these is controversial, and inter-observer variation for measurement existed.
According to JSCCR guidelines, SM depth >1000 µm was one of the risk factors for LNM,
but several studies showed differences in SM invasion depth related to LNM [44–46]. The
International Tumor Budding Consensus Conference guidelines recommended the use of a
three-tier system for risk stratification: Bd 1, low budding (0–4 buds); Bd 2, intermediate
budding (5–9 buds); Bd 3, high budding (10 or more buds) [47]. In p1 CRC, Bd 2 and
Bd 3 were associated with an increased risk of LNM, whereas in stage II CRC, Bd 3 is
associated with an increased risk of recurrence and mortality. Moreover, the current tumor
bud assessment system focused only on the tumor bud count and did not account for
other features [48]. So, we wanted to figure out the meaning of depth of invasion for LNM
and tumor budding using an attention-based WSI-level classification deep learning model.
Patch images with high ASs appeared to be located in the transformation zone, which is
the boundary between normal and cancerous tissues. In our study, the prominent features
of the patch images with high ASs were poorly differentiated histological grades, tumor
budding and micropapillary patterns, well-known pathological factors associated with
poor prognosis [49,50]. Additionally, Brockmoeller et al. demonstrated an association
between inflamed fat in CRC and LNM and that AI had the potential to discover new
mechanisms in cancer progression [26]. However, unlike their study, our patch images
with high AS did not contain inflamed fat.

Nevertheless, our study had some limitations. First, it was a single tertiary center
retrospective study, which has a potential for bias. Second, the AUC of our method was
relatively low to use as a prediction model despite the improvement achieved by increasing
the study population and using various training and test sets for endoscopic and surgical
specimens. Additionally, the DL model was influenced by class balance, and intrinsic
LNM in T1 CRC was low. Nonetheless, among the AI models that used only WSIs, our
study showed the best performance. Third, extensive external validation was lacking. We
performed validation with an independent cohort in a single center; however, staining using
H&E, variations in WSI color, and clinicopathological characteristics in a single center were
similar. Therefore, the discriminating power may have been overestimated [29,40]. However,
our study enrolled a relatively large number of patients compared with previous studies.
Moreover, the clinicopathological features did not seem to be important in predicting LN
metastasis in our AI model with H&E-stained WSI. Finally, our model was not validated in
a cohort that underwent endoscopic resection of T1 CRC without additional surgery, which
is a part of the model’s real target.
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5. Conclusions

In conclusion, our AI model with H&E-stained WSIs and without pathologists showed
higher performance power (AUC, 0.782–0.824) with validation of an independent cohort
in a single center than previous studies. Since WSIs from 1281 patients with low to high
risk of LNM were used to develop the present AI model, it was suitable for predicting
LNM even in low-risk patients with T1 CRC. Moreover, this model reduced 14.2% of
unnecessary additional surgeries than predicted using the current JSCCR guidelines while
allowing 7% of missed LNM. This revealed the feasibility of using an AI model with only
H&E-stained WSIs to predict LNM in T1 CRC. However, to apply our model to real-world
clinical practice, extensive external validation with WSI from multiple centers and patients
who undergo only endoscopic treatment is warranted.
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Abbreviations

CRC colorectal cancer
LNM lymph node metastasis
SM submucosal
LVI lymphovascular invasion
JSCCR Japanese Society for Cancer of the Colon and Rectum
H&E Hematoxylin and eosin
AI artificial intelligence
WSI whole slide images
AUC area under the curve
EMR endoscopic mucosal resection
ESD endoscopic submucosal dissection
DCNN a deep convolutional neural network
AM attention module
CM classification module
AS attention score
FV feature vector
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IQR interquartile ranges
ROC receiver operating characteristic curve
CV cross-validation
RF random forest
ROI regions of interest

References
1. Wong, M.C.S.; Ding, H.; Wang, J.; Chan, P.S.F.; Huang, J. Prevalence and risk factors of colorectal cancer in Asia. Intest. Res. 2019,

17, 317–329. [CrossRef]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Winawer, S.J.; Zauber, A.G. The advanced adenoma as the primary target of screening. Gastrointest. Endosc. Clin. N. Am. 2002,
12, 1–9. [CrossRef] [PubMed]

4. Wook, H.S.; Jeong-Sik, B. Endoscopic diagnosis and treatment of early colorectal cancer. Intest. Res. 2022, 20, 281–290.
5. Kim, S.Y.; Kwak, M.S.; Yoon, S.M.; Jung, Y.; Kim, J.W.; Boo, S.-J.; Oh, E.H.; Jeon, S.R.; Nam, S.-J.; Park, S.-Y.; et al. Korean Guidelines

for Postpolypectomy Colonoscopic Surveillance: 2022 revised edition. Intest. Res. 2023, 21, 20–42. [CrossRef] [PubMed]
6. Fujimori, T.; Kawamata, H.; Kashida, H. Precancerous lesions of the colorectum. J. Gastroenterol. 2001, 36, 587–594. [CrossRef]
7. Morson, B.C.; Whiteway, J.E.; Jones, E.A.; Macrae, F.A.; Williams, C.B. Histopathology and prognosis of malignant colorectal

polyps treated by endoscopic polypectomy. Gut 1984, 25, 437–444. [CrossRef] [PubMed]
8. Minamoto, T.; Mai, M.; Ogino, T.; Sawaguchi, K.; Ohta, T.; Fujimoto, T.; Takahashi, Y. Early invasive colorectal carcinomas

metastatic to the lymph node with attention to their nonpolypoid development. Am. J. Gastroenterol. 1993, 88, 1035–1039.
[PubMed]

9. Kitajima, K.; Fujimori, T.; Fujii, S.; Takeda, J.; Ohkura, Y.; Kawamata, H.; Kumamoto, T.; Ishiguro, S.; Kato, Y.; Shimoda, T.
Correlations between lymph node metastasis and depth of submucosal invasion in submucosal invasive colorectal carcinoma: A
Japanese collaborative study. J. Gastroenterol. 2004, 39, 534–543. [CrossRef]

10. Kyzer, S.; Begin, L.R.; Gordon, P.H.; Mitmaker, B. The care of patients with colorectal polyps that contain invasive adenocarcinoma.
Endoscopic polypectomy or colectomy? Cancer 1992, 70, 2044–2050. [CrossRef]

11. Nivatvongs, S.; Rojanasakul, A.; Reiman, H.M.; Dozois, R.R.; Wolff, B.G.; Pemberton, J.H.; Beart, R.W., Jr.; Jacques, L.F. The risk
of lymph node metastasis in colorectal polyps with invasive adenocarcinoma. Dis. Colon Rectum 1991, 34, 323–328. [CrossRef]
[PubMed]

12. Netzer, P.; Forster, C.; Biral, R.; Ruchti, C.; Neuweiler, J.; Stauffer, E.; Schönegg, R.; Maurer, C.; Hüsler, J.; Halter, F.; et al. Risk
factor assessment of endoscopically removed malignant colorectal polyps. Gut 1998, 43, 669–674. [CrossRef] [PubMed]

13. Watanabe, T.; Muro, K.; Ajioka, Y.; Hashiguchi, Y.; Ito, Y.; Saito, Y.; Hamaguchi, T.; Ishida, H.; Ishiguro, M.; Ishihara, S.; et al.
Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer. Int. J. Clin.
Oncol. 2018, 23, 1–34. [CrossRef] [PubMed]

14. Ramirez, M.; Schierling, S.; Papaconstantinou, H.T.; Thomas, J.S. Management of the malignant polyp. Clin. Colon Rectal Surg.
2008, 21, 286–290. [CrossRef] [PubMed]

15. Aarons, C.B.; Shanmugan, S.; Bleier, J.I. Management of malignant colon polyps: Current status and controversies. World J.
Gastroenterol. 2014, 20, 16178–16183. [CrossRef] [PubMed]

16. Cooper, H.S. Surgical pathology of endoscopically removed malignant polyps of the colon and rectum. Am. J. Surg. Pathol. 1983,
7, 613–623. [CrossRef] [PubMed]

17. Coverlizza, S.; Risio, M.; Ferrari, A.; Fenoglio-Preiser, C.M.; Rossini, F.P. Colorectal adenomas containing invasive carcinoma.
Pathologic assessment of lymph node metastatic potential. Cancer 1989, 64, 1937–1947. [CrossRef]

18. Colacchio, T.A.; Forde, K.A.; Scantlebury, V. Endoscopic Polypectomy: Inadequate Treatment for Invasive Colorectal Carcinoma.
Ann. Surg. 1982, 194, 704–707. [CrossRef]

19. Choi, Y.S.; Kim, W.S.; Hwang, S.W.; Park, S.H.; Yang, D.-H.; Ye, B.D.; Myung, S.-J.; Yang, S.-K.; Byeon, J.-S. Clinical outcomes of
submucosal colorectal cancer diagnosed after endoscopic resection: A focus on the need for surgery. Intest. Res. 2020, 18, 96–106.
[CrossRef]

20. Kojima, M.; Puppa, G.; Kirsch, R.; Basturk, O.; Frankel, W.L.; Vieth, M.; Lugli, A.; Sheahan, K.; Yeh, M.; Lauwers, G.Y.; et al. Blood
and lymphatic vessel invasion in pT1 colorectal cancer: An international concordance study. J. Clin. Pathol. 2015, 68, 628–632.
[CrossRef]

21. Kouyama, Y.; Kudo, S.E.; Miyachi, H.; Ichimasa, K.; Hisayuki, T.; Oikawa, H.; Matsudaira, S.; Kimura, Y.J.; Misawa, M.; Mori,
Y.; et al. Practical problems of measuring depth of submucosal invasion in T1 colorectal carcinomas. Int. J. Color. Dis. 2016,
31, 137–146. [CrossRef]

22. Barel, F.; Auffret, A.; Cariou, M.; Kermarrec, T.; Samaison, L.; Bourhis, A.; Badic, B.; Jézéquel, J.; Cholet, F.; Bail, J.P.; et al. High
reproducibility is attainable in assessing histoprognostic parameters of pT1 colorectal cancer using routine histopathology slides
and immunohistochemistry analyses. Pathology 2019, 51, 46–54. [CrossRef]

https://doi.org/10.5217/ir.2019.00021
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1016/S1052-5157(03)00053-9
https://www.ncbi.nlm.nih.gov/pubmed/11916153
https://doi.org/10.5217/ir.2022.00096
https://www.ncbi.nlm.nih.gov/pubmed/36751043
https://doi.org/10.1007/s005350170041
https://doi.org/10.1136/gut.25.5.437
https://www.ncbi.nlm.nih.gov/pubmed/6714785
https://www.ncbi.nlm.nih.gov/pubmed/8317401
https://doi.org/10.1007/s00535-004-1339-4
https://doi.org/10.1002/1097-0142(19921015)70:8%3C2044::AID-CNCR2820700805%3E3.0.CO;2-X
https://doi.org/10.1007/BF02050592
https://www.ncbi.nlm.nih.gov/pubmed/1848810
https://doi.org/10.1136/gut.43.5.669
https://www.ncbi.nlm.nih.gov/pubmed/9824349
https://doi.org/10.1007/s10147-017-1101-6
https://www.ncbi.nlm.nih.gov/pubmed/28349281
https://doi.org/10.1055/s-0028-1089944
https://www.ncbi.nlm.nih.gov/pubmed/20011440
https://doi.org/10.3748/wjg.v20.i43.16178
https://www.ncbi.nlm.nih.gov/pubmed/25473171
https://doi.org/10.1097/00000478-198310000-00002
https://www.ncbi.nlm.nih.gov/pubmed/6638257
https://doi.org/10.1002/1097-0142(19891101)64:9%3C1937::AID-CNCR2820640929%3E3.0.CO;2-X
https://doi.org/10.1097/00000658-198112000-00008
https://doi.org/10.5217/ir.2019.00092
https://doi.org/10.1136/jclinpath-2014-202805
https://doi.org/10.1007/s00384-015-2403-7
https://doi.org/10.1016/j.pathol.2018.10.007


Cancers 2024, 16, 1900 15 of 16

23. Ichimasa, K.; Kudo, S.E.; Mori, Y.; Misawa, M.; Matsudaira, S.; Kouyama, Y.; Baba, T.; Hidaka, E.; Wakamura, K.; Hayashi, T.; et al.
Artificial intelligence may help in predicting the need for additional surgery after endoscopic resection of T1 colorectal cancer.
Endoscopy 2018, 50, 230–240. [PubMed]

24. Takamatsu, M.; Yamamoto, N.; Kawachi, H.; Chino, A.; Saito, S.; Ueno, M.; Ishikawa, Y.; Takazawa, Y.; Takeuchi, K. Prediction
of early colorectal cancer metastasis by machine learning using digital slide images. Comput. Methods Programs Biomed. 2019,
178, 155–161. [CrossRef]

25. Kudo, S.E.; Ichimasa, K.; Villard, B.; Mori, Y.; Misawa, M.; Saito, S.; Hotta, K.; Saito, Y.; Matsuda, T.; Yamada, K. Artificial
Intelligence System to Determine Risk of T1 Colorectal Cancer Metastasis to Lymph Node. Gastroenterology 2021, 160, 1075–1084.e2.
[CrossRef]

26. Brockmoeller, S.; Echle, A.; Ghaffari Laleh, N.; Eiholm, S.; Malmstrøm, M.L.; Plato Kuhlmann, T.; Levic, K.; Grabsch, H.I.; West,
N.P.; Saldanha, O.L.; et al. Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal
cancer. J. Pathol. 2022, 256, 269–281. [CrossRef]

27. Takamatsu, M.; Yamamoto, N.; Kawachi, H.; Nakano, K.; Saito, S.; Fukunaga, Y.; Takeuchi, K. Prediction of lymph node metastasis
in early colorectal cancer based on histologic images by artificial intelligence. Sci. Rep. 2022, 12, 2963. [CrossRef] [PubMed]

28. Ichimasa, K.; Kudo, S.-e.; Lee, J.W.J.; Nemoto, T.; Yeoh, K.G. Artificial intelligence–assisted treatment strategy for T1 colorectal
cancer after endoscopic resection. Gastrointest. Endosc. 2023, 97, 1148–1152. [CrossRef]

29. Ichimasa, K.; Kudo, S.-E.; Lee, J.W.J.; Yeoh, K.G. “Pathologist-independent” strategy for T1 colorectal cancer after endoscopic
resection. J. Gastroenterol. 2022, 57, 815–816. [CrossRef] [PubMed]

30. Ahn, J.H.; Kwak, M.S.; Lee, H.H.; Cha, J.M.; Shin, H.P.; Jeon, J.W.; Yoon, J.Y. Development of a novel prognostic model for
predicting lymph node metastasis in early colorectal cancer: Analysis based on the surveillance, epidemiology, and end results
database. Front. Oncol. 2021, 11, 614398. [CrossRef]

31. Song, J.H.; Hong, Y.; Kim, E.R.; Kim, S.-H.; Sohn, I. Utility of artificial intelligence with deep learning of hematoxylin and eosin-
stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens;
prediction of lymph node metastasis in T1 colorectal cancer. J. Gastroenterol. 2022, 57, 654–666.

32. Ilse, M.; Tomczak, J.; Welling, M. Attention-based deep multiple instance learning. In Proceedings of the International Conference
on Machine Learning (PMLR), Stockholm, Sweden, 10–15 July 2018.

33. Lu, M.Y.; Zhao, M.; Shady, M.; Lipkova, J.; Chen, T.Y.; Williamson, D.F.; Mahmood, F. Deep learning-based computational
pathology predicts origins for cancers of unknown primary. arXiv 2020, arXiv:2006.13932.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

36. Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations
affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [CrossRef] [PubMed]

37. Ebbehøj, A.L.; Jørgensen, L.N.; Krarup, P.M.; Smith, H.G. Histopathological risk factors for lymph node metastases in T1 colorectal
cancer: Meta-analysis. Br. J. Surg. 2021, 108, 769–776. [CrossRef] [PubMed]

38. Kwak, M.S.; Lee, H.H.; Yang, J.M.; Cha, J.M.; Jeon, J.W.; Yoon, J.Y.; Kim, H.I. Deep Convolutional Neural Network-Based Lymph
Node Metastasis Prediction for Colon Cancer Using Histopathological Images. Front. Oncol. 2020, 10, 619803. [CrossRef]
[PubMed]

39. Kang, J.; Choi, Y.J.; Kim, I.K.; Lee, H.S.; Kim, H.; Baik, S.H.; Kim, N.K.; Lee, K.Y. LASSO-Based Machine Learning Algorithm for
Prediction of Lymph Node Metastasis in T1 Colorectal Cancer. Cancer Res. Treat. 2021, 53, 773–783. [CrossRef]

40. Li, J.W.; Wang, L.M.; Ichimasa, K.; Lin, K.W.; Ngu, J.C.-Y.; Ang, T.L. Use of artificial intelligence in the management of T1 colorectal
cancer: A new tool in the arsenal or is deep learning out of its depth? Clin. Endosc. 2023, 57, 24–35. [CrossRef]

41. Kasahara, K.; Katsumata, K.; Saito, A.; Ishizaki, T.; Enomoto, M.; Mazaki, J.; Tago, T.; Nagakawa, Y.; Matsubayashi, J.;
Nagao, T.; et al. Artificial intelligence predicts lymph node metastasis or risk of lymph node metastasis in T1 colorectal
cancer. Int. J. Clin. Oncol. 2022, 27, 1570–1579. [CrossRef]

42. Yoda, Y.; Ikematsu, H.; Matsuda, T.; Yamaguchi, Y.; Hotta, K.; Kobayashi, N.; Fujii, T.; Oono, Y.; Sakamoto, T.; Nakajima, T.; et al.
A large-scale multicenter study of long-term outcomes after endoscopic resection for submucosal invasive colorectal cancer.
Endoscopy 2013, 45, 718–724. [CrossRef]

43. Ikematsu, H.; Yoda, Y.; Matsuda, T.; Yamaguchi, Y.; Hotta, K.; Kobayashi, N.; Fujii, T.; Oono, Y.; Sakamoto, T.; Nakajima, T.; et al.
Long-term Outcomes After Resection for Submucosal Invasive Colorectal Cancers. Gastroenterology 2013, 144, 551–559. [CrossRef]
[PubMed]

44. Nakadoi, K.; Tanaka, S.; Kanao, H.; Terasaki, M.; Takata, S.; Oka, S.; Yoshida, S.; Arihiro, K.; Chayama, K. Management of
T1 colorectal carcinoma with special reference to criteria for curative endoscopic resection. J. Gastroenterol. Hepatol. 2012,
27, 1057–1062. [CrossRef] [PubMed]

45. Tanaka, S.; Haruma, K.; Oh, E.H.; Nagata, S.; Hirota, Y.; Furudoi, A.; Amioka, T.; Kitadai, Y.; Yoshihara, M.; Shimamoto, F.
Conditions of curability after endoscopic resection for colorectal carcinoma with submucosally massive invasion. Oncol. Rep.
2000, 7, 783–788. [CrossRef] [PubMed]

https://www.ncbi.nlm.nih.gov/pubmed/29272905
https://doi.org/10.1016/j.cmpb.2019.06.022
https://doi.org/10.1053/j.gastro.2020.09.027
https://doi.org/10.1002/path.5831
https://doi.org/10.1038/s41598-022-07038-1
https://www.ncbi.nlm.nih.gov/pubmed/35194184
https://doi.org/10.1016/j.gie.2023.01.057
https://doi.org/10.1007/s00535-022-01912-5
https://www.ncbi.nlm.nih.gov/pubmed/35960341
https://doi.org/10.3389/fonc.2021.614398
https://doi.org/10.1002/bimj.200710415
https://www.ncbi.nlm.nih.gov/pubmed/18435502
https://doi.org/10.1093/bjs/znab168
https://www.ncbi.nlm.nih.gov/pubmed/34244752
https://doi.org/10.3389/fonc.2020.619803
https://www.ncbi.nlm.nih.gov/pubmed/33520727
https://doi.org/10.4143/crt.2020.974
https://doi.org/10.5946/ce.2023.036
https://doi.org/10.1007/s10147-022-02209-6
https://doi.org/10.1055/s-0033-1344234
https://doi.org/10.1053/j.gastro.2012.12.003
https://www.ncbi.nlm.nih.gov/pubmed/23232297
https://doi.org/10.1111/j.1440-1746.2011.07041.x
https://www.ncbi.nlm.nih.gov/pubmed/22142484
https://doi.org/10.3892/or.7.4.783
https://www.ncbi.nlm.nih.gov/pubmed/10854544


Cancers 2024, 16, 1900 16 of 16

46. Egashira, Y.; Yoshida, T.; Hirata, I.; Hamamoto, N.; Akutagawa, H.; Takeshita, A.; Noda, N.; Kurisu, Y.; Shibayama, Y. Analysis
of pathological risk factors for lymph node metastasis of submucosal invasive colon cancer. Mod. Pathol. 2004, 17, 503–511.
[CrossRef] [PubMed]

47. Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; El Zimaity, H.; Fléjou, J.-F.; Hansen, T.P.;
Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International
Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [CrossRef] [PubMed]

48. Chen, L.; Yang, F.; Qi, Z.; Tai, J. Predicting lymph node metastasis and recurrence in patients with early stage colorectal cancer.
Front. Med. 2022, 9, 991785. [CrossRef]

49. Pyo, J.-S.; Park, M.J.; Kang, D.-W. The clinicopathological significance of micropapillary pattern in colorectal cancers. Hum. Pathol.
2018, 77, 159–165. [CrossRef]

50. Zhang, S.; Zhang, D.; Yang, Z.; Zhang, X. Tumor Budding, Micropapillary Pattern, and Polyploidy Giant Cancer Cells in Colorectal
Cancer: Current Status and Future Prospects. Stem Cells Int. 2016, 2016, 4810734. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/modpathol.3800030
https://www.ncbi.nlm.nih.gov/pubmed/15001992
https://doi.org/10.1038/modpathol.2017.46
https://www.ncbi.nlm.nih.gov/pubmed/28548122
https://doi.org/10.3389/fmed.2022.991785
https://doi.org/10.1016/j.humpath.2018.02.027
https://doi.org/10.1155/2016/4810734

	Introduction 
	Materials and Methods 
	Study Population 
	Clinicopathologic Features and Preparation of Whole Slide Images for the Study Population 
	Deep Learning Artificial Intelligence Model Development 
	Statistical Analysis 

	Results 
	Baseline Characteristics of the Study Population 
	Train and Test Set in Model with Four Versions 
	Area under the Curve for Predicting Lymph Node Metastasis 
	Predictive Performance of Model with Four Versions vs. That of JSCCR Guidelines 
	Attention Score 

	Discussion 
	Conclusions 
	References

