
Citation: Zhang, J.; Chen, Z.; He, X.;

Liu, K.; Hao, Y.; Ma, M.; Wang, W.;

Dang, H.; Li, X. Secure ECDSA

SRAM-PUF Based on Universal

Single/Double Scalar Multiplication

Architecture. Micromachines 2024, 15,

552. https://doi.org/10.3390/

mi15040552

Academic Editor: Zhongrui Wang

Received: 21 February 2024

Revised: 12 April 2024

Accepted: 19 April 2024

Published: 21 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Secure ECDSA SRAM-PUF Based on Universal Single/Double
Scalar Multiplication Architecture
Jingqi Zhang 1 , Zhiming Chen 1 , Xiang He 1 , Kuanhao Liu 1 , Yue Hao 1 , Mingzhi Ma 2, Weijiang Wang 1,3,
Hua Dang 1 and Xiangnan Li 4,*

1 School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China;
zhangjq@bit.edu.cn (J.Z.)

2 UNISOC (Shanghai) Technology Co., Ltd., Shanghai 201203, China
3 BIT Chongqing Institute of Microelectronics and Microsystems, Chongqing 401332, China
4 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: 7520220063@bit.edu.cn

Abstract: Physically unclonable functions (PUFs) are crucial for enhancing cybersecurity by provid-
ing unique, intrinsic identifiers for electronic devices, thus ensuring their authenticity and preventing
unauthorized cloning. The SRAM-PUF, characterized by its simple structure and ease of implementa-
tion in various scenarios, has gained widespread usage. The soft-decision Reed–Muller (RM) code,
an error correction code, is commonly employed in these designs. This paper introduces the design
of an RM code soft-decision attack algorithm to reveal its potential security risks. To address this
problem, we propose a soft-decision SRAM-PUF structure based on the elliptic curve digital signature
algorithm (ECDSA). To improve the processing speed of the proposed secure SRAM-PUF, we propose
a custom ECDSA scheme. Further, we also propose a universal architecture for the critical operations
in ECDSA, elliptic curve scalar multiplication (ECSM), and elliptic curve double scalar multiplication
(ECDSM) based on the differential addition chain (DAC). For ECSMs, iterations can be performed
directly; for ECDSMs, a two-dimensional DAC is constructed through precomputation, followed
by iterations. Moreover, due to the high similarity of ECSM and ECDSM data paths, this universal
architecture saves hardware resources. Our design is implemented on a field-programmable gate
array (FPGA) and an application-specific integrated circuit (ASIC) using a Xilinx Virtex-7 and an
TSMC 40 nm process. Compared to existing research, our design exhibits a lower bit error rate
(2.7× 10−10) and better area–time performance (3902 slices, 6.615 µs ECDSM latency).

Keywords: SRAM-PUF; elliptic curve digital signature algorithm; elliptic curve scalar multiplication;
elliptic curve double scalar multiplication

1. Introduction
1.1. Background

With the rapid expansion of the Internet of Things (IoTs), more devices require internet
connectivity. Ensuring the security of integrated circuits in these devices is crucial to protect
them from potential attacks [1,2]. The physical unclonable function (PUF) is an essential
security technique for integrated circuits; it generates a unique electronic signature for
each chip by exploiting chip characteristics caused by process variations [3]. PUF functions
produce an output responding to a given challenge, forming a challenge–response pair
(CRP). PUFs are classified into strong or weak based on their number of CRPs. Strong PUFs
have numerous CRPs, while weak PUFs have only a few, which are usually used for key
generation through direct response or hash transformation. Weak PUFs often require error
correction circuits for reliability.

Among weak PUF circuits, the static random access memory (SRAM)-PUF is widely
used due to its superior error correction and ease of implementation [4]. In SRAM-PUF, the

Micromachines 2024, 15, 552. https://doi.org/10.3390/mi15040552 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15040552
https://doi.org/10.3390/mi15040552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-4140-7029
https://orcid.org/0000-0001-9195-1327
https://orcid.org/0009-0000-0027-5504
https://orcid.org/0009-0009-6843-5047
https://orcid.org/0000-0002-6084-1544
https://doi.org/10.3390/mi15040552
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15040552?type=check_update&version=2


Micromachines 2024, 15, 552 2 of 26

initial value of SRAM serves as the PUF response upon power-on, ensuring no sensitive
information is stored when powered off [5]. This method offers flexibility in key generation
and high entropy due to the inherent randomness in physics.

Although SRAM-PUF is an “electronic fingerprint”, it is sensitive to noise and fab-
rication processes, leading to bit errors in the initial power-on value. To mitigate this,
people adopt fuzzy extractor algorithms and categorize them into either hard-decision
or soft-decision. Soft-decision algorithms are more robust in noisy conditions and uti-
lize multiple sampling, which is often achieved by repeatedly powering SRAMs up and
down. Reed–Muller (RM) code, a common soft-decision error correction code, is typically
used, with pre-computed error probabilities Perror stored in read-only memory (ROM)
during registration. The soft-decision SRAM-PUF based on RM code is presented in
Appendix A.

1.2. Related Works

As interest in PUFs grows, more and more potential attacks against PUFs have been
proposed. Protocol attacks on PUFs are outlined in [6]. Additionally, refs. [7,8] detail vari-
ous protocol attack strategies, including accessing the PUF temporarily, reusing previous
PUF sessions, establishing stealth channels for malicious activities, and exploiting error cor-
rection schemes for information leakage. Furthermore, refs. [9,10] suggest a silicon attack
method involving invasive techniques to manipulate or explore all possible PUF values
or alter chip PUF values. Despite SRAM-PUF’s ability to resist some attacks, ensuring
absolute security solely through initial values remains a challenge. For instance, in practical
settings, the CPU’s connection to SRAM enables access to SRAM data through software
programs, potentially exposing its initial value, as mentioned in [11]. Even if SRAM is not
directly linked to the CPU, invasive methods like scanning electron microscopes or thermal
laser stimulation can also be deployed to measure initial values [12].

Due to the risks associated with initial SRAM value leakage, this paper proposes a
modified SRAM-PUF algorithm to address security concerns and enhance SRAM-PUF
technology with the help of elliptic curve cryptography (ECC). The elliptic curve digital
signature algorithm (ECDSA) can ensure confidentiality and is applicable for maintaining
data integrity and authenticity [13]. Therefore, the initial SRAM value leakage problem can
be solved. In ECDSA, curves are defined over prime fields and binary fields [14]. Binary
fields offer advantages in modular operations due to their carry-free property, making ECC
over binary fields more suitable for hardware implementations, as shown in Appendix B.
Elliptic curve scalar multiplication (ECSM) and elliptic curve double scalar multiplication
(ECDSM) significantly influence ECDSA performance. Li [15] introduced a speed-oriented
ECSM architecture over GF(2m) with dual multipliers operating in parallel. Ref. [16]
presents a throughput/area-efficient ECSM architecture utilizing a novel segmented digit-
serial multiplier for acceleration. Khan [17] proposed a high-speed ECSM architecture
employing a single multiplier and a low-latency ECSM architecture using three multipliers.
These architectures modify the Lopez–Dahab Montgomery ECSM algorithm to manage
data dependencies effectively. The authors of [18] introduce a flexible asymmetric crypto
ECSM processor capable of handling ECSM over standard binary curves and binary huff
curves. Additionally, Harb [19] presents a compact ECSM architecture tailored for small
embedded applications that utilizes a ROM-based state machine to maximize hardware
resource utilization.

1.3. Motivation

RM codes are considered highly secure in the existing literature. The security of
RM codes for SRAM-PUF is contingent upon the absolute security of SRAM and the
parameter ROM [20,21]. In practical scenarios, additional protective measures can be im-
plemented to prevent attackers from reading the power-on values of SRAMs, and secure
ROM can be employed to prevent attackers from reading and modifying the parameter
ROM. However, these approaches entail extra hardware resources and specific electronic



Micromachines 2024, 15, 552 3 of 26

components. In most system-on-chip (SoC) designs, as they are modules that are directly
connected to the central processing unit (CPU), conventional SRAM and ROM can be
easily read and modified by attackers through software. Then, the attacker merely needs
to modify Perror in ROM based on the power-on values of SRAMs to “clone” the results
of SRAM-PUF. Therefore, current research in building secure SRAM-PUFs based on con-
ventional SRAM and ROM is still lacking, which motivates the research presented in
this paper.

1.4. Contributions and Structure

The main contributions of this paper are as follows:

1. An RM code soft-decision attack algorithm for SRAM-PUFs is proposed. The attacker
simply needs to modify the parameter Pattack in the ROM to clone the SRAM-PUF.

2. We propose a secure ECDSA SRAM-PUF based on custom signature and verification
schemes. The computationally expensive modular inversion operation present in
standard ECDSA is omitted in the custom schemes. The custom schemes enhance the
difficulty of the proposed RM code soft-decision attack algorithm.

3. We propose a universal computing hardware architecture for ECSM and elliptic curve
double scalar multiplication (ECDSM) based on the differential addition chains (DAC)
to enhance the overall performance of the design.

4. A secure ECDSA SRAM-PUF architecture is proposed in this paper. The hardware
architecture for RM code soft-decision emphasizes lightweight design, while the
ECDSA architecture is performance-oriented. Our design is implemented on both
an ASIC and FPGA to compare with the existing literature in terms of bit error rate
(BER), reliability, uniqueness, and area–time product (ATP).

The remaining sections of the paper are structured as follows. Section 2 provides an
introduction to the related background and preliminaries covering the fundamentals of
SRAM-PUF and ECDSA. Section 3 presents the ECDSA-based SRAM-PUF scheme along
with the corresponding fast algorithm. In Section 4, the paper delves into the hardware
architecture of the proposed algorithm, accompanied by an exploration of hardware evalu-
ation and optimization. Section 5 offers insights into the hardware implementation results
of the proposed architecture. Finally, Section 6 serves as the conclusion, summarizing the
key findings and contributions of the paper.

2. Security Problems Existing in Soft-Decision RM Codes

Since SRAMs are directly connected to the CPU, they are susceptible to being read
by attackers through software attacks. Once SRAM is accessed by a third party, y′ will
be leaked to the attacker. The attacker proceeds to target the ROM, which is also directly
linked to the CPU, using software methods to acquire w and P. Combining this information
with y′, the attacker can derive c′, c, and y. The strength of PUF lies in its ability to resist
replication even if an attacker gains access to the response value, as there is no means to
control technological differences for modifying y′. However, with the introduction of P
through soft-decision, the paper proposes the RM code soft-decision attack algorithm, as
shown in Algorithm 1. In this algorithm, the attacker can manipulate P to correct c′ to an
alternative c′, thereby altering the error-corrected response value y.



Micromachines 2024, 15, 552 4 of 26

Algorithm 1 The Proposed Attack Algorithm for SRAM-PUFs Based on Soft-Decision RM
Code
Require: w and y.
Ensure: Replicated y.

1: Registration stage:
2: for j = 0 to 100 do
3: SRAMs power on to obtain one yattack_j;
4: end for
5: SRAMs power on to obtain yattack;
6: for j = 0 to 100 do
7: for i = 0 to Bit_Length(yattack) do
8: if yattack[i] 6= yattack_j[i] then
9: Pattack_i = Pattack_i + 1;

10: end if
11: end for
12: end for
13: for i = 0 to Bit_Length(yattack) do
14: if yattack[i] 6= yattack_j[i] then
15: Pattack_i = 1− Pattack_i;
16: end if
17: end for
18: Store w and Pattack in the ROM;
19: Recovery stage:
20: SRAMs power on to obtain y′attack;
21: c′attack = w⊕ y′attack;
22: c = RM_Decode(c′attack, Pattack);
23: y = c⊕ w;
Return: y.

In the attack scheme, a comparison is made during the registration phase between
each bit of y and yattack to adjust each bit of Pattack. If a bit of y and yattack differs, the
corresponding bit in Pattack is set to 1− Pattack. This adjustment ensures that the likelihood
estimate for soft-decision error correction takes the opposite stance.

In the recovery phase, the disparities between c′attack and c′ in the attacked SRAM-
PUF are analogous to those between y′attack and y′, given the formulas c′ = w ⊕ y′ and
c′attack = w⊕ y′attack. Consequently, modifications to the differing bits in Pattack between
y′attack and y′ lead to reverse likelihood estimates for the corresponding bits. This reversal
ultimately results in identical sign likelihood estimates for each bit between c′attack and c′.
During the final decoding of the likelihood estimate to determine the symbol, two likelihood
estimates with the same symbol will have a high probability of being error-corrected to
yield the same code word. Thus, c′attack can be corrected to c′, allowing attackers to replicate
y. As a result, attackers do not need to alter the circuits. By substituting P in ROM with
Pattack, the same SRAM-PUF soft-decision algorithm can be ineffective at achieving the
“unclonable” effect.

3. The Proposed Secure SRAM-PUF Scheme Based on Custom ECDSA
3.1. Parameter Selection for RM Code

Since the RM error correction code is used in the soft-decision algorithm, selecting
the order r and the number m of the RM code is essential. Theoretically, the soft-decision
algorithm can choose any RM code. However, various factors need careful consideration
before the soft-decision of the RM code in PUF is made.

The order r dictates the recursion complexity and error correction ability of the RM
code. The error correction capability of the RM code should align between the intra-
chip and inter-chip error rates of the SRAM-PUF. If the error correction capability is
lower than the intra-chip rate, the error correction will fail. Conversely, suppose the error



Micromachines 2024, 15, 552 5 of 26

correction capability surpasses the inter-chip rate. In that case, the attacker can correct the
response value of the attacked chip using the response value of another chip with identical
parameters, completing PUF replication. We choose r = 2 so that the error correction
capability of the RM code is about 20%.

The parameter m affects the information entropy of the RM code. Four segments
of 256-bit SRAM initial values are chosen for RM(2, 8) soft-decision, resulting in four re-
sponses with 37-bit information entropy each. Repeated RM code soft-decision necessitates
the reuse of the same RM code soft-decision hardware multiple times, and ROM also
needs to store the error probability of each segment. For different RM codes, the larger
the value of m, the greater the information entropy of the message, but this may lead to a
higher likelihood of entropy leakage caused by the code word. A value of m = 8 strikes
the trade-off between entropy and security. Therefore, this paper chooses RM(2, 8) for
generating PUF.

3.2. The Proposed Secure SRAM-PUF Scheme

The proposed secure SRAM-PUF scheme is illustrated in Algorithm 2. Considering
the utilization of ECDSA to safeguard the error probability signature in the ROM, all error
probabilities can be signed as a message during the registration stage. The algorithm of
the ECDSA-PUF in the registration phase closely resembles the auxiliary data soft-decision
algorithm. However, in addition to calculating w and P, it also necessitates completing the
ECDSA signature.

Algorithm 2 The Proposed Secure SRAM-PUF Scheme
Require: SRAM, a private key d, a public key H, and the order of the elliptic curve n.
Ensure: A stable SRAM-PUF response y.

1: Registration stage:
2: for j = 0 to 100 do
3: SRAMs power on to obtain one yj;
4: end for
5: SRAMs power on to obtain y;
6: for j = 0 to 100 do
7: for i = 0 to Bit_Length(y) do
8: if y[i] 6= y[i] then
9: Pi = Pi + 1;

10: end if
11: end for
12: end for
13: Choose one RM code c;
14: w = c⊕ y;
15: (xp, s−1(mod n)) = cusECDSA_SIG(d, {P, w});
16: (X, Z) = cusECDSA_VER(d, m, xp, NULL, s−1(mod n));
17: xpZ = xp × Z mod p;
18: Save w, P, xpZ, s−1 to the ROM;
19: Recovery stage:
20: xpZ = Bit_Extension(xpZ);
21: w′ = w⊕ xpZ;
22: SRAMs power on to obtain y′;
23: c′ = w⊕ y′ ⊕ xpZ;
24: c = RM_Decode(c′, P);
25: (X, Z) = cusECDSA_VER(d, m, xp, xpZ, s−1(mod n));
26: X = Bit_Extension(X);
27: y = c⊕ w⊕ X.
Return: y.



Micromachines 2024, 15, 552 6 of 26

Once the signature is completed, the signatures are stored in the ROM. During the
recovery phase, the RM code soft judgment is performed, as well as the ECDSA verification.
If the verification fails, the RM code soft judgment PUF output becomes invalid. However,
directly verifying the data in the ROM and using a single-bit signal to determine whether
the verification passes poses a problem. This single-bit signal line directly influences the
generation of SRAM-PUF, which is crucial in the circuit. Therefore, if an attacker locates
this single-bit signal in the netlist or circuit layout and modifies it, the ECDSA signature
verification attack can be executed, thus altering the validity of the PUF. To prevent the
single-bit signal from determining the security of the entire chip, we integrate multi-bit
signals throughout the algorithm. Only if the signature is verified can the correct SRAM
response be obtained. Once any value in the ROM is changed, the verification will not pass,
which cannot get the internal values to generate the correct response.

As the ECDSA-PUF’s signature and verification are “self-signed and self-verified” as
initiated by the designer, a simpler ECDSA protocol can be customized to further expedite
ECDSA-PUF by omitting the time-consuming part of signature verification. Hence, the
acceleration speed of the PUF is boosted. The content of the custom ECDSA protocol will
not be disclosed to the public, thereby increasing the difficulty for attackers. Consequently,
we propose a custom ECDSA signature cusECDSA_SIG and verification cusECDSA_VER.
In the standard ECDSA, we calculate xp and compare it with the signature r. However, in
the proposed custom cases, we calculate X and compare it with xpZ (mod n). Hence, the
time required for modular inversion is saved.

In the registration phase, power-on and power-off cycles are repeated to tally the
error probability P and calculate the auxiliary data w. Subsequently, the custom signature
function (Algorithm A6) is executed on P and w. Two distinctions exist between this
function and the standard ECDSA signature. First, the signature s needs to calculate the
modulo inverse s−1 (mod n). This calculation occurs in the registration phase and is
conducted by computers, not during chip hardware calculation in the recovery phase.
Hence, this part’s calculation is completed before leaving the factory and does not impinge
on PUF generation time. Second, the function directly outputs xp instead of calculating
r = xp (mod n). The purpose is for the subsequent xpZ (mod p) calculation to obtain the
P point X-coordinate.

The purpose of r (mod n) in standard ECDSA is to ensure r is smaller than the order
n. If (mod n) is skipped, it will cause r + n, r + 2n, r + 3n, ..., r + xn to get the same sign
u2 during verification. For custom ECDSA, when xp serves as the signature, although
xp + n, ..., xp + xn can get the same u2 during verification, the final verification compares
xpZmodp. Thus, (mod p) will result in incorrect verification of r + xn, meaning there is
no possibility that multiple numbers related to xp can be verified. Therefore, omitting
(mod n) in signatures does not affect security.

After completing the custom signature function, execute the custom verification func-
tion (Algorithm A7). The custom signature verification function directly inputs the cal-
culated s−1 (mod n) and, ultimately, only calculates the projected coordinates X and Z
without performing the modulo inverse of the coordinate transformation. After complet-
ing the signature verification and obtaining Z, calculate xpZ (mod p) in advance in the
registration phase, saving computation time on hardware in the recovery phase.

For standard ECDSA, r and s are safe and reliable in the ROM. For the custom ECDSA,
compared with r, xp lacks the modulo step, and the amount of information in s−1 mod n
is the same as that of s. Thus, xp and s−1 mod n are both considered safe in the ROM. In
the recovery stage, we use xpZ to perform the auxiliary data algorithm instead of r. Also,
perform bit expansion first, find w′ and c′ and perform RM code soft-decision to obtain
c. While executing the auxiliary data algorithm, we use xp, xpZ, s−1 (mod n) to execute
customized signature verification and calculate the projected coordinate X of P. As there
is no need to perform the modular inverse step and xpZ, s−1 (mod n) have already been
calculated in the registration stage, the relevant logic for these calculation steps in the circuit
of the recovery stage is saved, effectively reducing resource consumption and computation



Micromachines 2024, 15, 552 7 of 26

time. Finally, X is bit-expanded and XORed with w′ and c. The final expression of y is
given in Equation (1).

y = c⊕ w′ ⊕ X = c⊕ w⊕ xpZ⊕ X

= c⊕ y⊕ c⊕ xpZ⊕ X

= y⊕ xpZ⊕ X

(1)

3.3. The Proposed Universal Algorithm for ECSM and ECDSM

For the construction of a two-dimensional DAC, we consider two scalars in ECDSM as
an input vector (k, l). The two-dimensional DAC is illustrated in Appendix C. The initial
values of a two-dimensional DAC are zero (0, 0), the point P(1, 0), and the point Q(0, 1).
Then, we precompute the PA results of P + Q and P−Q. Note that point subtraction is as
efficient as PA since, given Q(xQ, yQ), the coordinate of −Q is xQ, xQ + yQ. The algorithm
of single PA in LD coordinates is shown in Appendix B.

For each loop in a two-dimensional DAC, the existence of the current vector (ki, li) al-
lows the calculation of four intermediate values (ki, li), (ki, li + 1), (ki + 1, li), and
(ki + 1, li + 1). We only preserve three values out of four to reduce the computation
burden. The parities of these intermediate values are (odd, odd), (even, even), (odd, even),
and (even, odd). As illustrated in Figure A2, values in C(1) and C(2) are always (odd, odd)
and (even, even), respectively. The missing values can be (odd, even) or (even, odd). Only
one of them is preserved in C(3). The omitted value is determined by (ki, li) and (ki−1, li−1),
where (ki−1, li−1) = ([ki/2], [li/2]):

1. When (ki−1 + ki, li−1 + li) = (odd, odd), the choice is the same as the previous iteration;
2. When (ki−1 + ki, li−1 + li) = (even, even), the choice is the opposite of the

previous iteration;
3. When (ki−1 + ki, li−1 + li) = (odd, even), the choice is (even, odd);
4. When (ki−1 + ki, li−1 + li) = (even, odd), the choice is (odd, even).

Hence, we can generate all elements in the proposed two-dimensional DAC, as shown
in Algorithm 3. Furthermore, we also need to determine the flag signals to control the
accumulation for the final ECDSM results. It is obvious that C(1)

i is always calculated

through the PA of C(1)
i−1 and C(2)

i−1. Further, C(2)
i is always calculated through the PD with

one of C(1)
i−1, C(2)

i−1, or C(3)
i−1. Finally, C(3)

i is calculated through the PA of C(3)
i−1 and either C(1)

i−1

or C(2)
i−1. The relations in the proposed two-dimensional DAC are given as:

C(1)
i = C(1)

i−1 + C(2)
i−1

C(2)
i = 2C(n)

i−1

C(3)
i = C(3)

i−1 + C(m)
i−1

, (2)

where n = 1, 2, 3 and m = 1, 2.
To establish the two-dimensional DAC, we need to determine the data strobing for

each loop. C(1)
i is always obtained through C(1)

i−1 and C(2)
i−1. For C(3)

i , one of the adders is

fixed as C(3)
i−1, and the other adder can be C(1)

i−1 or C(2)
i−1. For C(2)

i , the input of the PD can be

C(1)
i−1, C(2)

i−1, or C(3)
i−1. Meanwhile, we also need to determine the differences xdi f f between

two adders within two PAs for each loop. The possible values for xdi f f can be (1, 1), (0, 1),
(1, 0), or (1,−1), which stand for P + Q, Q, P, and P−Q, respectively.

The proposed flag signal generation algorithm is shown in Algorithm 4. In this
algorithm, Ai and Bi denote the values of m and n, respectively, in Equation (2). The
difference between C(1)

i−1 and C(2)
i−1 can be P + Q or P − Q. When the Y-coordinates are

omitted, the X-coordinates and Z-coordinates of P + Q and P−Q are the same. Therefore,
we only determine Di to denote the difference between C(3)

i−1 and C(m)
i−1 in Equation (2).



Micromachines 2024, 15, 552 8 of 26

Algorithm 3 The Proposed Two-Dimensional DAC Generation Algorithm
Require: (k, l)
Ensure: C(1)

i , C(2)
i , C(3)

i
1: n = max(dlog2ke, dlog2le)
2: D = k mod 2
3: C(1)

n = (k + (k + 1) mod 2, l + (l + 1) mod 2)
4: C(2)

n = (k + k mod 2, l + l mod 2)
5: C(3)

n = (k + (k + D) mod 2, l + (l + D + 1) mod 2)
6: for i = n− 1 to 0 do
7: Set (k′, l′) = (bk/2c, bl/2c)
8: if (k + k′, l + l′) mod 2 = (0, 0) then
9: D = d

10: end if
11: if (k + k′, l + l′) mod 2 = (0, 1) then
12: D = 0,
13: end if
14: if (k + k′, l + l′) mod 2 = (1, 0) then
15: D = 1,
16: end if
17: if (k + k′, l + l′) mod 2 = (1, 1) then
18: D = d̄,
19: end if
20: Set C(1)

i = (k′ + (k′ + 1) mod 2, l′ + (l′ + 1) mod 2),

21: Set C(2)
i = (k′ + k′ mod 2, l′ + l mod 2),

22: Set C(3)
i = (k′ + (k′ + D) mod 2, l′ + (l′ + D + 1) mod 2),

23: end for
Return: C(1)

i , C(2)
i , C(3)

i .

With flag signals precomputed, the proposed ECDSM algorithm is shown in Algorithm 5.
C(3)

0 also needs to be precomputed to determine the data strobing for the initialization of
the two-dimensional DAC. For ECSM, we employed the Montgomery ladder, as shown in
Appendix B. Indeed, the Montgomery ladder also involves computation through construct-
ing a DAC, but the DAC built in the Montgomery ladder is one-dimensional. Therefore,
this method does not require precomputing the parameters of the DAC. Instead, it itera-
tively calculates and scans each bit of k during the process. Moreover, whether it is the
proposed two-dimensional DAC computation method or the traditional one-dimensional
DAC computation method (the Montgomery ladder), the operational steps in each round
of iteration are uniform (PA-PD for the Montgomery ladder and PA-PA-PD for the pro-
posed method). Consequently, both of these computation methods can enhance the resis-
tance against some power and timing analysis attacks. For the Montgomery ladder, each
loop contains 6 multiplication operations, while our proposed ECDSM method consumes
10 multiplication operations in each loop. Hence, when executing ECDSM, our proposed
method reduces the computational burden by 12−10

12 = 16.7% compared to executing the
Montgomery ladder twice.



Micromachines 2024, 15, 552 9 of 26

Algorithm 4 The Proposed Flag Signal Generation Algorithm

Require: C(1)
i , C(2)

i , C(3)
i , (k, l)

Ensure: Ai, Bi, Di.
1: n = max(dlog2ke, dlog2le)
2: for i = n to 0 do
3: if (C(2)

i+1/2) mod 2 = (1, 1) then
4: Set Bi = 0
5: else if (C(2)

i+1/2) mod 2 = (0, 0) then
6: Set Bi = 1
7: else
8: Set Bi = 2
9: end if

10: if (C(3)
i+1 mod 2 ⊕ C(3)

i mod 2) = (1, 1) then
11: Ai = 0
12: if C(3)

i − C(1)
i = (0, 1) then

13: Di = 0
14: else if C(3)

i − C(1)
i = (1, 0) then

15: Di = 1
16: end if
17: else if (C(3)

i+1 mod 2 ⊕ C(3)
i mod 2) = (0, 0) then

18: Ai = 1
19: if C(3)

i − C(2)
i = (0, 1) then

20: Di = 0
21: else if C(3)

i − C(2)
i = (1, 0) then

22: Di = 1
23: end if
24: end if
25: Set k = k′, l = l′, d = D
26: end for
Return: Ai, Bi, Di.

Algorithm 5 The Proposed ECDSM Algorithm

Require: A, B, C(3)
0 , P, Q.

Ensure: kP + lQ.
1: Set n = max([log2k], [log2l]),
2: Set C1 = P + Q, C2 = 0,
3: if C(3)

0 = (0, 1) then
4: Set C3 = Q
5: else if C(3)

0 = (1, 0) then
6: Set C3 = P
7: end if
8: for i = 1 to n do
9: C1 ← PA(C1, C2)

10: if Ai = 0 then
11: C3 ← PA(C1, C3)
12: else if Ai = 1 then
13: C3 ← PA(C2, C3)
14: end if
15: if Bi = 0 then
16: C2 ← PD(C1)
17: else if Bi = 1 then
18: C2 ← PD(C2)
19: else if Bi = 2 then
20: C2 ← PD(C3)
21: end if
22: end for
Return: kP + lQ.



Micromachines 2024, 15, 552 10 of 26

4. Hardware Architecture
4.1. The Overall Architecture of ECDSA SRAM-PUF

The hardware implementation of ECDSA-PUF is illustrated in Figure 1, where the al-
gorithm integrates ECDSA and RM code soft-decision. The primary hardware components
consist of the ECDSA module and the RM code soft-decision module. The XOR operation
combines the signature and the RM code, generating the SRAM-PUF. Notably, during
placement and routing, there is no distinct boundary or single-bit key signal between the
modules. The ECDSA module and the RM code soft-decision module are the core hardware
components of ECDSA-PUF, and their detailed hardware structures will be elucidated in
subsequent subsections.

The overall hardware structure of ECDSA-PUF comprises two core algorithm modules,
the ECDSA module and the RM code soft-decision module, along with several multiplexers.
The ECDSA module not only performs ECDSA-PUF signature verification but also func-
tions as a system peripheral for the system’s ECDSA signature verification request. With
the idea of multiplexing, the ECDSA module supports both the custom ECDSA signature
verification proposed in this paper and the standard ECDSA signature verification. The
input passes through a selector to RM_busy, serving as the sel signal for the selector. When
RM_busy is low, the signature and public key on the input bus complete standard ECDSA
verification. Conversely, when RM_busy is high, the signature in the input ROM and the
fixed public key in the circuit complete custom ECDSA signature verification.

ROM

SRAM
response

_temp
RM Soft-

Decision

counter

AXIS_SIG_IN

PUBKEY_IN

PUBKEY
ECDSA

RM_busy

c^w’

X

ECDSA_ver result

PUF response

Figure 1. The overall structure of ECDSA-PUF.

The public key of ECDSA-PUF must be consistently fixed within the circuit to maintain
a constant value. This measure ensures that only this specific public key is employed for
ECDSA-PUF signature verification. Failure to secure the fixed public key in the circuit
could expose vulnerabilities. Therefore, an attacker may substitute the ECDSA public key
in the PUF with an alternative private–public key pair to launch an attack potentially. The
ECDSA module operates in distinct working modes, resulting in different outputs. During
ECDSA-PUF calculation, it produces the output X, which is then XORed with the output
result c⊕ w′ of the RM code to derive the response y. Following the successful generation
of the PUF response, ECDSA-PUF ceases operation. Mechanisms such as gated clocks or
power gating can be employed to deactivate the clock or power supply of the RM code
soft-decision module to conserve power consumption. Concurrently, RM_busy remains
consistently at zero, and the ECDSA module transitions to performing the standard ECDSA
task of the system, ultimately outputting the verification result (pass or fail).

In addition to algorithm modules and multiplexers, there are memory modules in the
structure to cache initial values and intermediate variables. In the overall hardware system,
three data storage units are used: SRAM, response_temp, and ROM.

1. SRAM: Provides the initial response y′ of the PUF. The data in it become invalid after
the response is read, and it is then used as the data RAM to cache the intermediate
variable of the RM code.

2. response_temp: Caches the initial value of SRAM. To improve the entropy of PUF,
four segments of 256-bit SRAM initial values are selected and repeated four times



Micromachines 2024, 15, 552 11 of 26

to obtain a 1024-bit response. The RM code structure needs to be multiplexed and
calculated four times. After a calculation is completed, the initial value in the SRAM
will be overwritten by the intermediate result of the calculation. To preserve the
remaining initial values of the SRAM, response_temp is added to cache the other three
initial values of the SRAM.

3. ROM: Stores the w and P of the auxiliary data algorithm as well as the signature
values xP, xPZ, s−1 (mod n) required for signature verification. The variables w and
P need to output the value corresponding to the multiplexing times when calculating
the RM code for each multiplexing.

4.2. The Architecture of Soft-Decision RM Code

The RM code soft-decision module is one of the core algorithm modules of the ECDSA-
PUF hardware. Its hardware structure is shown in Figure 2. The auxiliary calculation
architecture (red part) is responsible for executing the recovery stage in Algorithm 2. In
contrast, the RM decoding architecture (blue part) is responsible for executing the recursive
algorithm as shown in Algorithm A3.

Address

Generator Stack
FSM

LUT

SRAM Addr

SRAM Rd_data

Comparator

Accu

F_func

G_func

GoThro

ROM

state,m

gen_finish

Output L*

Opr

ALU

r,m

next_state

SRAM Wr_data

Ouput c^w’

y’

w

xZ

P logβ((1-P)/P)

c’
xZ

c

Figure 2. RM code soft-decision architecture.

The auxiliary calculation architecture comprises core components such as two XOR
gates at the input of the arithmetic logical unit (ALU), a comparator with an XOR gate at
the output of the ALU, and a look-up table (LUT) for calculating likelihood estimation.
These components serve various functions in the recovery phase of Algorithm 2.

1. XOR gates: Two XOR gates at the input of the ALU are utilized to perform XOR
operations during the recovery phase. Specifically, they are involved in XORing
operations for obtaining w′ and c′.

2. Comparator with XOR gate: The comparator, coupled with an XOR gate at the
ALU’s output is responsible for converting the likelihood estimation obtained after
calculations into a code word c. The XOR gate in this context contributes to the
computation of c′.

3. LUT: The LUT is employed to calculate the likelihood estimation using the formula
logβ

1−P
P . Hardware implementation of this logarithmic calculation can be complex.

However, due to the limited set of possible error probability values P derived from
100 instances of power on and off during the registration phase, a pre-calculated LUT
is used. The LUT helps obtain the corresponding logβ

1−P
P for each P, significantly

saving computational time. Additionally, the LUT’s corresponding relationship can
be randomized to enhance the difficulty of attacker interference.

The data path of the auxiliary calculation architecture follows these steps: SRAM out-
puts the response y′, and ROM outputs w, xPZ, and P. The XOR operation between w and
xPZ yields w′, and the XOR operation involving y′, w′, and xPZ results in c′. Subsequently,
c′ combines with logβ

1−P
P to form the likelihood estimate value L. This value is input into

the ALU to execute the recursive algorithm. Upon completion of the recursive algorithm,
L∗ is output, and the correct codeword c is obtained after error correction through the



Micromachines 2024, 15, 552 12 of 26

comparator. Finally, performing XOR with w′ and the outer-layer signature verification
result X yields the correct PUF response y.

The RM decoding architecture comprises essential components such as the ALU, an
address generator, a stack, and a state machine. Each component plays a unique role in the
overall function of the recursive module. Here is a breakdown of their roles:

1. ALU: Performs calculations related to the F function, G function, and accumulation,
as specified in Algorithm A3. Facilitates operations such as passing data directly to
the next module.

2. Address generator: Generates the current corresponding SRAM read and write ad-
dresses based on the algorithm’s requirements.

3. Stack: Functions as a cache unit that stores parameters and local variables for each
round of recursion. Enables the implementation of a software-driven approach to
realize hardware recursion. This approach reduces the complexity of the state machine
by offloading certain control aspects to the stack.

4. State machine: Serves as the core control logic for the entire recursive module. Utilizes
a software-driven approach, allowing certain steps of the recursion to be expanded
into a large state machine. Manages the control of the current recursive round, while
the recursion of other rounds is controlled by parameters stored in and retrieved from
the stack.

The data path of the recursive algorithm is illustrated in Figure 3. The likelihood
estimate value L computed by the auxiliary data algorithm serves as the input to the
ALU, initiating the recursion process, which is governed by the state machine. During the
calculation state, the ALU performs the corresponding calculations, and the results are
output into the SRAM cache. Subsequent iterations retrieve the SRAM data, which are
then returned to the ALU for further computations. In the jump state, the ALU transfers
data from one address in the SRAM to another. The cycle of transitioning between the
calculation state and the jump state continues until the soft-decision of the RM code is
completed, ultimately outputting L∗.

IDLE

L*r=0

L*r=m Stack_out

L(1)

Stack_in
L(1)* L(2)* L*

L(2)

Stack_in

r=0

r=m

r≠0&&r≠m

Judging by the next_state in the stack

Figure 3. RM code soft-decision state machine.

The states involving pushing and popping the stack—namely, L(1) pushing the stack,
L(2) pushing the stack, and popping the stack—serve as jump states responsible for the
logic control of the recursive algorithm. In the pushing states, if the current execution
transition corresponds to pushing the stack, the parameters of the current recursion round
(next_state, r, m) are saved and pushed into the stack. Subsequently, the state machine
restarts from the IDLE state, initiating a new round of recursion. Conversely, in the state of
popping the stack, the state machine reads the saved parameters (next_state, r, and m) from
the previous round of recursion in the stack. The machine then continues the recursion
until the entire recursive process is completed.

The five states, L∗r=0, L∗r=m, L(1)∗, L(2)∗, and L∗, belong to the calculation state and
correspond to the computation of the variables in Algorithm A3. These states entail the
accumulation of the F function, G function, and SoftDecision_Decode_Rep function. The
ALU performs these calculations and selects the current operation through the opr signal
associated with the current state.



Micromachines 2024, 15, 552 13 of 26

The speed of the RM code soft-decision relies on the amount of SRAM read and write
operations, making it essential to evaluate the hardware speed based on these factors.
Therefore, an analysis of the data and address allocation of the SRAM is conducted. In each
state of the state machine, the addresses and lengths of SRAM read and write operations
vary depending on the current m value and state. Consequently, the address generator
module generates SRAM-accessible addresses corresponding to the current state of the
state machine and the current m value.

The states L(1) and L(2)∗ exhibit no data dependency under the same round of re-
cursion, enabling them to share the same storage space. With SRAM being 32 bits wide,
the selected bit width for L and each intermediate variable has a 16-bit length, ensuring
sufficient data precision without risking overflow. When mapping addresses, two adjacent
16-bit segments are placed into one address. For m = 8, the required SRAM space for the
RM code soft-decision hardware is 512× 4× 2 Bytes = 4 KB. Following the SRAM analysis,
the soft-decision speed of the RM code can be calculated based on the data volume in the
SRAM. For each r, there are 20 reads and writes, resulting in 512× 20 = 10, 240 cycles for
all m. Since 256 + 128 + 64 + . . . = 512 groups for all m, the total number of SRAM reads
and writes required for the entire recursion is 512× 20 = 10, 240 cycles. Completing four
soft-decisions of the RM code takes 10, 240× 4 = 40, 960 cycles. Factoring in the extra time
for other logic, the total required cycles amount to approximately 41, 000 cycles.

4.3. The Architecture of ECDSA

The ECDSA module constitutes another core algorithmic component of the ECDSA-
PUF hardware. Its hardware architecture is illustrated in Figure 4. Diverging from numer-
ous existing ECSM architectures in the preceding chapters, the proposed ECDSA module
ascends from the group operation layer to the ECDSA protocol layer. Consequently, beyond
the ECSM/ECDSM module, it becomes imperative to accomplish the SHA256 module
and the modular multiplier of the order n mandated by ECDSA to fulfill the complete
ECDSA protocols.

SHA256 z

Multiplication
Modular

Reduction

Shift Reg

PA & PD

Comparator

D QD Q

D QD Q

ECSM/ECDSM

u1/u2

u2H

m

G

H

X

ECDSA_ver result

Control

Modular Multiplication mod n

r/xp

xp

u1G

Flag

Generator

k

l

Figure 4. The hardware architecture of ECDSA.

The ECDSA architecture is designed to perform two distinct types of signature veri-
fication. It executes cusECDSA_VER during the PUF generation stage and conducts the
standard ECDSA signature verification algorithm as a hardware acceleration peripheral
of the system after the PUF is generated. Therefore, this architecture must embody the
concept of hardware reuse by utilizing a universal ECSM/ECDSM module and a modu-
lar multiplier with different calculation methods based on the specific calculation mode.
Hardware multiplexing introduces additional multiplexers to govern the data paths in



Micromachines 2024, 15, 552 14 of 26

other modes. Our design allows the utilization of the same large-number multipliers
and large-number adders for the underlying operations in various modes to conserve
hardware resources.

The data path of the ECDSA architecture follows these steps:

1. The value m is processed in the SHA256 module through the hash operation to
derive the digest value of the message. A fixed random interception is employed
to capture 163 bits. It is crucial to note that the random interception must be firmly
embedded in the circuit to prevent potential manipulation by attackers attempting to
alter the HASH value through the configuration of the interception position. The hash
interception may result in entropy loss; hence, entropy augmentation is performed in
subsequent steps to restore the entropy that has been lost.

2. Compute u1 in the signature verification algorithm. In the context of cusECDSA_VER,
the values s−1 and xP directly feed into the modular multiplier for the computation
of u1.In contrast, during standard ECDSA signature verification, the value s requires
modulo inverse calculation using Fermat’s little theorem. Hence, a shift register is
incorporated in the structure to sequentially output each bit of n− 2, controlling the
input to the modulo multiplier and buffering the intermediate result in the s−1 register.

3. Calculate the ECSM of u1 by the base point G. The result of the ECSM is cached in
the u1G register. According to the pipeline idea, the modular multiplier calculates u2
simultaneously, and the calculation of u2 is similar to the calculation of u1. Since s−1 is
already obtained when calculating u1, performing a modular inversion is unnecessary.

4. The output of the modular multiplier transitions from u1 to u2. Subsequently, the
strobe signal of the input selector is altered to input the public key H, initiating the
ECSM of the public key H by u2.

5. Compute the sum of u1G points and u2H, generating distinct outputs based on
the ECDSA module. For standard ECDSA signature verification, compute xP; for
cusECDSA_VER, compute X.

6. For standard ECDSA signature verification, compare xP with r. The module outputs 1
for identical results and 0 for different ones. For cusECDSA_VER, the module obtains
four X values after four iterations. These 163-bit X values need to be extended to four
256-bit X values to match the number of RM code soft-decisions and restore the lost
entropy. The extension method must use the same approach as the extension of xPZ
stored in the ROM; otherwise, the same value cannot be obtained after the expansion
of X and xPZ, preventing completion of the signature verification due to failure to
satisfy Equation (1).

Based on the data dependency introduced by Equations (A9) and (A10), we proposed
the timing schedule for ECSM and ECDSM with one two-stage multiplier and one square
unit as shown in Figure 5a,b. “REG” represents a register in this clock cycle buffering the
current intermediate value.

The timing schedule for ECSM is based on the Montgomery ladder Algorithm A4. With
one two-stage multiplier, we proposed a compact six-clock-cycle (6 CC) timing schedule, as
shown in Figure 5a. The multiplier is always busy, leaving no idle clock cycle. Based on
this compact schedule, it consumes 6 CCs for each loop. Note that the figure illustrates the
calculation process over seven clock cycles, where the seventh is also the next iteration’s first
cycle. The timing schedule for ECDSM follows a similar pattern. In this timing schedule,
the modular multiplication operations of PD, Z2 = X2

2Z2
2 and X2 = bZ4

2 + X4
2 , locate at

clock cycles 3–4 and clock cycles 5–6, while other multiplication operations belong to PA.
The squares are arranged as close to the related multiplication as possible to avoid wasting
registers for holding internal values.

The timing schedule for ECDSM follows the proposed Algorithm A4. Each loop
involves two PAs and one PD, resulting in 10 multiplication operations per loop. Based
on this design philosophy, we introduce a compact ECDSM timing schedule utilizing a
two-stage multiplier and a square unit, as illustrated in Figure 5b. Ten CCs are required
to execute two PAs and one PD in each loop. The values of i and k are determined by the



Micromachines 2024, 15, 552 15 of 26

proposed flag signal generation Algorithm 4 during precomputation. After precomputation,
modular multiplications of PD are scheduled at clock cycles 3–4 and 8–9, enabling the
first PA in ECDSM to advance by one clock cycle. Meanwhile, the second PA remains idle
during clock cycles 8–9 to wait for the results of X3Zk; thus, another multiplication of PD is
scheduled at clock cycles 8–9 to ensure an utterly compact timing schedule without any
wasted clock cycles.

The two-stage multiplier employs the Karatsuba–Ofman algorithm, with carefully
inserted pipeline stages to alleviate critical paths. Two squaring units are directly cascaded,
requiring one clock cycle for square and quartic powering operations. During ECDSM
computation, the DAC generator precomputes chain parameters based on scalars k and
l. Additionally, a finite-state machine governs the operational modes of the architecture.
The register bank includes extra registers for storing internal values during ECSM and
ECDSM operations. Each register is connected to a multiplexer to regulate the datapath.
Control signals from these multiplexers are consolidated into instructions executed at every
clock cycle.

X2 Z1

X1 Z2

Z2

X2

Z2

b

X2

Z1

xP

X1

Multiplication

Squaring

Addition

X1 Input/Output

X2 Z1

X1 Z2

Zi

Xi

Z2 Z1

X1

Multiplication

Squaring

Addition

X1 Input/Output

xP

Xk Z3

X3 Zk

b

X2

xP

X3

REG

REG REG

REG
REG

REG

REG

REG

REG

REG

REGREG

REG

(a)

(b)

Figure 5. The proposed timing schedule of (a) ECSM and (b) ECDSM.

5. Implementation Results
5.1. ASIC Results

The proposed secure ECDSA SRAM-PUF architecture can be implemented using an
FPGA or an application specific integrated circuit (ASIC). With the same FPGA platform
as used in existing research, we can conduct a fair comparison. Note that fairness is
not assured in ASIC comparisons due to significant performance variations of the same
circuit for different processes, voltages, and temperatures. However, the PUF is strictly
related to hardware and cannot be reliably verified by a FPGA. Further, many existing
PUF designs are based on ASIC implementations. Therefore, our proposed architecture is
implemented on both an FPGA and an ASIC. For the ECDSA part, we primarily compare
the FPGA implementation results with existing designs to ensure fairness in the comparison.
Regarding the PUF implementation results, we aim to provide performance metrics for our
designed architecture compared to existing designs for the readers’ reference.



Micromachines 2024, 15, 552 16 of 26

The ASIC results are synthesized using the SMIC 40 nm library with the Synopsys
design compiler. The system achieves a maximum clock frequency of 400 MHz. The total
area is 327,533.2 µm2, with the PUF consuming 15,776.6 µm2. This result is before place
and route. The gate equivalent (GE) is calculated as the total area divided by the area of
one NAND2 gate under the corresponding process.

The hardware implementation of the fast ECDSA-PUF algorithm is compared with
other works on SRAM-PUFs. This comparison focuses primarily on achieving a lower
bit error rate (BER) and GE per bit. BER measures PUF stability, while GE per bit reflects
hardware resource consumption independent of PUF length. GE per bit can be calculated
using Equation (3), as proposed in [22]. Both the BER and GE per bit parameters are
relatively unaffected by the process. Our design is a 1024-bit PUF; the comparison results
are listed in Table 1.

Table 1. PUF implementation results comparison.

Research Work ASIC Process (nm) Area Per Bit
(µm2/bit)

GE Per Bit
(GE/bit)

BER

[22] 65 49.12 25.58 2.7× 10−10

[23] 14 1.84 11.83 1.45× 10−2

[24] 65 50.7 26.40 1.56× 10−2

[25] 65 17.9 9.32 2.5× 10−2

This work 40 15.40 21.45 3× 10−5

GE per bit = area/NAND2 area/PUF bit (3)

Table 1 indicates that the GE per bit of our design falls within the mid-range. Notably,
refs. [23,25] demonstrate lower GE per bit values but suffer from higher BER, potentially
affecting chip functionality. Moreover, the proposed ECDSA-PUF hardware architecture
increases the SRAM-PUF bit count by utilizing multiplexing within the ECDSA-PUF
module. This is achieved through the repetition of custom ECDSA and soft-decision calcu-
lations. Consequently, the GE per bit of the proposed design would decrease significantly
in scenarios requiring greater information entropy. This scalability is not achievable in
other related works, highlighting the advanced nature of the proposed design in terms
of lightweight characteristics. While the SRAM-PUF proposed by [22] excels in BER, the
fast ECDSA-PUF presented in this paper prioritizes speed, security, and lightweight at-
tributes. Thus, an error correction code with a lower BER is deemed sufficient for prevailing
BER requirements.

Our fabricated chips in the 40 nm process were evaluated at room temperature of 25 ◦C
with the standard supply voltage (1.0 V) to measure the intra-chip variation and inter-chip
variation. To measure intra-chip variation, we compared the response to the same challenge
on the same chip 1000 times. To ensure the experiment’s reliability, we derived the results
of intra-chip variation by measuring five chips rather than one single chip. The intra-chip
variation of our design has a mean value (M) of 49.44% with 2.44% standard deviation
(SD). Further, we measured the output responses of all our chips (40 chips) with the same
challenge to measure inter-chip variation. The results of inter-chip variation are M = 49.44%
and SD = 2.44%, and the mean value of our design is close to the ideal value (M = 50%).
The quality result of SRAM-PUF in our design is compared with existing research in
Table 2.

To measure the temperature resistance and voltage resistance of the SRAM-PUF, we
conducted BER measurements on the SRAM-PUF in our design across a temperature
range from 0 ◦C to 85 ◦C and a voltage range from 0.8 V to 1.2 V (±20% of the standard
voltage). The most error-prone case arises when the temperature and voltage are 85 ◦C and
1.2 V, respectively. In this case, the BER reaches 11.21%, approaching the error correction
capability upper limit of the RM(2, 8) in our design. In this extreme scenario, we conducted
100 complete experiments for each chip, and no response errors occurred.



Micromachines 2024, 15, 552 17 of 26

Table 2. PUF quality comparison.

Research Work Device or Process Reliability
Intra-Chip Variation

Uniqueness
Inter-Device Variation

Temperature Voltage Supply

Latch-PUF [26] Spartan-3E M = 2.4%
SD = 0.75%

M = 46%
SD = 3.8%

0 ◦C–85 ◦C — *

Latch-PUF [26] Spartan-6 M = 0.86%
SD = 0.54%

M = 49%
SD = 3.9%

— 1.14 V–1.26 V

SRAM-PUF [27] 45 nm M = 0.72%
SD = 10%

M = 49.97%
SD = 15%

10 ◦C–85 ◦C —

Butterfly-PUF [28] 65 nm Mmax = 6%
—

M = 50around%
—

−20 ◦C–80 ◦ C —

TERO-PUF [29] Cyclone II M = 1.7%
—

M = 48%
—

28 ◦C 1.5 V

Delay-Hardened-
PUF [23] 14 nm M = 3.4%

—
M = 48.6%

—
25 ◦C–110 ◦C 0.55 V–0.75 V

Amplifier-PUF [25] 180 nm M = 0.07%
SD = 0.32%

M = 49.89%
SD = 6.24%

−40 ◦C–120 ◦C 0.8 V–1.8 V

This work 40 nm M = 3.17%
SD = 1.63%

M = 49.44%
SD = 2.44%

0 ◦C–85 ◦C 0.8 V–1.2 V

* Not reported in the literature.

5.2. FPGA Results

The proposed architecture was instantiated on the Xilinx Virtex-7 FPGAs using Vivado
2022, a choice made to ensure a fair and contemporary comparison with existing designs. To
gauge our design’s performance in a manner that is both comprehensive and reasonable, we
executed the architecture across NIST-recommended GF(2163) and encompassed variations
in scale to provide a thorough evaluation of its capabilities and efficiency. Considering
the ECDSA in our work is a custom design, we compare the performance of ECDSM with
existing works to ensure fairness in comparison. For existing designs that only implement
ECSM, we consider twice their total latency as an approximate latency for ECDSM. In
reality, this rough evaluation method often yields more optimistic estimates for existing
designs, as it neglects the PA after two ECSMs.

In our design, the total latency includes DAC generation, iteration, and inversion.
Although in the precomputation stage, our design needs to compute both flag signals for
DAC construction and P±Q, these two parts are executed in separate circuit components,
allowing them to be performed in parallel. Moreover, the latency of computing flag signals
is significantly greater than computing P±Q. Therefore, in the total latency consideration,
we no longer account for the latency introduced by P±Q. For GF(2m), constructing the
DAC chain requires m clock cycles. The total latency can be calculated by Equation (4).

T = (CDAC + CITR + CINV)× TCLK (4)

In our design, there is one multiplier and one square unit. When utilizing Itoh’s [30]
proposed modular inversion algorithm, the modular inverse can be calculated within m + 1
cycles. The iteration consumes 10× m + 1 clock cycles over GF(2m) and one additional
clock cycle to wait for the final multiplication result.

CITR = m + 10×m + (m + 1) + 1 (5)

Most existing research utilizes ATP as a performance benchmark to assess the trade-
offs between hardware resources and latency. While some research evaluates the area
using the number of LUTs #LUT, most employ the number of slices #Slice. In our design,
we evaluate ATP using the number of slices to ensure fair comparisons, as our design
introduces additional storage resources. We estimate the number of slices for the literature
lacking slice data based on reported LUT data. For Xilinx Virtex-7 FPGAs, each slice
typically contains four LUT6. However, not all utilized slices are fully occupied with all



Micromachines 2024, 15, 552 18 of 26

four LUT6. Therefore, the ratio of LUTs to slices, #LUT
#Slice , is typically between 3 and 3.5. We

set this ratio to 3.5 in this paper to facilitate fair comparisons.

ATP = #Slices × T. (6)

Table 3 shows the results comparison of ECDSM over GF(2163). Due to adopting
the DAC for ECDSM calculation, the number of clock cycles required for our design is
significantly lower than those of existing designs using a single multiplier. From the
perspective of area–speed trade-off, our design achieves a better ATP indicator, being on
par with existing designs [15,16]. This design’s latency is inferior to [15,17], as both [15,17]
adopt architectures with multiple multipliers. Hence, the number of clock cycles needed to
compute ECDSM is minimal. However, at the same time, the area cost of existing designs
[15,17] is larger: especially design [17], which uses three parallel multipliers. From the
area–speed trade-off perspective, this design’s ATP surpasses existing designs [15,17].

Table 3. FPGA implementation results on Vertex-7 series over GF(2163).

Design Clock Cycle Freq. #LUT #Silce Latency ATP

[15] 547 320.5 28,911 8460 3.413 28,878
[16] 4168 397 4271 1476 20.997 30,992
[17] 450 159 41,090 11,657 5.660 65,983
[31] 780 223 27,105 8736 6.995 61,113
[32] 3960 369 9965 2207 21.463 47,370
[18] 3960 351 10,955 3107 22.564 70,107
[19] 13,000 320.8 6169 2201 81.047 178,385
[33] 52,012 800 − * 4665 130.03 606,590
[34] 3426 135 − 3657 50.076 185,613

This Work 1958 296 13,912 3902 6.615 25,812

* Not reported in the literature.

The PUF on the FPGA has a total cost of 112 slices, which is very limited compared to
the cost of ECDSA. The PUF in this design is used only during the system startup phase
and not during regular system operation, so a miniature PUF can effectively save hardware
resources. The ECDSA, ECSM, and ECDSM functions in our designs can also be reused
for other purposes. Therefore, we have consumed most of the logic resources to build a
high-performance ECDSA architecture.

6. Conclusions

This paper proposes a universal ECSM/ECDSM architecture for constructing the
secure ECDSA SRAM-PUF presented herein. Initially, the paper outlines an attack scheme
for PUFs constructed from conventional SRAM and ROM within SoCs. This scheme
demonstrates that by repeatedly powering the system on and off and exploiting the SoC’s
processor to access SRAM and ROM to tamper with the P value, the PUF’s unclonability can
be compromised. This paper leverages the ECDSA to counteract this attack scheme and de-
signs an SRAM-PUF architecture based on a custom ECDSA, ensuring the P value remains
untampered with through the custom ECDSA. The paper proposes a universal architecture
for critical operations, such as ECSM and ECDSM. For ECSM calculations within ECDSA,
iterations of PA and PD can be performed directly; for the more time-consuming ECDSM
calculations within ECDSA, a two-dimensional DAC is constructed through precomputa-
tion, followed by iterations of PA and PD based on the two-dimensional DAC. The ECDSM
based on a two-dimensional DAC theoretically saves 16.7% of the computational overhead
compared to executing ECSM twice, significantly increasing computation speed. Moreover,
this universal architecture saves a significant amount of hardware resources due to the
high similarity in the datapaths of ECSM and ECDSM. The secure ECDSA SRAM-PUF
proposed in this paper is implemented on ASIC and FPGA. This design exhibits lower BER



Micromachines 2024, 15, 552 19 of 26

and better ATP performance compared to existing research. In the future, we will further
exploit DAC-based ECDSA over GF(p).

Author Contributions: Conceptualization, J.Z. and Z.C.; methodology, J.Z. and X.H.; software, J.Z.
and K.L.; validation, J.Z., X.H., K.L. and Y.H.; formal analysis, J.Z. and M.M.; investigation, J.Z.
and X.H.; resources, W.W. and H.D.; data curation, J.Z.; writing—original draft preparation, J.Z.;
writing—review and editing, W.W. and H.D.; visualization, J.Z.; supervision, W.W., H.D. and X.L.;
project administration, X.L.; funding acquisition, W.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Chongqing Natural Science Foundation under
grant cstc2021jcyj-msxmX1090.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data can be provided upon reasonable request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. Mingzhi Ma is employee of UNISOC
(Shanghai) Technology Co., Ltd. The paper reflects the views of the scientists, and not the company.

Appendix A. Soft-Decision SRAM-PUF Based on Reed–Muller Codes

The algorithm of soft-decision SRAM-PUF based on Reed–Muller codes is given in
Algorithm A1, which contains the registration stage and the recovery stage.

1. Registration stage: Initiate the SRAM power cycle, toggling it on and off for 100 itera-
tions to document error probabilities Pi. These probabilities indicate the likelihood of
each bit differing from the corresponding bit in the standard value y. The recorded
error probabilities serve as indicators for the forthcoming response generation, reveal-
ing the likelihood of each bit being the same or different from the corresponding bit in
y. Subsequently, randomly select an RM code c and calculate the auxiliary data w by
an exclusive-OR operation (XOR). Then, the auxiliary data w and error probabilities
P are both stored in the ROM. The registration stage must be concluded before the
chips depart the factory. The statistical analysis of P and the storage of w and P are
stored during the manufacturing or testing phases of the chip.

2. Recovery stage: Following transactions, customers receive a response y′ with an
error code when the SRAM is powered on. The value c′ is obtained by XORing with
w. Subsequently, utilizing RM code soft-decision decoding, c′ and error probability
P are inputted to execute error correction. The error probability P enhances error
correction capabilities by providing additional information to the RM code. Following
the correction, the corrected code c is obtained, and c ⊕ w yields the SRAM-PUF
response y. This stage is completed on the chip by customers.

The RM code is a high-order repeat code obtained through iterative recursive oper-
ations of repeat codes. Therefore, the soft-decision method for RM codes evolves from
the soft-decision method of repeat codes through recursive calculations. The soft-decision
for repeat codes involves calculating the likelihood estimate Li for each bit by substitut-
ing the bit error probability into Equation (A1). In this formula, β is a constant adjusted
for different precisions, and Pi and c′i represent the error probability for each bit and the
codeword, respectively. The “majority selection” is employed for repeat codes, where the
result of the majority bits is considered the correct value. The likelihood estimates for each
bit are summed to obtain the overall likelihood estimate L∗ for the codeword. As shown
in Algorithm A2, if L∗ > 0, the probability of the repeat code codeword c being all zeros
is greater, resulting in a decoded result of all zeros. Conversely, L∗ < 0 indicates that the
probability of c being all ones is greater, leading to a decoded result of all ones.

Li = (−1)c′i logβ

1− Pi
Pi

. (A1)



Micromachines 2024, 15, 552 20 of 26

Algorithm A1 Soft-Decision SRAM-PUF Algorithm Based on Reed–Muller Codes
Require: SRAMs.
Ensure: A stable response y.
1: Registration stage:
2: for j = 0 to 100 do
3: SRAMs power on to obtain yj;
4: end for
5: SRAMs power on to obtain y;
6: for j = 0 to 100 do
7: for i = 0 to Bit_Length(y) do
8: if y[i] 6= yj[i] then
9: Pi = Pi + 1;

10: end if
11: end for
12: end for
13: Choose one RM code c;
14: w = c⊕ y;
15: Store w and P in the ROM;
16: Recovery stage:
17: SRAMs power on to obtain y′;
18: c′ = w⊕ y′;
19: c = RM_Decode(c′, P);
20: y = c⊕ w;
Return: y.

Algorithm A2 Soft-Decision Repeat Code
Require: L and n.
Ensure: L∗.

1: SoftDecision_Decode_Rep(L,n);
2: L∗ = ∑n

i=1 Li;
Return: L∗.

The RM code encompasses two parameters: the order r and the frequency m, where
r determines the recursion complexity, and m determines the length of the code word
2m. An RM (r, m) code can be decomposed into an RM (r − 1, m− 1) code and an RM
(r, m− 1) code. When r = 0, the RM code becomes a repetitive code, and when r = m,
the RM code lacks error correction capability. For RM codes, the decoding processing is
similar to repeat codes. Firstly, calculate the likelihood estimate L for each bit based on
Equation (A1). Subsequently, substitute the likelihood estimates into Algorithm A3 for
recursion, ultimately obtaining the likelihood estimate L∗ for each bit after decoding.

Algorithm A3 Soft-Decision RM Code
Require: L, r, and m.
Ensure: L∗.

1: Define F(a, b) = sign(a× b)×min(|a|, |b|);
2: Define G(s, a, b) = b 1

2 (sign(s)× a + b)c;
3: SoftDecision_Decode_RM(L,r,m);
4: if r = 0 then
5: L∗ = So f tDecision_Decode_Rep(L, 2m);
6: else if r = m then
7: L∗ = L;
8: else
9: L(1)

i = F(L2i−1, L2i), i = 1, . . . , 2m−1;
10: L(1)∗ = So f tDecision_Decode_RM(L(1), r− 1, m− 1);

11: L(2)
i = G

(
L(1)∗

i , L2i−1, L2i

)
, i = 1, . . . , 2m−1;

12: L(2)∗ = So f tDecision_Decode_RM(L(2), r, m− 1);

13: L∗ =
(

F
(

L(1)∗
1 , L(2)∗

1

)
, L(2)∗

1 , . . . , F
(

L(1)∗
2m−1 , L(2)∗

2m−1

)
, L(2)∗

2m−1

)
;

14: end if
Return: X and Z.



Micromachines 2024, 15, 552 21 of 26

Appendix B. Elliptic Curve Cryptography Arithmetic

ECDSA consists of two stages: the signature generation stage and the signature
verification stage. The signature generation stage includes one ECSM (Q = kP), where
both P and Q are two points over a given elliptic curve, and k is a scalar. The signature
verification stage requires an ECDSM. ECDSM (kP+ lQ) consists of two ECSMs and a point
addition (PA). The three-level hierarchy of ECC cryptosystems is illustrated in Figure A1.
Both ECSM and ECDSM can be computed by calculating PA and point doubling (PD)
iteratively. PA (PPA = P1 + P2) and PD (PPD = 2P1) are defined geometrically by the
chord-and-tangent rule over finite fields.

ECDSA, ECDH, ECIES...

ECSM

PA PDPA PD

ADD/SUB MUL SQR INVADD/SUB MUL SQR INV

Protocols

Group

Operations

Finite Field Operations

ECDSM

Figure A1. The three-level hierarchy of ECC.

Due to the carry-free property, the arithmetic over binary finite fields GF(2m) is more
suitable for hardware implementation. Over GF(2m), a non-supersingular elliptic curve E
is defined as shown in Equation (1) with parameters a and b.

E : y2 + xy = x3 + ax2 + b. (A2)

Given P1 = (x1, y1) and P2 = (x2, y2), PA and PD are as follows:

PPA(xPA, yPA) = P1 + P2 =

{
xPA = λ2 + λ + x1 + x2 + a
yPA = λ(x1 + xPA) + xPA + a

(A3)

PPD(xPD, yPD) = 2P1 =

{
xPD = γ2 + γ + a = x2

1 +
b
x2

1
yPD = x2

1 + γxPD + xPD
(A4)

where λ = y1+y2
x1+x2

and γ = x1 +
y1
x1

.

Note that the result of the x-coordinate in PD can be further simplified as x2
1 +

b
x2

1
,

which is an intrinsic property of the elliptic curve over GF(2m). If we introduce the
differential addition chain (DAC) to guarantee the relation P2 = P1 + P in the iteration,

then the expression of PA can be further simplified as x3 = x +
(

x1
x1+x2

)2
+ x1

x1+x2
, and the

derivation is shown below.
From Equation (2), we have

xPA =
x1y2 + x2y1 + x1x2

2 + x2
1x2

x2
1 + x2

2
(A5)

by simplifying the numerator with 2b = 2y2 + 2xy + 2x3 + 2ax2, since the items with even
coefficients can be eliminated over GF(2m). With the relation P = P2 − P1, we can obtain
−P1 = (x1, x1 + y1). Thus, we have another similar relation:

x =
x1y2 + x2(x1 + y1) + x1x2

2 + x2
1x2

x2
1 + x2

2
. (A6)



Micromachines 2024, 15, 552 22 of 26

Comparing Equation (4) and Equation (5), we also simplify the expression of PA as

x3 = x +
x1x2

(x1 + x2)
2 = x +

2x2
1 + x1x2

(x1 + x2)
2 = x +

(
x1

x1 + x2

)2
+

x1

x1 + x2
. (A7)

Considering simplified expressions for PD and PA not involving y-coordinates, the
calculation of y-coordinates during the iteration of PA and PD in ECSM can be eliminated,
as shown below.  PD : xPD = x2

1 +
b
x2

1

PA : xPA = x +
(

x1
x1+x2

)2
+ x1

x1+x2

f or P2 = P + P1 (A8)

Executing PA and PD in affine coordinates requires multiple inversions during the
iteration. Inversions over GF(2m) are time-consuming. Therefore, we can map the points
from affine coordinates (x, y) to Lopez–Dahab (LD) projective coordinates (X, Y, Z). As a
result, we only need to calculate multiplications, additions, and squares in each iteration,
leaving only one inversion at the end of ECSM. The expressions of PA and PD in LD
projective coordinates are:{

XPA = xP(X1Z2 + X2Z1)
2 + X1X2 · Z1 · Z2

ZPA = (X1Z2 + X2Z1)
2 (A9)

{
XPD = X1

4 + bZ1
4

ZPD = X2
1Z1

2 (A10)

In the end, the recovery of y and coordinate conversion is presented as:{
xQ = X1

Z1

yQ = yP +
(xP+xQ)[(X1+xPZ1)(X2+xPZ2)+(x2

P+yP)Z1Z2]
xPZ1Z2

.
(A11)

With the simplified PA and PD expressions in Equations (A9) and (A10), the Montgomery-
ladder-based ECSM algorithm is given in Algorithm A4. Note that the recovery of y in the
Montgomery-ladder-based ECSM algorithm adopts Equation (A11).

Algorithm A4 The Montgomery Ladder ECSM Algorithm
Require: k = (kt−1, · · · , k1, k0)2 with kt−1 = 1, P = (xP, yP).
Ensure: Q = kP.

1: Set P1 ← (xP, 1), P2 ← (x4
P + b, x2

P).
2: for i = t− 2 to 0 do
3: if ki = 1 then
4: P1 ← PA(P1, P2),
5: P2 ← PD(P2),
6: else
7: P2 ← PA(P1, P2),
8: P1 ← PD(P1),
9: end if

10: end for
11: Recover y in affine coordinates.
Return Q.

Meanwhile, if only one single PA is executed, then we should adopt the single PA
algorithm in LD coordinates as shown in Algorithm A5 rather than Equation (A9).



Micromachines 2024, 15, 552 23 of 26

Algorithm A5 The Single PA Algorithm
Require: P1 = (X1, Y1, Z1) and P2 = (X2, Y2, Z2).
Ensure: P3 = (X3, Z3) and xp.

1: X1 ← X1Z2, X2 ← X2Z1
2: Y1 ← Y1Z2, X2 ← Y2Z1
3: X1 ← X1 + X2
4: Y1 ← Y1 + Y2
5: Y1 ← Y1Y2, Z1 ← Z1Z2, X2 ← X2

1
6: Y1 ← Y1Z1, Z3 ← Z1X2, X1 ← X1 + Z1
7: X1 ← X1X2
8: X3 ← Y1 + X1
9: xp ← X3/Z3

Return: X3, Z3, xp.

Appendix C. Differential Addition Chain

In a DAC, each sum in the chain has already been accompanied by a difference: i.e.,
whenever a new element Cnew = C1 + C2 is formed by adding two existing elements C1
and C2, the difference of two elements C1 − C2 was already in this chain. We can efficiently
calculate ECDSM with a two-dimensional DAC, as shown in Figure A2. The left side of
Figure A2 lists all elements in the two-dimensional DAC, and the right side provides flags
for each loop. We only need to precompute the flag signal for each round before initiating
the main loop of PA and PD iterations. These flag signals are used to determine the two-
dimensional DAC. Subsequently, the main loop is initiated and is entirely controlled based
on these flag signals to execute PA and PD. Each round of iteration involves two PAs and
one PD. Therefore, the iteration process is completely uniform, making it resilient against
some power analysis attacks. Moreover, since the differential relationships always hold
throughout each round of iteration, the simplified forms in Equations (A9) and (A10) can
consistently be utilized.

(1,1) (0,0) (1,0)

(1,1) (2,2) (2,1)

(3,3) (2,2) (3,2)

(5,5) (6,6) (6,5)

(11,11) (12,10) (12,11)

(23,21) (22,22) (23,22)

(45,43) (46,42) (46,43)

(91,85) (92,86) (91,86)

Point Additon Point Doubling

0

1

2

3

4

5

6

7

A=0,B=1,D=0

A=0,B=0,D=0

A=0,B=0,D=2

A=1,B=0,D=2

A=0,B=1,D=0

A=0,B=0,D=0

A=1,B=0,D=1

FlagsCi
(1) Ci

(2) Ci
(3)

i

Figure A2. An example of ECDSM (91P + 85Q) with a two-dimensional DAC.



Micromachines 2024, 15, 552 24 of 26

Appendix D. Custom ECDSA Signature and Verification

Algorithm A6 Custom ECDSA Signature cusECDSA_SIG
Require: d, m and n.
Ensure: xp and s−1 mod n.

1: while s−1 mod n 6= 0 do
2: while xp 6= 0 do
3: Select k from 1 to n− 1 randomly;
4: P = kG = (xp, yp);
5: end while
6: Z = HASH(m);
7: s−1 mod n = k(z + rd)−1 mod n;
8: end while

Return: xp and s−1 mod n.

Algorithm A7 Custom ECDSA Verification cusECDSA_VER

Require: xp, xpz mod p, s−1 mod n, m, H.
Ensure: Verification results, X, Z.

1: z = HASH(m);
2: u1 = s−1z mod n;
3: u2 = s−1xp mod n;
4: P = u1G + u2H = (X, Z);
5: if X = xpZ then
6: The verification passes.
7: else
8: The verification fails.
9: end if

Return: X and Z.

References
1. Arora, H.; Soni, G.K.; Kushwaha, R.K.; Prasoon, P. Digital image security based on the hybrid model of image hiding and

encryption. In Proceedings of the 2021 6th International Conference on Communication and Electronics Systems (ICCES),
Coimbatre, India, 8–10 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1153–1157.

2. Matted, S.; Shankar, G.; Jain, B.B. Enhanced image security using stenography and cryptography. In Computer Networks and
Inventive Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1171–1182.

3. Halak, B.; Zwolinski, M.; Mispan, M.S. Overview of PUF-based hardware security solutions for the Internet of Things. In
Proceedings of the 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, United
Arab Emirates, 16–19 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4.

4. Mall, P.; Amin, R.; Das, A.K.; Leung, M.T.; Choo, K.K.R. PUF-based authentication and key agreement protocols for IoT, WSNs
and smart grids: A comprehensive survey. IEEE Internet Things J. 2022, 9, 8205–8228. [CrossRef]

5. Holcomb, D.E.; Burleson, W.P.; Fu, K. Power-up SRAM state as an identifying fingerprint and source of true random numbers.
IEEE Trans. Comput. 2008, 58, 1198–1210. [CrossRef]

6. van Dijk, M.; Rührmair, U. Protocol attacks on advanced PUF protocols and countermeasures. In Proceedings of the 2014 Design,
Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28 March 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 1–6.

7. Rührmair, U.; van Dijk, M. PUFs in security protocols: Attack models and security evaluations. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 286–300.

8. Rührmair, U.; Jaeger, C.; Algasinger, M. An attack on PUF-based session key exchange and a hardware-based countermeasure:
Erasable PUFs. In Proceedings of the International Conference on Financial Cryptography and Data Security, Gros Islet, Saint
Lucia, 28 February–4 March 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 190–204.

http://doi.org/10.1109/JIOT.2022.3142084
http://dx.doi.org/10.1109/TC.2008.212


Micromachines 2024, 15, 552 25 of 26

9. Karakoyunlu, D.; Sunar, B. Differential template attacks on PUF enabled cryptographic devices. In Proceedings of the 2010 IEEE
International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010; IEEE: Piscataway, NJ,
USA, 2010; pp. 1–6.

10. Merli, D.; Schuster, D.; Stumpf, F.; Sigl, G. Side-channel analysis of PUFs and fuzzy extractors. In Proceedings of the International
Conference on Trust and Trustworthy Computing, Pittsburgh, PA, USA, 22–24 June 2011; Springer: Berlin/Heidelberg, Germany,
2011; pp. 33–47.

11. Patterson, D.A.; Hennessy, J.L. Computer Organization and Design ARM Edition: The Hardware Software Interface; Morgan Kaufmann:
Burlington, MA, USA, 2016.

12. Lohrke, H.; Tajik, S.; Krachenfels, T.; Boit, C.; Seifert, J.P. Key extraction using thermal laser stimulation: A case study on xilinx
ultrascale fpgas. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 2018, 573–595. [CrossRef]

13. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer Science & Business Media: Berlin,
Germany, 2006.

14. Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible architectures for cryptographic algorithms—A systematic literature
review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]

15. Li, J.; Li, Z.; Cao, S.; Zhang, J.; Wang, W. Speed-Oriented Architecture for Binary Field Point Multiplication on Elliptic Curves.
IEEE Access 2019, 7, 32048–32060. [CrossRef]

16. Khan, Z.U.A.; Benaissa, M. Throughput/Area-efficient ECC Processor Using Montgomery Point Multiplication on FPGA. IEEE
Trans. Circuits Syst. II Express Briefs 2015, 62, 1078–1082. [CrossRef]

17. Khan, Z.U.A.; Benaissa, M. High-Speed and Low-Latency ECC Processor Implementation Over GF( 2m) on FPGA. IEEE Trans.
Very Large Scale Integr. VLSI Syst. 2017, 25, 165–176. [CrossRef]

18. Imran, M.; Rashid, M.; Jafri, A.R.; Najam-Ul-Islam, M. ACryp-Proc: Flexible asymmetric crypto processor for point multiplication.
IEEE Access 2018, 6, 22778–22793. [CrossRef]

19. Harb, S.; Jarrah, M. FPGA implementation of the ECC over GF (2 m) for small embedded applications. ACM Trans. Embed.
Comput. Syst. TECS 2019, 18, 1–19. [CrossRef]

20. Kiyan, T.; Lohrke, H.; Boit, C. Comparative assessment of optical techniques for semi-invasive SRAM data read-out on an MSP430
microcontroller. In Proceedings of the ISTFA 2018: Proceedings from the 44th International Symposium for Testing and Failure
Analysis, Phoenix, AZ, USA, 28 October–1 November 2018; ASM International: Novelty, OH, USA, 2018; p. 266.

21. Faraj, M.; Gebotys, C. Quiescent photonics side channel analysis: Low cost SRAM readout attack. Cryptogr. Commun. 2021,
13, 363–376. [CrossRef]

22. Shifman, Y.; Miller, A.; Keren, O.; Weizmann, Y.; Shor, J. A Method to Improve Reliability in a 65-nm SRAM PUF Array. IEEE
Solid-State Circuits Lett. 2018, 1, 138–141. [CrossRef]

23. Satpathy, S.; Mathew, S.K.; Suresh, V.; Anders, M.A.; Kaul, H.; Agarwal, A.; Hsu, S.K.; Chen, G.; Krishnamurthy, R.K.; De, V.K. A
4-fJ/b delay-hardened physically unclonable function circuit with selective bit destabilization in 14-nm trigate CMOS. IEEE
J.-Solid-State Circuits 2017, 52, 940–949. [CrossRef]

24. Alvarez, A.; Zhao, W.; Alioto, M. 14.3 15fJ/b static physically unclonable functions for secure chip identification with <2%
native bit instability and 140× Inter/Intra PUF hamming distance separation in 65 nm. In Proceedings of the 2015 IEEE
International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 22–26 February 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 1–3.

25. Yang, K.; Dong, Q.; Blaauw, D.; Sylvester, D. 8.3 A 553F 2 2-transistor amplifier-based Physically Unclonable Function (PUF) with
1.67% native instability. In Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA,
USA, 5–9 February 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 146–147.

26. Yamamoto, D.; Sakiyama, K.; Iwamoto, M.; Ohta, K.; Takenaka, M.; Itoh, K. Variety enhancement of PUF responses using the
locations of random outputting RS latches. J. Cryptogr. Eng. 2013, 3, 197–211. [CrossRef]

27. Zhang, F.; Yang, S.; Plusquellic, J.; Bhunia, S. Current based PUF exploiting random variations in SRAM cells. In Proceedings of
the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 277–280.

28. Kumar, S.S.; Guajardo, J.; Maes, R.; Schrijen, G.J.; Tuyls, P. The butterfly PUF protecting IP on every FPGA. In Proceedings of
the 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, Dresden, Germany, 14–18 March 2016; IEEE:
Piscataway, NJ, USA, 2008; pp. 67–70.

29. Bossuet, L.; Ngo, X.T.; Cherif, Z.; Fischer, V. A PUF based on a transient effect ring oscillator and insensitive to locking
phenomenon. IEEE Trans. Emerg. Top. Comput. 2013, 2, 30–36. [CrossRef]

30. Itoh, T.; Tsujii, S. A fast algorithm for computing multiplicative inverses in GF (2m) using normal bases. Inf. Comput. 1988,
78, 171–177. [CrossRef]

31. Khan, Z.U.A.; Benaissa, M. High speed ECC implementation on FPGA over GF(2m). In Proceedings of the International
Conference on Field Programmable Logic and Applications, London, UK, 2–4 September 2015; pp. 1–6.

32. Imran, M.; Rashid, M.; Jafri, A.R.; Kashif, M. Throughput/area optimised pipelined architecture for elliptic curve crypto processor.
IET Comput. Digit. Tech. 2019, 13, 361–368. [CrossRef]

http://dx.doi.org/10.46586/tches.v2018.i3.573-595
http://dx.doi.org/10.1142/S0218126619300034
http://dx.doi.org/10.1109/ACCESS.2019.2903170
http://dx.doi.org/10.1109/TCSII.2015.2455992
http://dx.doi.org/10.1109/TVLSI.2016.2574620
http://dx.doi.org/10.1109/ACCESS.2018.2828319
http://dx.doi.org/10.1145/3310354
http://dx.doi.org/10.1007/s12095-020-00469-5
http://dx.doi.org/10.1109/LSSC.2018.2879216
http://dx.doi.org/10.1109/JSSC.2016.2636859
http://dx.doi.org/10.1007/s13389-012-0044-0
http://dx.doi.org/10.1109/TETC.2013.2287182
http://dx.doi.org/10.1016/0890-5401(88)90024-7
http://dx.doi.org/10.1049/iet-cdt.2018.5056


Micromachines 2024, 15, 552 26 of 26

33. Nguyen, T.T.; Lee, H. Efficient algorithm and architecture for elliptic curve cryptographic processor. J. Semicond. Technol. Sci.
2016, 16, 118–125. [CrossRef]

34. Imran, M.; Shafi, I.; Jafri, A.R.; Rashid, M. Hardware design and implementation of ECC based crypto processor for low-area-
applications on FPGA. In Proceedings of the 2017 International Conference on Open Source Systems & Technologies (ICOSST),
Lahore, Pakistan, 18–20 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 54–59.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5573/JSTS.2016.16.1.118

	Introduction
	Background
	Related Works
	Motivation
	Contributions and Structure

	Security Problems Existing in Soft-Decision RM Codes
	The Proposed Secure SRAM-PUF Scheme Based on Custom ECDSA
	Parameter Selection for RM Code
	The Proposed Secure SRAM-PUF Scheme
	The Proposed Universal Algorithm for ECSM and ECDSM

	Hardware Architecture
	The Overall Architecture of ECDSA SRAM-PUF
	The Architecture of Soft-Decision RM Code
	The Architecture of ECDSA

	Implementation Results
	ASIC Results
	FPGA Results

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

