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Abstract: The effective segmentation of clouds and cloud shadows is crucial for surface feature ex-
traction, climate monitoring, and atmospheric correction, but it remains a critical challenge in remote
sensing image processing. Cloud features are intricate, with varied distributions and unclear bound-
aries, making accurate extraction difficult, with only a few networks addressing this challenge. To
tackle these issues, we introduce a multi-scale receptive field aggregation network (MRFA-Net). The
MRFA-Net comprises an MRFA-Encoder and MRFA-Decoder. Within the encoder, the net includes
the asymmetric feature extractor module (AFEM) and multi-scale attention, which capture diverse
local features and enhance contextual semantic understanding, respectively. The MRFA-Decoder
includes the multi-path decoder module (MDM) for blending features and the global feature refine-
ment module (GFRM) for optimizing information via learnable matrix decomposition. Experimental
results demonstrate that our model excelled in generalization and segmentation performance when
addressing various complex backgrounds and different category detections, exhibiting advantages in
terms of parameter efficiency and computational complexity, with the MRFA-Net achieving a mean
intersection over union (MIoU) of 94.12% on our custom Cloud and Shadow dataset, and 87.54%
on the open-source HRC_WHU dataset, outperforming other models by at least 0.53% and 0.62%.
The proposed model demonstrates applicability in practical scenarios where features are difficult
to distinguish.

Keywords: semantic segmentation; cloud and cloud shadow detection; remote sensing;
multi-scale attention

1. Introduction

In the 1960s, the first meteorological remote sensing satellite, “TIROS”, was launched
in the United States, marking a significant milestone in human history. Since then, humanity
has been able to conduct the comprehensive, all-weather monitoring of Earth from space,
propelling satellite remote sensing into an era of rapid development. Remote sensing
technology has improved our grasp of surface data. Cloud and shadow detection is crucial
in this field, helping to assess land cover and to understand solar energy distribution,
thus benefiting industries like agriculture and renewable energy. Observing cloud shadow
patterns also aids in climate analysis, weather forecasting, and disaster prevention. Based
on statistics from the International Satellite Cloud Climatology Project (ISCCP) [1], the
current cloud cover rate on Earth’s surface is maintained at about 60% to 70%. Therefore,
detecting clouds and cloud shadows in remote sensing imagery is a key and fundamental
step in analyzing and utilizing remote sensing data.

Historically, conventional detection methods have primarily consisted of thresholding
techniques [2,3] and manual feature extraction approaches [4]. These methods analyze the
spectral features of various bands of remote sensing images and set thresholds in order
to segregate clouds and cloud shadows from other terrains. The features are typically
obtained through extensive manual sample analyses. A representative method is the Fmask
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algorithm, proposed by Zhu et al. [5], which calculates terrain and cloud features using
satellite image data from the top of atmosphere (TOA) reflectance and brightness temper-
atures. These features are then used to segment remote sensing images by establishing
specific thresholds. Subsequently, with this enhancement in remote sensing resolution,
some improved methods targeting more diverse features were introduced, including MF-
mask (mountains Fmask) [6] and Tmask (multitemporal mask) [7]. However, many of
these features are limited to the red, green, blue, and near-infrared bands, rendering many
detection methods based on multiple infrared bands unusable. Furthermore, these ap-
proaches often heavily rely on prior knowledge, are intricate in practical application, and
have suboptimal detection accuracy.

In recent years, deep learning has undergone explosive development, garnering at-
tention for its impressive performance across various domains, including the field of
remote sensing imagery. Deep learning techniques have the ability to automatically cap-
ture subtle feature information that is often challenging for manual methods [8], resulting
in high accuracy rates. Models based on convolutional neural networks (CNNs) [9–11]
have demonstrated exceptional prowess in image classification tasks, setting the stage
for the development of pixel-level classification tasks, commonly referred to as semantic
segmentation. Marc et al. [12] implemented the detection and classification of five types of
targets, including clouds and cloud shadows, based on the U-Net [13] framework. Further-
more, they validated the method’s generalization capability across different satellite sensors.
Wu et al. [14] built upon the FCN [15] framework for GF-1 WFV (Gaofen-1 Wide Field View)
remote sensing images, employing a fusion of CNN-extracted low-level and high-level
features in order to generate cloud probability maps. However, traditional models based
on encoder and decoder stages significantly lose image information during down-sampling
and struggle to effectively recover image details during up-sampling [16]. Additionally,
most of the aforementioned works directly train semantic segmentation models designed
for natural images on remote sensing detection datasets without specifically optimizing
and designing the model structure for cloud detection tasks, thus leading to poor per-
formance for challenging samples [17]. With ongoing research in cloud detection tasks,
researchers have identified that designing more effective methods for multi-scale feature
extraction and fusion, tailored to the characteristics and challenges of cloud detection tasks,
is one of the key technologies to improve the accuracy of cloud detection algorithms. Yang
et al. [18] proposed CDnet for low-resolution remote sensing thumbnail images, enhancing
cloud detection accuracy in low-resolution images through feature pyramids and edge
refinement modules. Li et al. [19] specifically targeted medium- to high-resolution remote
sensing images, designing a multi-scale convolutional feature fusion (MSCFF) method to
improve cloud detection accuracy, and validating the effectiveness of the method across
remote sensing images from different sensors. However, the computational complexity of
these models significantly increases. When dealing with complex remote sensing images,
researchers may find that performance is still constrained due to the number of paths and
pyramid layers.

Attention mechanisms [20–22] are currently a pivotal research topic in deep learning.
An effective attention mechanism module can further elevate the performance ceiling of
a model by enhancing the capturing of pertinent feature information from channels or
spaces. In 2018, the convolutional block attention module (CBAM) [23], a convolution-
implemented hybrid attention mechanism, featuring adaptively refined features from both
channel and spatial perspectives, led to a significant boost in model performance. In 2021,
the vision transformer (ViT) [24] bridged the divide between computer vision (CV) and
natural language processing (NLP), feeding images into multi-head attention structures
in an encoded form, and greatly enhancing global information capture. Chen et al. [25]
introduced ViT into CNN networks, proposing a dual-branch network for cloud and cloud
shadow detection that achieves high accuracy, while also demonstrating good robustness
and generalization capabilities. However, this approach led to parameter inflation. In
response to this issue, Hu et al. [26] replaced the dual-branch network’s ViT with the less
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parameter-intensive EdgeViT, resulting in faster inference speeds for the network. Despite
this improvement, the parameter count remains substantial, and these networks require
large datasets for fitting. Underfitting may occur when the sample size is small.

Few models specifically address cloud and cloud shadow segmentation, owing to
the unique distribution and complexity. Clouds and shadows in remote sensing images
exhibit significant variations in size, shape, and structure, with inconsistent brightness
and intricate boundaries. Current semantic models often miss these details, resulting in
blurred boundaries. However, multi-scale feature fusion enhances detail and edge clarity.
Considering the diverse terrain features and cloud shadow variations across seasons and
regions, models require strong global understanding. Challenges such as noise, pseudo
shadows, and terrains mimicking cloud characteristics further complicate the segmentation,
leading to frequent misidentifications. In response to the aforementioned challenges,
this paper introduces a multi-scale encoder and decoder, which can capture intricate
details and enhance global information understanding, precisely capturing features and
restoring spatial resolution. Additionally, it can fill in detailed information gaps by merging
information from both deeper and shallower layers. The primary contributions of this
paper and innovations of our model are as follows:

(1) For cloud and cloud shadow detection in remote sensing images, a novel framework
called the MRFA-Net is proposed. This model fully utilizes rich features to address
the misidentification of blurry features, small objects, and abstract characteristics in
detection. The network is end-to-end trainable, significantly simplifying the process
of cloud and cloud shadow detection.

(2) Previous methods have overlooked the feature information across different scales.
We propose the asymmetric feature extractor module (AFEM) and the multi-scale
attention to capture irregular information across multiple scales and to enhance both
local and global semantic information. To address the issue of information loss due to
direct continuous up-sampling in previous networks, the multi-path decoder module
(MDM) and the global feature refinement module (GFRM) are introduced. These
modules combine feature information from different receptive fields with the feature
fusion module (FFM) and optimize the information before decoding.

(3) We evaluated the model on two remote sensing datasets with diverse environmental
scenarios, including tests in challenging conditions. The outcomes demonstrate that
the MRFA-Net is quite accurate and reliable when compared to previous deep learning
based algorithms.

2. Methods
2.1. Overview

The multi-scale model architecture proposed in this paper effectively identifies clouds
and cloud shadows, accurately generating clear segmentation masks. The overall structure
of the model is illustrated in Figure 1, and is primarily composed of an encoder stage and a
decoder stage. Specifically these phases are conducted as follows: (1) In the encoding phase,
each encoder encompasses the AFEM and multi-scale attention. To address the irregular
and blurry features in remote sensing images, the AFEM is tasked with capturing local
information across various scales while reducing the resolution. The multi-scale attention is
tailored to the features of different phases, and employs corresponding attention strategies,
utilizing MSA and MCA. (2) In the decoding phase, the features are refined and decoded
by the MDM and GFRM. Through the FFM, features from both deep and shallow layers,
as well as from different branches, are integrated. For features with lower resolutions
but a higher number of channels, decoding is carried out using the MDM. Conversely,
for features with a larger resolution, the designed GFRM further refines these features
before decoding.
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Figure 1. The structure of the MRFA-Net, consisting of encoding and decoding sections. (a) The
encoding section primarily employs the AFEM for feature extraction and multi-scale attention, with
slight parameter and implementation variations across the stages. (b) The decoding phase predomi-
nantly refines details and decodes through the MDM and GFRM at different stages. (n_classes refers
to the number of output channels, with each channel corresponding to one category. In this study,
cloud and shadow detection involves three classifications: cloud, cloud shadow, and background).

2.2. Asymmertric Feature Extractor Module

The asymmetric feature extractor module (AFEM) is crucial for accurately segmenting
cloud shadow remote sensing images, with its core task being the identification and capture
of the diverse features of cloud shadows. In recent years, several segmentation models
have employed multi-scale feature extraction modules, such as Dual-Branch Net and
MCANet, achieving certain results. However, these models often tend to focus on refining
information or utilize large-scale convolutions in breadth, attempting to capture as much
comprehensive feature information as possible in a single process, without considering
deeper features. This leads to an explosion in the number of model parameters, and
the redundancy of information can result in model performance instability. Therefore, a
balanced multi-scale feature extraction module should not only prioritize performance, but
also accurately capture pertinent feature information.

To address the aforementioned issues, we introduce the AFEM. Its structure is illus-
trated in Figure 2. Input features first pass through a point-wise convolution layer and a
3 × 3 convolution layer, thus adjusting the channel number to the desired output channels.
Concurrently, a residual mechanism is introduced. Subsequently, the features are split
into four subsets ki (where i ∈ [0, 3]) along the channel dimension. Each of these subsets
is processed through a 1 × 1 convolution layer and asymmetric multi-scale convolution
layers with varying kernel sizes, thus yielding multi-scale feature outputs. The formula is
as follows:

MFO = Concat(Conv(x0), Concat3
i=1(SConv(xi))) (1)

where MFO denotes a multi-scale feature output, Conv( ) refers to point-wise convolution,
and SConv( ) corresponds to the combination of strip convolutions.
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Figure 2. The structure of the AFEM. ConvX0 represents point-wise convolution, whereas ConvX1,
ConvX2, and ConvX3 represent strip convolutions that vary according to the sizes of features.

Given that the features from different levels retain the spatial information of varying
dimensions, it is essential to account for the discrepancies among features of different
depths. In response to this, the asymmetric convolution layer scales in the AFEM can be
adjusted. The lengths of stripe convolutions k1, k2, and k3 are tunable parameters. For
shallower features with a larger resolution, using a more extensive convolution kernel cap-
tures a broader scope of spatial information. Conversely, for deeper features with a smaller
resolution, employing a smaller kernel refines the capability to capture details. Therefore,
when the feature resolution exceeds 64 × 64, the lengths of the stripe convolutions are
set to 3, 7, and 11. For resolutions below 64 × 64, these lengths are adjusted to 3, 5, and
7. Consequently, the entire AFEM can capture feature information of various sizes in a
multi-scale manner during the down-sampling process.

2.3. Multi-Scale Attention

Grasping the context of spatial information plays a pivotal role in remote sensing
image segmentation. Even minor positional changes in the image can significantly influence
the model’s final output. Hence, the integration of spatial attention mechanisms is crucial.
Most spatial attentions operate on a linear structure, only accepting feature information
from a fixed receptive field. This approach limits the model’s ability to process multi-scale
spatial information. To address this, we integrate multi-scale spatial attention (MSA) and
multi-scale channel attention (MCA) into our model. These two modules operate in the
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first half and the second half of the encoding phase, respectively. MSA serves as the
feature enhancement mechanism in the spatial dimension, bolstering the understanding of
cloud and cloud shadow positional information. It divides the features into four branches,
feeds them into the spatial attention mechanism after different convolutions, stacks them,
and finally modifies the number of channels through point-wise convolution. In contrast,
MCA augments features in the channel dimension, enhancing the control over the weights
between different channels and amplifying the model’s generalization capabilities. It splits
the features into four branches, stacks them after different convolutions, feeds them into
the channel attention mechanism, and finally modifies the number of channels through
point-wise convolution.

The structure of the MSA is illustrated in Figure 3. It comprises four parallel spatial
attention modules (SAMs), three passing through a 3 × 3 dilation convolution layer and
one passing through a 3 × 3 convolution. These convolution layers utilize different dilation
rates of 3, 5, and 7, respectively. This not only expands the receptive field, but also facilitates
the assimilation of multi-scale features, thus amplifying the model’s spatial understanding.
SAMs operate adaptively, focusing on the intricate spatial details within the locality. The
pixel values across all channels in the image sequentially undergo both maxpool and
avgpool layers, allowing for the reallocation of the appropriate weights. This approach
enables the model to selectively concentrate on salient features. Finally, the processed
features are stacked and sent through a point-wise convolution layer to be input into the
subsequent module.
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The procedure of the MSA can be delineated by the subsequent equation:

Xi =

{
Conv0(X) f or i = 0
DConvdi(X) f or i > 0

(2)

MSAO = Concat3
i=0(SA(Xi)) (3)
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where MSAO represents the multi-scale spatial attention output, Xi denotes the parallel
inputs convolved with different convolutional kernels, and SA( ) signifies the spatial
attention operation.

The structure of the MCA module is depicted in Figure 4. Similarly to the MSA, it
also encompasses four parallel processes, but it employs the channel attention mechanism
(CAM). The CAM measures based on the average and maximum value of information
within a channel. This approach enables the CAM to automatically adjust the weights
among different channels, capturing channel-specific information and thereby enhancing
the comprehension of global data. After convolution, the stacked multi-scale features are
combined in the channel dimension through channel attention. The procedure of the MCA
can be articulated as follows:

Yi =

{
Conv0(Y) f or i = 0
DConvdi(Y) f or i > 0

(4)

MCAO = CA(Concat3
i=0(Yi)) (5)

where MCAO denotes the multi-scale channel attention output, Yi represents the parallel
input of the network following operations with diverse convolution kernels, and CA( )
signifies the channel attention operation.
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attention and feed into the next layer.

Considering the variance in the feature scale sizes contained within the different
depths of features, we utilize distinct attention mechanisms in the encoding phase to
optimize information. Since shallower features have a larger resolution and fewer channels,
they are more sensitive to spatial attention mechanisms. In contrast, deeper features,
with a smaller resolution and a higher number of channels, are better optimized with
channel attention. Thus, when the feature resolution exceeds 64 × 64, MSA is used to
further refine features, reducing noise and amplifying valuable information. Conversely,
when the feature resolution is below 64 × 64, MCA is employed to optimize multi-scale
global information. Typically, both MSA and MCA not only enhance the receptive field,
but also capture effective spatial data and multi-scale channel information through their
designed combination.
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2.4. Multi-Path Decoder Module

The decoder is a crucial component in semantic segmentation models, responsible
for restoring spatial resolution. Traditional models typically have a simplistic decoding
section. While these models may be somewhat reliable, they are constrained by receptive
field limitations, making it challenging to recover multi-scale information. Additionally,
the simple up-sampling of features often results in significant detail losses. To address
these challenges, we introduce a multi-path decoder module (MDM) that fuses information
across different depths and restores images at multiple scales. Furthermore, our designed
global feature refinement module refines the information during up-sampling.

The specific structure of the MDM is depicted in Figure 5, targeting the deeper features
with a larger number of channels. The gray section in the figure represents the feature
fusion module, which is used to integrate features from different receptive fields, thus
reducing information loss. The multi-path decoder consists of three parallel branches,
with each branch receiving features from dilated convolutions with varying receptive
fields. Each path also contains two up-sampling modules, employing bilinear interpolation.
Starting with an input feature size of 16 × 16, the sizes transition to 16 × 16 and 32 × 32
post-up-sampling. Solely relying on a single channel and deep features can sacrifice much
of the finer details. Consequently, we introduce a feature fusion module (FFM), as shown
in the top right gray dashed rectangle of Figure 5. Utilizing a 1 × 1 convolution layer,
we can halve the channel count of the shallower features and other branches. The multi-
scale features are then fused using the concatenate operation. This approach ensures the
preservation of semantic information across different scales within the channel dimension.
Moreover, the FFM is also integrated into subsequent decoding processes.
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2.5. Global Feature Refinement Module

To refine detailed information and expand the receptive field, specifically for features
at the tail end of the model decoding with higher resolutions, we propose a global feature
refinement module (GFRM). This is a lightweight module aimed at refining global context
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information. The architecture is depicted in Figure 6. The GFRM primarily employs NMF
matrix factorization [27] to denoise and enhance the information [28–30], and also uses the
backpropagation through time [31] algorithm for backpropagating gradients [32,33]. The in-
formation from one channel of an image can be viewed as a matrix X = [x1, . . . , xn] ∈ Rd×n,
where its pertinent information is embedded in one or more low-rank subspaces. It can
then be conceived that the decomposition of X can be represented by a dictionary matrix
D = [d1, . . . , dn] ∈ Rd×n and the corresponding encoding C = [c1, . . . , cn] ∈ Rd×n, for
which the formula is as follows:

X = X + E = DC + E (6)
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factorization in order to facilitate computation. The purpose of BPTT (Backpropagation Through
Time) is to compute gradients, which are then handed over to the deep learning framework and
optimized for fitting and iteration.

For common networks, the feature tensor output by the network is x ∈ RC×H×W . If the
tensor is unfolded into C matrices, those can be represented as a matrix X ∈ RC×HW . When
the module relies on context information, the hidden assumption is that the superpixels
represented by the “global information” X are intrinsically related. These superpixels can
actually be represented as linear combinations of a set of bases. Typically, X is of a low
rank. X can be decomposed into two parts: the low-rank “global information” X and the
residual E.

This process can be viewed as an optimization process where the clean information
subspace is determined through algorithmic optimization, discarding the residual. We
model the global information description using the following function:

min
D,C

L(X, DC) + R1(D) + R2(C) (7)

where L represents the reconstruction error, derived from the distribution of the residual
term E; R1 and R2 denote regularization for the dictionary matrix D and the coefficient
matrix C, respectively; and M is the optimization algorithm for the objective function, and
is the key to this module.

In this paper, non-negative matrix factorization is adopted. The module includes a
matrix decomposition model within two linear transformations:

F(Z) = Wu M(WlZ) (8)

wherein Wl is the lower linear transformation, mapping the input Z to the feature space,
and M is the low-rank feature subspace derived from the corresponding non-negative
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matrix factorization decomposition. The output is then transformed using the upper linear
transformation Wu.

Furthermore, it is necessary to compute the gradient of the feature decomposition for
backpropagation, ensuring its differentiability. In this paper, we adopt the backpropagation
through the time algorithm. Matrix decomposition is abstracted to apply implicit differenti-
ation. The GFRM reduces computational complexity while discarding global redundant
information, thus enhancing the understanding of hierarchical information and further
refining detail information.

3. Experimental Analysis
3.1. Datasets
3.1.1. Cloud and Cloud Shadow Dataset

The dataset’s remote sensing images were primarily obtained from the U.S. Landsat
8 satellite, and supplemented by high-resolution remote sensing images selected from
Google Earth (GE). The Landsat 8 satellite is equipped with a land imager with nine bands
and a thermal infrared sensor with two bands. The high-definition satellite images from
Google Earth are mainly captured with the QuickBird satellite and the WorldView-4 satellite.
The QuickBird satellite is capable of acquiring high-quality remote sensing images, boasting
a satellite imagery resolution of up to 0.61 m. Additionally, it possesses the capability to
collect four-band spectral resolution images with resolutions ranging from 2.44 to 2.88 m.
The WorldView-4 satellite is equipped to capture high definition remote sensing images at
a resolution of 0.3 m, while also being able to acquire multispectral images at a resolution
of 1.24 m. This dataset primarily utilizes the second blue band (0.450–0.515 µm), the third
green band (0.525–0.600 µm), and the fourth red band (0.630–0.680 µm). Owing to the large
original image sizes and GPU memory constraints, the original images were uniformly
cropped to a resolution of 224 × 224, ensuring easy training. In total, 10,843 images were
obtained, and they were grouped in an 8:2 ratio to serve as the training and validation
sets, respectively.

To ensure that the dataset was representative and reflected real world scenarios, we
utilized images from various angles, altitudes, and backgrounds at specific ratios. Image
backgrounds encompass various terrains, including cities, sandy areas, farmlands, seas,
etc. Moreover, since this study focused on clouds and cloud shadows, some filtering was
performed on the labels, removing other terrain labels and retaining only cloud and cloud
shadow labels, as well as some terrain labels that were similar to cloud features for training.

3.1.2. HRC_WHU Dataset

To further test the model’s generalization capability, we also utilized the HRC_WHU
high-resolution cloud dataset. The data, sourced from [34] the Wuhan University laboratory,
consist of 150 high-resolution remote sensing images, with resolutions primarily ranging
from 0.5 m to 15 m and an original size of 1280 × 720. The terrain types include vegetation,
snow, desert, cities, and water surfaces. Similarly, owing to GPU memory constraints, the
images were cropped into 224 × 224 sub-images for training, as shown in Figure 7. This
resulted in a total of 3600 images, which were grouped in an 8:2 ratio to serve as the training
and validation sets, respectively. Finally, manually annotated cloud shadow were added to
the labels. Black, white, and gray represent categories, corresponding to the background,
clouds, and cloud shadows, respectively.

In both datasets, the label data were initially in the form of images, with different colors
representing different categories. During training, we mapped the colors representing
categories onto different channels for training purposes. Finally, for visualization, we
converted the categories on the channels back to RGB colors for visualization.
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Figure 7. The first and second rows, respectively, showcase some training data from the Cloud and
Cloud Shadow Dataset and sample images from the WRC_WHU dataset. These primarily include
(a) urban areas, (b) plant areas, (c) farmland areas, (d) desert areas, (e) water areas, and others.

3.2. Experiment Details

All experiments were implemented using the PyTorch framework, version 1.10.1.
The utilized GPU was NVIDIA’s RTX2080Ti, with a memory of 11GB. The batch sizes for
training on both datasets were set to 16, with training epochs totaling 300. The optimizer
used was Adam. The learning rate was managed using a step-wise learning rate (StepLR),
starting at 0.001, with a decay factor of 0.9. The learning rate was updated every three
epochs. The formula for calculating the learning rate was as follows:

lrN = lr0 · βN/s (9)

In this study, lrN represents the learning rate at the nth training iteration, lr0 is the
initial learning rate, β is the decay coefficient, and s is the update interval. The loss function
used in training is the cross-entropy loss, and its formula is as follows:

Loss(x, class) = − log

(
ex[clas]

∑i ex[i]

)
= −x[class] + log

(
∑i ex[i]

)
(10)

When evaluating the performance of the model, we used metrics such as pixel accuracy
(PA), mean pixel accuracy (MPA), and mean intersection over union (MIoU) to assess the
model’s performance. Their calculation formulas are as follows:
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k
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where P represents precision, which is the proportion of pixels in the prediction that are
correctly identified; R stands for recall, denoting the proportion of pixels in the ground
truth that are correctly predicted; K is the number of classes; Pij is the count of pixels of
class i predicted as class j; Pji is the number of pixels of class j predicted as class i; and Pii is
the count of pixels that belong to class i and are predicted as class i.

3.3. Parameter Analysis
3.3.1. Ablation Experiments

To evaluate the contribution of the modules to the overall network, we conducted
ablation experiments on the key components of the model separately on the HRC_WHU
dataset and the Cloud and Cloud Shadow Dataset (CCSD), using PA and MIoU metrics for
the evaluation.

To assess the impact of the AFEM, we replaced the AFEM with a max pooling layer
of stride 2, denoted as the MFRA-Net/AFEM−. For multi-scale attention, we substituted
the module with two 3 × 3 convolution layers with a residual mechanism, denoted as the
MFRA-Net/MA−. For the multi-path decoder, we directly replaced the entire module with
linear bilinear interpolation up-sampling, denoted as the MFRA-Net/Decoder−. To investi-
gate the role of the GFRM, we simply removed it, denoted as the MFRA-Net/GFRM−.

The ablation experiments for each module are shown in Table 1. The improvements
on the HRC_WHU Dataset were noticeable, whereas further optimization effects were
observed for the CCSD Dataset. With the introduction of the AFEM, the MIoU metric on
the two datasets increased by 0.37% and 0.16%, respectively. With the introduction of the
multi-scale attention, the MIoU metric on the two datasets increased by 1.35% and 0.39%,
respectively. With the introduction of the multi-path decoder, the MIoU metric increased
by 0.54% and 0.33%, respectively. After the introduction of the GFRM, the increase in the
MIoU metric was 1.51% and 0.51%, respectively. Additionally, the AFEM and MDM can, to
a certain degree, reduce the model parameters and accelerate the model’s inference speed.

Table 1. Results of the ablation experiments for each module of the MFRA-Net. (The best results are
in bold).

Model MIoU on
HRC_WHU (%)

MIoU on
CCSD (%) Flops (B) Param (M)

MRFA-Net/AFEM− 87.12 93.96 9.18 11.07
MRFA-Net/MA− 86.14 93.73 6.29 7.28

MRFA-Net/Decoder− 86.95 93.79 7.44 8.39
MRFA-Net/GFRM− 85.98 93.61 6.12 7.06

MRFA-Net 87.49 94.12 9.05 10.31

As shown in Figure 8, the heat map provides a clearer depiction of the feature extrac-
tion status. White boxes indicate accurately extracted features, while red boxes signify false
detection. Yellow boxes indicate missed detections, and red circles denote the presence of
significant noise. With the introduction of multi-scale attention, the occurrence of missed
detections was substantially reduced. The network could better capture faint and minute
targets, attributable to multi-scale attention’s ability to greatly amplify the ability to capture
vital features and to enhance contextual understanding. Incorporating the AFEM, the asym-
metrical convolution-derived multi-scale features displayed a distinct advantage, leading
to a more precise and clean boundary demarcation, and reducing instances of feature
conglomeration. Introducing the MDM reduced the loss of information due to the fusion of
multi-scale features, and also mitigated missed detections to some extent. The impact of
integrating the GFRM on the model was quite evident; noise from clouds and backgrounds
in the image was markedly eliminated, and category demarcations were clearer. This
is because the GFRM further refines the features extracted by the model, comprehend-
ing semantic information globally through the matrix decomposition of back-propagated
gradients, eliminating redundant features while reinforcing the necessary ones.
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significant noise.

3.3.2. Analysis of the Decoder Paths

Additionally, to explore the impact of the MDM, we visualized the features from
different paths. As depicted in Figure 9, in decoder path one, although feature extraction
was most prominent, it encompassed considerable noise and impure extracted features,
potentially giving rise to false detections. In decoder path two, we observed the presence
of noise as well as certain phenomena of feature extraction omissions. In decoder path
three, despite a more accurate range of feature extraction, we observed more instances of
feature extractions being missed. Feature fusion can aptly resolve this issue. Each path
contains rich features, and the receptive fields of different paths vary. A smaller receptive
field is more sensitive to the detection of smaller targets, whereas a larger receptive field
excels in detecting larger, sheet-like targets. Moreover, shallow features, even though they
encompass a broader receptive field and contain more information, are often laden with
noise, redundant features, and exhibit a degree of ambiguity. In contrast, deeper features,
despite their high purity in extraction, tend to lose many intricate details. The fusion of
features from different branches effectively addresses this issue. When combined with
the subsequent GFRM, it could precisely retain multi-scale edge details and eliminate
redundant features, thus resulting in accurate target detection.
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Figure 9. Visualization of features extracted from different paths.

3.3.3. Parameters of AFEM

The AFEM is a highly effective multi-scale module that learns local information
through features with varying receptive fields. Among these, the sizes of the strip con-
volutions, denoted as k1, k2, and k3, play a crucial role in feature extraction. To select the
optimal parameters, we compared five sets of different convolution kernel sizes in this
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experiment, as shown in Table 2. Net-S and Net-L had fixed convolution sizes at different
stages, while Net-AS and Net-AL adaptively used different kernel sizes at different stages.
The experiments were conducted on the Cloud and Cloud Shadow Dataset, as outlined in
Table 3. It is evident that adapting the convolution kernels at different stages yielded better
results when compared to a static approach. Moreover, even when dynamically adjusting
the kernels at different stages, the selection of appropriate strip convolution kernel sizes
remained crucial. Among the four compared categories, the MFRA-Net was shown to be
more effective, owing to its well-considered parameter settings.

Table 2. Different settings of k1, k2, and k3 in the AFEM of comparison experiments.

Model Net-S Net-L Net-AS Net-AL MRFA-Net

Input < 64 × 64 3, 5, 7 3, 6, 10 1, 3, 5 3, 6, 10 3, 5, 7
Input ≥ 64 × 64 3, 5, 7 3, 6, 10 3, 5, 7 5, 8, 12 3, 7, 11

Table 3. Results of comparison experiments. (PA is pixel accuracy, MPA is mean PA, and MIoU is the
mean intersection over union. The best is in bold).

Model PA (%) MAP (%) MIoU

Net-S 95.93 95.37 92.56
Net-L 96.12 95.66 92.81

Net-AS 96.88 96.32 93.47
Net-AL 97.21 96.69 93.84

MRFA-Net 97.53 97.00 94.12

3.4. Comparison Test of the Cloud and Cloud Shadow Dataset

To further evaluate the performance of the proposed network, we conducted compara-
tive experiments on a dataset, juxtaposing the MRFA-Net with the currently prevalent and
outstanding semantic segmentation models, including the U-Net, FCN, SegNet [35], PSP-
Net [36], DeepLabv3+ [37], ShuffleNetV2 [38], DABNet [39], and CCNet [40]. Moreover, we
also compared this with some of the latest networks designed for remote sensing, namely
the CSAMNet and Dual-branch Network (DBNet). The MRFA-Net exhibited superior
performance, outperforming the next best network by 0.53% in terms of the MioU. The
results are as shown in Table 4.

Table 4. The comparative experiments on the Cloud and Cloud Shadow Dataset; evaluation metrics
include the PA (pixel accuracy) for each category, as well as the MPA and MIoU (mean intersection
over union). (The best results are in bold).

Class Pixel Accuracy (%) Overall Results (%)

Model Cloud Shadow Background PA MPA MIoU

FCN 96.87 94.11 97.12 96.42 96.03 90.69
U-Net 96.12 92.53 96.31 95.39 94.98 90.18
SegNet 94.16 91.32 95.21 94.47 93.56 87.91
PSPNet 96.95 94.52 97.79 97.61 96.42 93.37

ShuffleNetv2 96.76 94.27 97.18 96.37 96.07 91.85
Deeplabv3+ 96.13 92.52 96.87 95.87 95.17 90.51

DABNet 97.12 94.85 97.32 97.31 96.43 93.59
CCNet 96.59 93.71 96.89 96.42 95.73 92.08

CSAMNet 96.87 94.52 97.73 97.10 96.37 93.13
DBNet 96.46 94.23 97.42 96.78 96.04 92.59

MRFA-Net 97.42 95.37 98.21 97.53 97.00 94.12

Based on the results, our model still maintained optimal performance on the WHU_HRC
Dataset. It outperformed the second-best model by 0.62% on the MIOU metric. Specifically
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for this dataset, we mainly compared the results on images with similar cloud features,
as illustrated in Figure 10. In the first row, our cloud and snow features were somewhat
similar, with only slight differences in their edge features. During recognition, thanks to
the rich multi-scale features and modules that enhance feature comprehension, our model
accurately identified the general contour. Only a small portion of scattered snow on the
right side was recognized as a cloud. In contrast, other networks’ ability to demarcate
similar features dropped significantly. For the second row, we chose an image where
clouds and accumulated snow intertwine. The snow features appeared brighter compared
with the cloud. Our network distinguished such features with relative ease. However,
our network recognized the long, intermittent snow strips. Meanwhile, other networks
struggled to accurately differentiate the cloud and snow features below. In the third row,
we selected an image displaying a cloud adjacent to accumulated snow. The cloud features
were deeper, distinctly different from the snow. All networks could identify the general
contour, but when it came to the edge features where the cloud and snow overlapped, our
network clearly outperformed the others. This superiority stems from our modules being
designed for intricate feature refinement. Beyond capturing features of different scales, the
attention mechanism employs smaller convolution kernels in the deeper layers. The global
information refinement further aids the network in better understanding both local and
global contexts, thereby achieving improved performance.
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3.5. Comparison Test of the HRC_WHU Dataset

To further investigate the performance of the MRFA-Net and validate the generaliz-
ability of our model, we conducted comparative experiments on the HRC_WHU Dataset.
The HRC_WHU Dataset possesses features that are stylistically inconsistent with the Cloud
and Cloud Shadow Dataset. For example, sandy terrains under strong light share similar
features with thin cloud layers, making them easily confusable. Nevertheless, the model
should be able to accurately segment the edges between the background and the target,
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extracting detailed features. We continued to compare our results with some popular
models. The experimental results are presented in Table 5.

Table 5. Comparative experiments on the HRC_WHU Dataset. (PA is pixel accuracy, MPA is the mean
PA, and MIoU is the mean intersection over union. The best results are in bold).

Model PA (%) MPA (%) MIoU

DenseASPP [41] 91.21 89.71 82.86
Enet [42] 91.85 90.35 83.44

BiSeNetV2 [43] 91.75 90.36 83.19
SegNet 91.97 90.23 83.79

PVT [44] 91.37 91.15 84.85
PSPNet 92.30 90.69 84.52

ACFNet [45] 92.20 91.11 84.79
OCRNet [46] 92.78 91.56 85.21
DFNet [47] 92.67 92.14 86.22
Deeplabv3+ 93.49 92.23 86.92
MRFA-Net 94.09 93.72 87.54

As illustrated in Figure 11, we mainly compared the results on images with similar
cloud features. In the first row, our cloud and snow features were somewhat similar,
with only slight differences in their edge features. During recognition, thanks to the
rich multi-scale features and modules that enhance feature comprehension, our model
accurately identified the general contour. Only a small portion of scattered snow on the
right side was recognized as a cloud. In contrast, other networks’ ability to demarcate
similar features dropped significantly. For the second row, we chose an image where the
cloud and accumulated snow intertwined. The snow features appeared brighter when
compared with the cloud. Our network distinguished such features with relative ease. It
achieved the recognition of the long, intermittent snow strips. Conversely, other networks
struggled to accurately differentiate the cloud and snow features below. In the third row,
we selected an image displaying a cloud adjacent to accumulated snow. The cloud features
were deeper, distinctly different from the snow.
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4. Discussion
4.1. Advantages of the Method

This paper introduces an efficient, multi-scale cloud and cloud shadow detection
method with low computational complexity. When compared to traditional approaches,
our method significantly reduces the manual labor in data labeling, handcrafted feature
extraction, and setting feature thresholds. It does not rely on prior knowledge and ad-
dresses the inherent challenge of noise resilience in traditional thresholding techniques.
As a result, it achieves substantially higher accuracy and possesses greater versatility
when compared to previous methods. Furthermore, when compared to existing semantic
segmentation techniques, our network emphasizes multi-scale and multidimensionality,
employing different strategies at various levels. This approach effectively captures some
overlooked details and emphasizes critical features. For instance, it can distinctly identify
and differentiate smaller targets and features that resemble both the background and the
target. As a result, it exhibits superior performances, even on complex remote sensing
image sets. It boasts strong generalization across various terrains, outstanding performance,
and low computational complexity. It performs exceptionally well on both the Cloud and
Cloud Shadow Dataset we collected, and the publicly available HRC_WHU Dataset.

4.2. Limitation of the Method

Although the MFRA-Net has achieved commendable results in cloud and cloud
shadow detection and the network has a certain advantage in terms of parameter opti-
mization, there is still room for improvement. Detection is the first step. In the future, we
plan to incorporate temporal remote sensing data to remove and denoise images obscured
by clouds and cloud shadows, thereby recovering image information. Moreover, we aim
to extend this method to other types of remote sensing data, such as synthetic aperture
radar (SAR) remote sensing, in order to enhance the model’s versatility across different
data types.

5. Conclusions

This paper introduces the MRFA-Net for cloud and shadow detection. Its distinctive
feature is the use of different strategies at various network levels based on feature charac-
teristics, and the integration of multi-scale features, thus resulting in superior performance.
This network is based on an encoder–decoder structure. During the encoding phase, multi-
dimensional features are mainly extracted via the AFEM. The sizes of convolutional kernels
vary according to feature tensor changes. Subsequently, the multi-scale attention module
refines feature information. Different hierarchical features also separately adopt multi-scale
spatial and channel attentions, adaptively understanding and enhancing the contextual
semantic information of images. Additionally, these designs, to some extent, reduce the
number of parameters, thus speeding up the model’s inference time. During the decoding
phase, different approaches are adopted for features of varying sizes and characteristics.
For channel-wise and smaller feature tensors, the MDM is employed for feature fusion and
up-sampling. By merging features from different branches and levels, the potential for
information loss is significantly reduced, making the decoding process more reliable than
previous methods. For larger feature tensors, an innovative matrix decomposition GFRM,
capable of backward gradient propagation, is utilized to further refine global information,
eliminate redundant features, and enhance valuable information. On the Cloud and Cloud
Shadow Dataset, as well as the HRC_WHU dataset, it achieved MioU scores of 94.12% and
87.54%, respectively, thus exceeding other models.
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