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Simple Summary: Despite the great achievements of cancer immunotherapy in a variety of tu-
mors, tumor heterogeneity and drug resistance still plague patients and clinical researchers. In
particular, the occurrence of immune-related adverse events forces patients to discontinue cancer
immunotherapy. Therefore, it is urgent to optimize cancer immunotherapy and improve the efficacy
of immunotherapy. With the iteration of sequencing technology, the microbiome, as the second set of
genomes in the body, has been proven to be involved in immunity and metabolism. More and more
studies are gradually shifting the perspective to the intestinal microbiota and cancer immunotherapy.
The intestinal microbiota reactivates and modulates immune cells in immunotherapy and is expected
to become a biomarker for predicting immune efficacy. Targeting to improve the intestinal microbiota
can enhance anti-tumor immunity. This advantage is beneficial to control related adverse symptoms
and expand the beneficiary population of cancer immunotherapy. This finding can help clinicians
comprehensively evaluate the effect of tumor screening and tumor treatment. Therefore, the innova-
tive combination of gut microbiota and cancer immunotherapy is expected to be an active strategy to
enhance individualized immune responses.

Abstract: In recent years, cancer immunotherapy has become a breakthrough method to solve
solid tumors. It uses immune checkpoint inhibitors to interfere with tumor immune escape to
coordinate anti-tumor therapy. However, immunotherapy has an individualized response rate.
Moreover, immune-related adverse events and drug resistance are still urgent issues that need to
be resolved, which may be attributed to the immune imbalance caused by immune checkpoint
inhibitors. Microbiome research has fully revealed the metabolic-immune interaction relationship
between the microbiome and the host. Surprisingly, sequencing technology further proved that
intestinal microbiota could effectively intervene in tumor immunotherapy and reduce the incidence
of adverse events. Therefore, cancer immunotherapy under the intervention of intestinal microbiota
has innovatively broadened the anti-tumor landscape and is expected to become an active strategy to
enhance individualized responses.

Keywords: microbiota; immunotherapy; metabolism; immune checkpoint inhibitors; FMT

1. Introduction

Currently, immunotherapy is considered one of the most cutting-edge technological
revolutions in the field of clinical oncology. Immune checkpoint inhibitors (ICIs) (such
as anti-programmed death receptor 1/programmed death ligand 1 (PD-1/PD-L1), anti-
cytotoxic T lymphocyte antigen 4 (CTLA-4)) indirectly exert active and effective anti-tumor
immunity by inducing suppressed T cell activation [1]. Based on a large amount of clinical
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and medical evidence, some ICIs have been approved by the drug regulatory agency
for trials or treatments of various malignant tumors [2]. However, most patients still
cannot fully benefit from ICIs, which are often accompanied by primary drug resistance or
immune-related adverse events [3].

In order to improve the titer of immunotherapy, actively seeking to serve biomarkers
for ICIs response and toxicity prediction has become an urgent barrier to be resolved.
The iterative update of sequencing technology has opened up an emerging situation in
immunotherapy research [4]. The rise of metagenomics and bioinformatics has provided a
new perspective on the development of microbiology in tumorigenesis [5,6]. Additionally,
more and more evidence supports the important position of the microbiome in the immune-
metabolic interaction of cancer, especially in response to blocking immune checkpoints [7–9].
This article reviews the promising future of the gut microbiota in cancer immunotherapy,
including fecal microbial transplantation (FMT), probiotics, and prebiotic preparations.
The intestinal microbiota is expected to provide assistance in opening up a new pattern of
anti-tumor immunotherapy.

2. The Amazing Therapeutic Potential of Cancer Immunotherapy

Reports about ICIs making breakthrough progress in the field of tumor treatment are
increasing day by day. Currently, the most widely used ICIs in clinical trials include anti-
PD-1/PD-L1 (nivolumab/pembrolizumab/durvalumab/atezolizumab) and anti-CTLA-4
(ipilimumab) [10]. The Topalian team found that nivolumab combines clinical efficacy and
high safety in the treatment of various solid tumors such as melanoma [11]. The results
showed that patients with advanced melanoma without BRAF mutations had significantly
improved overall survival (OS) after receiving nivolumab treatment. Meanwhile, the results
of the study were also approved by another phase III randomized double-blind trial [12].
In addition, Takamida et al. reviewed the efficacy of the first-line regimen containing
pembrolizumab in patients with metastatic non-small cell lung cancer (NSCLC) with
high PD-L1 expression (tumor proportion score (TPS) ≥ 50%) in the past three years [13].
The study clarified that the first-line pembrolizumab single-agent regimen significantly
prolonged the patient’s OS and progression-free survival (PFS). Additionally, in the case
of similar TPS, pembrolizumab combined with chemotherapy and monotherapy was
beneficial to the survival of NSCLC patients [14]. However, another randomized controlled
phase 3 trial comparing pembrolizumab with locally advanced NSCLC chemotherapy
(KEYNOTE-042) revealed that the OS of the pembrolizumab group was significantly longer
than that of the chemotherapy group (p = 0.0018) [15]. Therefore, the important position
of pembrolizumab as the first-line standard therapy to treat NSCLC with high PD-L1
expression was affirmed.

Colorectal cancer (CRC) is a highly heterogeneous tumor, and its different subtypes
have differentiated responses to immunotherapy [16]. CRC with high microsatellite insta-
bility (MSI-H) has high tumor mutational burden (TMB), TH1 immune infiltration, and
immune checkpoint gene expression, which would have a positive effect on immunother-
apy [17,18]. In MSI-H CRC, higher TMB is the objective reaction of pembrolizumab im-
munotherapy and the strongest biomarker of PFS [19]. However, this part of the patient
accounts for 5% of the transfer of CRC patients. Microsatellite stabilization (MSS) accounts
for 95% of patients with metastasis CRC and is resistant to immunotherapy [20]. High
TMB MSS CRC patients have reactions to PD-1 inhibitors [21]. In addition, a prospective
clinical trial (Keynote-158) found that the high TMB (TMB > 10) can effectively predict
the efficacy and prognosis of Pembrolizumab [22]. This phenomenon suggests that high
TMB may be used as an indicator of MSS CRC, which is conducive to the patient obtaining
immunotherapy benefits. We briefly summarize the application and effect of some ICIS in
solid tumors for reference (Table 1).
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Table 1. Some solid tumors receiving immunotherapy.

ICIs Cancer Results References

Anti-PD-1

Nivolumab Advanced cervical
cancer

36% patients had stable disease (9/25;
90% CI, 20.2–54.4%) for a median of 5.7

months. Estimated PFS and OS at 6
months were 16% and 78.4%.

[23]

Pembrolizumab NSCLC
Half-year PFS:22%; median PFS:2.8

months (95% CI: 1.5–4.1); median OS:
11.7 months (95% CI: 7.6–13.4).

[24]

Cemiplimab Advanced squamous
cell carcinomas

PD-L1 expression was ≥1% in 18%
patients and <1% in 11% of patients. [25]

Anti-PD-L1

Atezolizumab
Advanced

triple-negative breast
cancer

Median survival to progression and
overall survival were 5.5 months (95%
CI, 5.1–7.7 months) and 14.7 months

(95% CI, 10.1, not evaluable).

[26]

Avelumab Advanced Merkel cell
cancer

ORR:48.0%; median duration of
treatment:7.4 months (1.0–41.7 months). [27]

Durvalumab NSCLC
Median PFS:17.5 months (95% CI,
13.2–24.9); median OS:47 months

(95%CI, 47 [NR]).
[28]

Anti-CTLA4 Ipilimumab Metastatic melanoma Survival rates at 5 years in patients were
OS 11%. [29]

Combination Ipilimumab +
nivolumab Metastatic CRC PFS:76% (9 months) and 71% (12

months); respective OS: 87% and 85%. [30]

Currently, multiple groups of clinical trials provide evidence to support the combina-
tion of immunotherapy and chemotherapy for the treatment of a variety of malignancies.
NSCLC is a pioneer in trials combining chemotherapy and immunotherapy. After ob-
serving that immunotherapy was effective in PD-L1-high (>50%) tumors and in patients
treated with platinum chemotherapy, clinicians performed immunotherapy as maintenance
in a phase II trial [31]. The results showed that the therapy had a significant effect on
adenocarcinoma (HR 0.49; p < 0.001) and squamous cell carcinoma (HR 0.64; p < 0.001) [32].
A phase III clinical trial found that pembrolizumab combined with chemotherapy (pa-
clitaxel/carboplatin/gemcitabine) had a significant benefit in patients with a composite
positive score (CPS) ≥ 10 compared with chemotherapy alone (HR 0.65; p = 0.00411) [33].
A meta-analysis of chemotherapy combined with immunotherapy in metastatic triple-
negative breast cancer (mTNBC) revealed that the addition of PD-1/PD-L1 blockade to
chemotherapy improved PFS in patients with PD-L1-positive mTNBC [34]. Therefore,
immunotherapy has great development space for the original tumor treatment system.

3. Combination Immunotherapy

Although ICIs show surprising therapeutic potential in tumor treatment, some patients
still have difficulty benefiting from monotherapy. In order to improve the universality of
immunotherapy, clinical researchers have turned their attention to combination therapy in
an attempt to expand the beneficiaries of immunotherapy [35,36]. Hodi et al. evaluated a
phase II randomized controlled trial of combination therapy of nivolumab and ipilimumab
and monotherapy of ipilimumab for advanced melanoma [37]. Compared with ipilimumab
monotherapy, the effect of combination therapy is more satisfactory [37]. Additionally, Hodi
et al. added that regardless of whether BRAF is mutated or not, the first-line combination
regimen or single-agent regimen can exert long-lasting clinical benefits in patients with
advanced melanoma, but the combination can better improve patient survival. In order
to verify whether the combination of nivolumab and ipilimumab or pembrolizumab as a
chemotherapy-free first-line therapy can improve survival, Zhou et al. incorporated three
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randomized trials of KEYNOTE-024, KEYNOTE-042, and Checkmate 227 into the research
system using the frequency method [38]. A combined meta-analysis suggested that both
regimens can improve OS compared with chemotherapy (combination therapy: HR 0.82,
95% CI 0.69–0.97; monotherapy: HR 0.81, 95% CI 0.71–0.93), but only combination therapy
improved PFS (combination therapy: HR 0.79, 95% CI 0.65–0.96; monotherapy: HR 1.07,
95% CI 0.94–1.21). However, combination therapy showed a higher rate of adverse events.
A multicenter, retrospective cohort study on melanoma also found that combination with
ipilimumab seems to have a higher objective response rate, PFS, and OS than monotherapy,
but the rate of grade 3–5 toxicity is similar [39].

4. Limitations of CAR T-Cell Therapy in Solid Tumors

Chimeric antigen receptor (CAR) T cell therapy is an innovative tumor therapy that
relies on cell surface antigen recombinant receptors to reactivate T lymphocytes for tumor
resistance [40,41]. CAR-modified T cells not only obtain the properties of a “live drug”
but also break through the constraints of traditional MHC receptors, enabling them to
have long-term anti-tumor efficacy. Early clinical trials have shown that CD19 CAR-T cell
therapy has a complete remission rate of up to 80% in acute lymphoblastic leukemia, sig-
nificantly prolonging patient survival [42]. Notably, although transplanted T cells may be
more potent than T cells from leukemia patients, it has the potential to mediate graft-versus-
host disease [43]. Unfortunately, this success has not been replicated in solid tumors [44].
Solid tumors are denser in texture, have a high degree of heterogeneity in antigen expres-
sion, and are sequestered in organs or tissues. In addition, in the immunosuppressive
microenvironment, it is difficult for T cell function to be at the most preferential activation
level [45]. Therefore, the lack of a sufficient T cell infiltration and immunosuppressive
microenvironment is the main obstacle for solid tumors to carry out CAR-T cell therapy [46].
Generally, in solid tumors, tumor-associated antigens are more accepted, such as EGFR,
CEA, MUC1, etc. It is worth mentioning that these tumor-associated antigens also have
lower expression in normal tissues [47,48]. Once tumor antigens lack specificity, off-target
toxicity increases significantly [49,50]. For example, CRC patients treated with Her2-CAR-T
cells developed severe off-target toxicity [51]. Therefore, tumor cell antigens that are differ-
entially expressed from normal tissues must undergo rigorous evaluation and validation
before they can be described as target antigens. In CRC, NKG2D, GUCY2C, and TAG-72
are promising target antigens [52–54]. A recent report pointed out that DCLK1-targeted
CAR-T therapy has a significant effect on primary or metastatic CRC [55,56]. Surprisingly,
a study indicated that bispecific Trop2/PDL1 CAR-T cells could significantly inhibit gastric
cancer growth by intratumoral injection, and its inhibitory effect was more significant than
that of Trop2-specific CAR-T cells [57]. In addition, CXCR2-expressing CAR-T cells were
more sensitive to the IL-8-rich microenvironment in pancreatic cancer and had stronger
anti-tumor activity against αvβ6-expressing pancreatic tumor xenografts [58]. Therefore,
the combination of CAR-T cell therapy and ICIs seems to be more conducive to the tumor
suppressor effect.

5. Immune-Related Adverse Events

With the continuous promotion of ICIs in the clinic, immune-related adverse events
have shown an exponential increase, which has become a major clinical challenge [59,60].
Although immune-related adverse events are not fatal, they often force patients and bedside
physicians to make a clinical decision about whether to continue treatment. According to
statistics, nivolumab induces endocrine toxicity, while pembrolizumab induces liver toxicity
and joint pain [61]. Ipilimumab most commonly affects the skin and gastrointestinal tract
and also has partial renal toxicity. A meta-analysis of the risk of ICIs supports that combina-
tion therapy (ipilimumab/nivolumab) is more likely to induce immune-related endocrine
risk than monotherapy [62]. Another analysis added that combination therapy might even
lead to discontinuation with high adverse effects [63]. However, appropriate combination
regimens remain the primary consideration for clinicians compared with treatment-induced
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mortality. So far, the treatment of immune-related adverse events has mostly followed the
empirical management of autoimmune diseases. Therefore, improving the complications
of immunotherapy or exploring immune checkpoints with more therapeutic advantages
are innovative measures. We briefly summarize partial immune-related adverse events
and organizations and organs involved to provide reference to ICIs (Figure 1). With the
advancement of sequencing, it was discovered that the intestinal microbiota is deeply
involved in human metabolism and immunity, including tumors. Additionally, researchers
are also gradually exploring how gut microbes reverse immune-related adverse events
(Table 2).
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Figure 1. Immune-related adverse events of various organs or tissues caused by cancer immunother-
apy. The immune adverse events mainly involved the skin, gastrointestinal tract, endocrine glands,
liver, lungs, kidneys, nerves, heart, eyes, and musculoskeletal. The addition of the gut microbiota is
expected to optimize the efficacy of cancer immunotherapy.
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Table 2. Common immune-related adverse events.

Systemic or Tissue Toxicity Clinical Manifestation Treatment Measures References

Skin Rash, itching Symptomatic treatment (topical
corticosteroids and oral antihistamines). [64]

Gastrointestinal tract Diarrhea, colitis
Rehydrate, rule out infection, and administer

oral or intravenous corticosteroids.
Colonoscopy or sigmoidoscopy.

[65]

Endocrine Thyroid, pituitary, or adrenal
gland damage

During ICIs, thyroid function is regularly
monitored. [66]

Liver Asymptomatic elevations in
ALT, AST, or total bilirubin

With oral corticosteroids, immune-mediated
hepatitis usually resolves within 4–6 weeks. [67]

Lung Dry cough, progressive
difficulty breathing

Nearly 75% of patients may require
discontinuation of ICIs. [68]

Kidney Asymptomatic elevation of
creatinine

Corticosteroid therapy and sparing
immunotherapy are recommended. Renal

biopsy is necessary for higher-grade events.
[69]

Neurotoxicity

Facial paralysis, optic neuritis,
Guillain-Barre syndrome,

myasthenia gravis,
encephalitis, and aseptic

meningitis

Steroid therapy is used to relieve mild
symptoms, but severe toxicity requires high

doses or other therapies.
[70]

Cardiotoxicity
Heart failure, cardiomyopathy,

heart block, myocardial
fibrosis, and myocarditis

ICIs were discontinued, and steroid therapy
was initiated. [71]

Eye Keratitis, uveitis,
conjunctivitis, and episcleritis Topical or systemic corticosteroid therapy. [72]

Muscle, Bone and
Rheumatology

Vasculitis, inflammatory
arthritis, and myositis Low-dose steroids have some effects. [73]

6. Intestinal Microbiota Regulates Pharmacokinetics

Pharmacokinetics refers to the laws of drug absorption, distribution, metabolism,
and excretion in the body [74]. Several studies have suggested that the gut microbiota
may lead to changes in the chemical modification of medicinal products, resulting in
activation, inactivation, or toxicity [75]. However, quantifying microbial intervention on
pharmacokinetics remains challenging, especially based on the common basis of drug
metabolism of the host and microbiota. Zimmermann M’s team combined the genetics of
microbial symbiosis with gnotobiotics for the first time [76]. By monitoring the metabolic
changes of brivudine (BRV) in mice caused by a single microbially encoded enzyme, they
innovatively established a pharmacokinetic model and predicted quantitative microbial
contributions to systemic drug metabolism [76]. They compared the serum kinetics of oral
BRV in conventional (CV) and germ-free (GF) mice and demonstrated that BRV is converted
to hepatotoxic bromoyluracil (BVU) by microbial enzymes, reducing BVU exposure in
GF mice [76]. BVU interferes with pyrimidine metabolism in humans by binding to
DPD, with lethal consequences in patients receiving chemotherapy with pyrimidine-like
drugs such as 5-fluorouracil (5-FU) [77]. In addition, they found that Bacteroides and
Oobacteria had the highest metabolic activity to convert BRV to BVU. This study provides
the microbiome’s understanding of drug metabolism and aims to improve the response
to drugs in chemotherapy patients. Additionally, they mapped human microbial drug
metabolism by measuring the drug-modifying capacity of representative gut bacterial
generations and systematically analyzing drug–microbe interactions by identifying drug-
metabolizing microbial gene products [78]. Therefore, microbial intervention has a positive
strategic effect on chemotherapy and drug metabolism.
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7. Microbiota Correlates with Cancer Immunotherapy

The microbiota mainly inhabits the human intestines and maintains the host’s metabolism
and immune crosstalk [79]. The microbial genome is more than 150 times that of the human
body itself, so it is also called the second set of the human genome [80]. It covers a cumulative
total of more than 1000 bacterial species, which endows the metagenomics with a common
core while maintaining individual differences. Driven by the revolution of high-throughput
sequencing technology, microbial research has quickly entered a new era of whole-genome
sequencing from laboratory culture [81]. Metagenomics can also be combined with other
omics to analyze the metabolism and immune processes of microorganisms, including tran-
scriptomics, metabolomics, and proteomics [82,83]. Surprisingly, the intestinal microbiota has
gradually been recognized as being able to intervene effectively in tumor immunotherapy,
reduce the incidence of adverse events, and benefit patients [84].

In the early stage, in order to determine whether the microbiome interferes with
the therapeutic activity of ICIs, melanoma mice (TAC mice with more severe tumors)
carrying different intestinal microbiota but the same genotype from TAC and JAX were
used to assess their correlation [85]. The results showed that Bifidobacterium was most
significantly enriched in the feces of JAX mice and had a higher correlation with peripheral
and intratumoral specific CD8+ T cell activation. Interestingly, after TAC mice were further
transplanted or co-cultured with JAX mouse fecal bacteria, the differences between the two
gradually approached [86]. This also directly established the status of the gut microbiome
in immunotherapy. In the later stage, after PD-L1 ICIs were combined with mouse fecal
suspension, tumor invasion and growth were consistently and significantly slowed, as
expected [85].

8. Gut Microbiome Expands Path for Cancer Immunotherapy

In addition, Chaput et al. speculated from the baseline microbiome that the incidence
of colitis in patients with metastatic melanoma treated with ipilimumab is regulated by the
microbiome [87]. The study prospectively proposed that identifying the attributes of the
microbiota is beneficial to avoid and control adverse risks that patients may encounter [87].
According to the RECIST 1.1 standard, patients with different microbiomes can be classified
as responders (R) and non-responders (NR) [88]. On this basis, Derosa et al. successfully
inoculated feces from R into NR through FMT technology to compensate for the anti-PD-1
immune effect [89,90]. Although the advantages of the microbiome in immunotherapy
have become increasingly prominent, there are still challenges in screening out bacterial
groups that are specifically enriched for ICIs [91]. With the support of Metatagenomic
Shotgun Sequencing and Unbiased Metabolomic Profiling, stool analysis of R and NR is
expected to provide clues for the identification of the intestinal microbiota [92].

Although the preclinical mouse model of intestinal microbiota intervention ICIs has
been established, there is still a lack of evidence for its application to cancer patients. By
analyzing the stool samples of melanoma patients treated with ICIs, Gopalakrishnan and
others found significant differences in the diversity and number of intestinal microbiota
between responders and non-responders [10]. In particular, the alpha diversity (a statistical
method of the distribution and composition of bacteria in the sample) and the relative
abundance of Ruminococcaceae (p < 0.01) in the feces of the responders were significantly
increased, and the function of effector T cells in the tumor microenvironment (TME) was
improved [10]. On the contrary, the feces of non-responders is often accompanied by a
lower abundance of bacteria, and there is an enrichment of Bacteroidales, which block
lymphatic infiltration and impair tumor immune response.

In an independent cohort study of combined treatment (ipilimumab plus nivolumab)
of metastatic melanoma, Frankel et al. reported an increase in the abundance of Faecalibac-
terium in baseline stool samples of responders and non-responders [7]. The abundance of
Faecalibacterium and the longer PFS showed a positive correlation trend [92]. According
to the immunophenotype analysis of matched tumors and blood samples of patients in
this cohort, the abundance of Faecalibacterium not only has a strong positive correlation
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with CD8 + T infiltration in the TME but also has a certain correlation with peripheral
CD4+/CD8 + T cells [92]. Furthermore, in 32 NSCLC patients, enrichment of Enterococcus
faecium also enhanced peripheral CD8+/CD4 + T cell responses and IFN-γ production,
prolonging the PFS of R [93].

Coincidentally, by analyzing the stool samples from patients with metastatic melanoma,
Matson et al. found that the degree of Bifidobacterium longum, Collinsella aerofaciens,
and Enterococcus faecium enrichment in patients with anti-PD-1 was positively correlated
with treatment response and inhibited tumor growth [94]. Additionally, after FMT rebuilds
the intestinal environment of sterile mice, tumor control is significantly strengthened. This
increased therapeutic effect is mediated by the activation of DCs, which leads to increased
initiation and accumulation of CD8 + T cells in TME [95]. This also verifies that the intesti-
nal microbiota from responders is involved in improving immunotherapy or as a candidate
biomarker to promote immune surveillance of cancer [96]. Through 16S ribosomal RNA
sequencing identification, Sivan et al. found that the effect of oral Bifidobacterium alone can
be comparable to anti-PD-1 therapy, and the combined therapy can even completely inhibit
tumors [85]. In addition, the metabolites of the microbiota not only reactivate dendritic cells
(DCs) but also induce the metabolic reorganization of CD8 + T cells in the TME, providing
a basis for the long-term survival of memory cells [97].

When comparing the intestinal microbiota of patients with different malignancies re-
ceiving immunotherapy, Routy et al. found that Akkermansia muciniphila (A. muciniphila)
was more enriched in the feces of responders (p = 0.007) [90]. Interestingly, two in-
dependent teams studying NSCLC and renal cell carcinoma and studying metastatic
melanoma also reached similar conclusions, suggesting the possibility of A. muciniphila as
a biomarker [98,99]. It is worth mentioning that after co-culture of A. muciniphila with pe-
ripheral blood mononuclear cells of responders or non-responders, the effect of responders’
CD4+/CD8 + T cells in producing IFN-γ-related memory T cells was significantly stronger
than that of non-responders [100]. At the same time, passing A. muciniphila through FMT
can re-establish the immune checkpoint blocking effect of non-responders.

In addition, Bacteroidetes are increasingly recognized to be associated with the de-
velopment and exacerbation of induced colitis [101,102]. In melanoma patients treated
with ICIs, the abundance of Bacteroidetes appears to be positively correlated with colitis
resistance [103]. Recently, a number of studies proved that different microbial populations
excel in optimizing the therapeutic effects of different ICIs, improving the prognosis of
patients [104,105]. We summarized the microbiota, tumors, and related immune regulation
mechanisms involved in each study in Table 3.

In short, these studies broaden the perspective of the intestinal microbiota participating
in cancer immunotherapy [106]. In fact, a variety of factors, such as diet, daily life, and
drugs, are the basis for constructing the network of immune metabolism of the intestinal
microbiota. Therefore, different life parameters may also affect the responsiveness of the
intestinal microbiota in different populations and tumors.
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Table 3. Intestinal microbiota optimizes cancer immunotherapy.

Microbial Species Immune Optimization Anti-PD-1/L1 Anti-CTLA-4 Tumors References

Alistipes putredinis Memory CD8+ T cells ↑
NK cells(peripheral) ↑ ↑ NSCLC

RCC [100]

Akkermansia muciniphila

CXCR3+CCR9+CD4+ T
cells ↑
DCs ↑
IL-12 ↑

↑ NSCLC
RCC [100]

Bacteroides spp.

MDSCs and Tregs ↑
Immune-related adverse

events ↑
IL-12 ↓
DCs ↓

↓ ↓ MM [87]

Bacteroides fragilis
Th1 cells ↑

Foxp3+ Tregs ↑
DCs ↑

↑ MM
NSCLC [107]

Bifidobacterium spp.

DCs ↑
Lymphocytes ↑

IFN-γ ↑
Pro-inflammatory

cytokine ↑
Tumor-specific CD8+ T

cells ↑

↑ MM [94]
[85]

Enterococcus faecium T cell responses ↑ ↑ MM [10]

Escherichia
Clostridium

Differentiation of Tregs ↑
Inflammation ↓ ↑ MM [7]

Faecalibacterium. spp.

CD4+/CD8+ T cells ↑
Tregs ↑

ICOS expression of T cells
↑

↑ ↑ MM [87]

Ruminococcaceae spp.
Antigen presentation ↑

T cells ↑
IFN-γ CD8+ T cells ↑

↓ MM [94]

Microbial-derived SCFAs
(butyrate, propionate) Differentiation of Tregs ↑ ↑ CRC [108]

9. The Clinical Application of Intestinal Microbiota

With the continuous expansion of research data, the gut microbiota provides unprece-
dented opportunities for the development of immunotherapy-related therapies. Although
the mechanism of the gut microbiota in cancer immunotherapy remains to be explored,
many cutting-edge studies provide valuable clinical evidence for the gut microbiota with
application potential. According to recent clinical studies, we use a Sankey diagram to
build a very meaningful bridge between ICIs (anti-PD-1/PD-L1 or anti-CTLA-4) and the
enrichment of the intestinal microbiota (Figure 2).

Intestinal microbiota optimization and adjuvant immunotherapy have been confirmed,
which provides confidence in reducing the complications of cancer immunotherapy [110].
Among them, the most common immune-related adverse event is related to colitis, but
the cause is still unknown. Interestingly, colitis was effectively relieved under the inter-
vention of the lactic acid bacteria Lactobacillus reuteri, and the patient’s weight loss and
inflammation symptoms were significantly improved [111]. In addition, the activation of
the protection of Lactobacillus reuteri may be based on the decrease in lymphocyte distri-
bution [112]. The emergence of tumor microecological immunonutrition further provides
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an opportunity for the microbiota as a breakthrough in cancer immunotherapy [113]. The
ketogenic diet has also been reported to enhance the efficacy of immunotherapy [114].
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Figure 2. Differences in intestinal microbiota enrichment in ICIs (anti-PD-1/PD-L1 or anti-CTLA-
4). Sankey diagrams provide visual clues to the enrichment characteristics of microorganisms in
different ICIs. Blue band: the bacterial microbiota enriched in patients responding to ICIs, including
Akkermansia muciniophila, Bifidobacterium species and Bacillus species, etc. Red band: the bacterial
microbiota enriched in patients who did not respond to ICIs, including Staphylococcus haemolyticus,
Bacteriodales, and Prevotella histicola, among others. The number in brackets indicates the source of
the reference. (1) [87] (2) [92] (3) [10] (4) [94] (5) [100] (6) [90] (7) [109].

A number of studies have proposed that adjusting the composition of the gut mi-
crobiota can effectively improve immunotherapy, including FMT, dietary intervention,
probiotics, or prebiotics [115]. Among them, FMT is gradually recognized as a beneficial
clinical intervention. FMT is perfused or orally transplanted into the patient’s intestines in
the form of bacterial liquid or capsules [116]. At present, FMT has been proven to be the
first-line treatment for relapsed/refractory Clostridium difficile infection (CDI) and has
been included in the national clinical guidelines [117]. Since microbial research turns to
an in-depth mechanism direction, the role of the microbiota and metabolites in the field of
inflammatory bowel disease and cancer will undoubtedly be further highlighted [118–120].
Certainly, FMT is in its infancy in cancer clinical exploration, but it is a landmark discovery
in the field of cancer therapy.

10. The Combination of FMT and Immunotherapy

The combination therapy of FMT and ICIs not only takes into account the curative
effect but also guarantees better safety. Baruch et al. performed intestinal microbiota
reconstruction in 10 groups of patients with anti-PD-1 refractory metastatic melanoma [121].
After using vancomycin to destroy their own intestinal microbiota for 3 days, the patient
rebuilt a new intestinal environment through FMT [122]. After receiving the anti-PD-1 ICIs
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again, two patients had partial remission, and one patient had complete remission with PFS
for more than 6 months. Only some patients experienced discomfort, such as abdominal
distension, and no other adverse reactions occurred [123].

Another study also performed FMT and PD-1 monoclonal antibody combination
therapy on 15 patients with anti-PD-1 resistant metastatic melanoma [124]. The results
showed that six patients responded to anti-PD-1, and only three patients experienced
grade 3 adverse events. The study also further clarified that the combination of FMT and
anti-PD-1 therapy weakened bone marrow-induced immune suppression, activated CD56
+ CD8 + T cells, and downregulated the expression of IL-8 [125]. In contrast, patients with
poor intestinal microbiota exhibited weak anti-tumor immunity due to restricted antigen
presentation. The latest FMT and immunotherapy-related clinical trials provide a basis
for clarifying the involvement of intestinal microbiota in the regulation of ICIs (Table 4).
The clinical trial (NCT03353402) attempts to improve the gut microbiota of melanoma
patients who cannot benefit from immunotherapy through FMT. Another clinical trial
(NCT05008861) tried to rebuild the gut microbiota in the immunotherapy of non-small
cell lung cancer through FMT. The combination of FMT and ICIs will make a greater
contribution to the prognosis of patients. In addition, before the combination therapy
of FMT and ICIs, the patient must consume antibiotics orally to destroy the harmful
intestinal microbiota in the body. According to reports, the vancomycin–neomycin regimen
is currently the most effective preparation for treatment [126]. The results of clinical trials
and conventional treatment indicate that antibiotic exposure may reduce the OS rate of
patients receiving immunotherapy, but the potential intervention is not yet clear [12,13].

Table 4. Related clinical trials of FMT in cancer immunotherapy.

NCT Number Title Status Conditions Interventions Phases

NCT05008861

Gut Microbiota
Reconstruction for

NSCLC
Immunotherapy

Not yet recruiting Non-Small Cell Lung
Cancer

Procedure: Capsulized Fecal
Microbiota Transplant

Drug: Anti-PD-1/PD-L1
Drug: Platinum-based

chemotherapy

Phase 1

NCT04924374

Microbiota Transplant
in Advanced Lung

Cancer Treated with
Immunotherapy

Recruiting Lung Cancer

Dietary Supplement:
Microbiota Transplant plus

anti-PD-1 therapy
Drug: anti-PD-1 therapy

Not Applicable

NCT04729322

Fecal Microbiota
Transplant and

Re-introduction of
Anti-PD-1 Therapy
(Pembrolizumab or
Nivolumab) for the

Treatment of Metastatic
Colorectal Cancer in

Anti-PD-1
Non-responders

Recruiting

Metastatic Colorectal
Adenocarcinoma
Metastatic Small

Intestinal
Adenocarcinoma

Stage IV Colorectal
Cancer

Procedure: Fecal Microbiota
Transplantation

Drug: Metronidazole
Biological:

Nivolumab/Pembrolizumab

Early Phase 1

NCT03353402

Fecal Microbiota
Transplantation (FMT)

in Metastatic Melanoma
Patients Who Failed

Immunotherapy

Recruiting
Melanoma Stage Iv

Unresectable Stage III
Melanoma

Procedure: Fecal Microbiota
Transplant (FMT) Phase 1

NCT03772899

Fecal Microbial
Transplantation in
Combination with
Immunotherapy in
Melanoma Patients

(MIMic)

Recruiting Melanoma Drug: Fecal Microbial
Transplantation Phase 1

NCT04758507

Fecal Microbiota
Transplantation to

Improve Efficacy of
Immune Checkpoint

Inhibitors in Renal Cell
Carcinoma

Recruiting Renal Cell Carcinoma Biological: donor FMT
Other: Placebo FMT

Phase 1
Phase 2

11. Probiotics and Prebiotics

Undoubtedly, FMT is a highly potential microbial intervention therapy. However,
before clinical application, pathogen screening is indispensable to prevent the induction
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of bacteremia. Probiotics and prebiotics have received widespread attention due to their
low price and easy access [127]. As a biological response modifier, probiotics are involved
in the competitive displacement of pathogens, the assembly of antiviral proteins, and the
maintenance of physiological functions of the epithelial–mucosal barrier [128]. Probiotics
not only directly regulate immune and metabolic processes through intestinal immune cells
and epithelial cells but also indirectly maintain the immune state of multiple sites by regu-
lating intestinal microbiota [129]. Probiotics, such as Lactobacillus and Bifidobacterium,
can promote antigen-specific recognition of infected monocytes to cut off the transmission
route [28,130]. A clinical trial involving 20 CRC patients (NCT03072641) revealed that
bifidobacteria and lactobacilli altered the immune responsiveness of the intestinal mucosa
compared with baseline tissue or stool samples [131]. Further, the clinical trial also found
changes in the expression of cytokines, such as IL-10, IL-12, IL-17, etc., in the mucosa [131].
Coincidentally, probiotic preparations containing Lactobacillus casei have significantly im-
proved in ensuring surgical resection and recurrence-free survival of bladder cancer [132].
In addition, there is evidence that prebiotics such as inulin, lactulose, and galactooligosac-
charides can selectively induce the proliferation of bifidobacteria and lactobacilli [133,134].
However, due to a lack of scientifically rigorous evidence, most probiotics and prebiotics
are still not included in the drug category. The initial success of probiotics in CDI and
inflammatory bowel disease has given strong confidence and spurred a focus on providing
strong scientific evidence for their efficacy [135]. It cannot be ignored that the fraction
of the symbiotic microbiota with lower individual variability is of great significance in
manipulating host physiology. Tanoue et al. obtained 11 fecal microbiota derived from
healthy people and found that they strongly induced interferon γ + CD8 T cells [136].
Further colonizing the microbiota in mice, they found that the mixed microbiota not only
enhanced the anti-tumor immune effect of ICIs but also effectively avoided immune-related
colitis [136]. Therefore, the research on the microbiome will provide a powerful boost to
the progress of clinical tumors and other multidisciplinary subjects.

12. Antibiotic and Immunotherapy Efficacy

For immunotherapy patients, the use of antibiotics should be carefully weighed.
Exposure to broad-spectrum antibiotics, even when the source of infection is identified, can
still impair gut microbiota homeostasis in cancer patients receiving immunotherapy [137].
One study showed that, regardless of whether antibiotics were used before and after anti-
PD-1, the median survival rate of patients was only half that of those who did not receive
antibiotic exposure [138]. A multicenter, prospective cohort study of 196 samples (NSCLC,
melanoma, RCC, and head and neck cancer) also supported that antibiotics reduce PD-
1/PD-L1 response to treatment, and patients have lower OS [139]. However, a retrospective
study of 74 NSCLC patients treated with nivolumab did not find significant differences
in efficacy or PFS [140]. Although the impact of antibiotics on immunotherapy remains
controversial, it is undeniable that clinicians need to carefully consider the duration and
dose of antibiotic exposure. We look forward to more prospective studies being conducted
to clarify this issue.

13. Conclusions

The intestinal microbiota and immunotherapy are a new cross-cutting field. Microbiota
association research and avant-garde sequencing technologies have shifted from descriptive
macroscopic research to the regulation of the immune metabolism of specific microbiota.
Through intervention modes such as FMT, the microbiota can not only reduce immune-
related adverse events but also serve as a biomarker to predict the prognosis of patients.
Based on clinical trials and bioinformatics data, the development of accurate and effective
individualized microbial therapy will be the direction of tumor treatment in the future.
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