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Abstract: As a new vegetation monitoring index, the KNDVI has certain advantages in characterizing
the evolutionary process of regional desertification. However, there are few reports on desertification
monitoring based on KNDVI and feature space models. In this study, seven feature parameters,
including the kernel normalized difference vegetation index (KNDVI) and Albedo, were introduced
to construct different models for desertification remote-sensing monitoring. The optimal desertifi-
cation remote-sensing monitoring index model was determined with the measured data; then, the
spatiotemporal evolution pattern of desertification in Gulang County from 2013 to 2023 was analyzed
and revealed. The main conclusions were as follows: (1) Compared with the NDVI and MSAVI, the
KNDVI showed more advantages in the characterization of the desertification evolution process.
(2) The point–line pattern KNDVI-Albedo remote-sensing index model had the highest monitoring
accuracy, reaching 94.93%, while the point–line pattern NDVI-TGSI remote-sensing monitoring index
had the lowest accuracy of 54.38%. (3) From 2013 to 2023, the overall desertification situation in
Gulang County showed a trend of improvement with a pattern of “firstly aggravation and then
alleviation.” Additionally, the gravity center of desertification in Gulang County first shifted to the
southeast and then to the northeast, indicating that the northeast’s aggravating rate of desertifica-
tion was higher than in the southwest during the period. (4) From 2013 to 2023, the area of stable
desertification in Gulang County was the largest, followed by the slightly weakened zone, and the
most significant transition area was that of extreme desertification to severe desertification. The
research results provide important decision support for the precise monitoring and governance of
regional desertification.

Keywords: KNDVI; feature space; spatiotemporal evolution; desertification

1. Introduction

With the continuous increase in global climate change and human activities, de-
sertification has become one of significant environmental issues facing the world today.
Desertification refers to the process whereby originally non-desert areas gradually de-
grade, experience vegetation loss, and witness a decline in soil quality due to natural or
anthropogenic factors, ultimately evolving into landscapes resembling deserts. This process
not only leads to the loss of land resources but also has a profound impact on ecological
environments, socio-economics, and human livelihoods.
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Desertification monitoring methods can be divided into field-based observational
methods and remote-sensing technology extraction methods. Traditional field-based ob-
servational methods, although accurate, are time-consuming, labor-intensive, and limited
in scope, and the production of research results is slow and, therefore, lacks universality.
With the continuous launch of Earth observation satellites, remote sensing has become the
primary means for the dynamic monitoring of desertification at medium to large scales.
Scholars, both domestically and internationally, have utilized methods such as image classi-
fication, comprehensive index methods, and multiple regression analysis to qualitatively or
quantitatively extract desertification information using remote sensing, resulting in a series
of achievements. For instance, Tong et al. [1], based on Landsat remote-sensing images from
1985 to 2017, employed an object-oriented classification method to study the changes in the
desertification land area in the Horqin Sandy Land over the past three decades, identifying
human factors as the dominant ones. Guo et al. [2] conducted research into the sensitivity
of land desertification in the arid regions of northwest China using remote sensing and
GIS spatial analysis techniques, revealing that soil and climate are the primary influencing
factors, with vegetation as the most active and fundamental factor, and socio-economics
representing the fastest influencing factor of desertification sensitivity. Abdelhafid et al. [3]
utilized a multivariate point–line equation to assess the relationship between Landsat
imagery and soil texture, dynamically analyzing desertification in the Nemamcha region
and concluding there was a strong correlation between soil indicators and surface soil sand
content, thereby indicating an increase in desertification signs. Maria et al. [4] investigated
the impacts of rainfall intensity on soil properties in Brazilian desertification areas using
simulated rainfall and discovered that rainfall intensity significantly affects runoff time
and accelerates soil erosion rates. Wang et al. [5] extracted desertification land informa-
tion based on Landsat data and analyzed the spatiotemporal variation characteristics of
desertification in the eastern part of the Helan Mountain region in Ningxia using a cen-
troid model. The results revealed an overall northward migration of desertification in the
eastern part of the Helan Mountain region in Ningxia, with some improvement identified
in the situation. However, while image classification methods have certain advantages in
defining the scope of desertification, these methods cannot obtain internal spatial variation
information. The comprehensive index method and multiple regression analysis methods
could consider the impacts of multiple factors on the desertification process but could not
consider the interactions between factors and the nonlinear characteristics of their impacts
on the desertification process.

In recent years, many scholars have attempted to introduce a remote-sensing inversion
index of land surface information to construct a feature space desertification monitoring
model, including a humidity index, surface Albedo, vegetation index, and surface tempera-
ture, which has achieved improved results. Based on the Google Earth Engine (GEE) for
the extraction of the normalized difference vegetation index (NDVI) and surface Albedo,
Ma et al. [6] constructed a feature space to monitor the land desertification in Ongniud
Banner using remote sensing and found that the desertification in this area experienced the
evolution process of first development and then reversal. Based on the NDVI and surface
Albedo data of MODIS remote-sensing images from 2000 to 2016, Yu et al. [7] constructed
a feature space to calculate the desertification difference index (DDI) and the vegetation
condition Albedo drought index (VCADI). On this basis, the DDI and VCADI were used to
analyze the spatial and temporal evolution patterns of desertification in Shaanxi Province,
and the coefficient of variation method was used to explore the correlation between deserti-
fication and drought in this area. Zhang et al. [8] utilized the MODIS data from 2000 to 2012
to establish the Albedo-NDVI feature space model to explore the evolution of desertification
in Turkmenistan. Wang et al. [9] applied the Albedo-NDVI feature space index model to
extract desertification data in Chifeng and found that the degree of desertification had
improved over time. Gao et al. [10] utilized four vegetation indices, namely, the NDVI,
the enhanced vegetation index (EVI), the ratio vegetation index (RVI), and the modified
soil adjusted vegetation index (MSAVI), to establish four feature space index models with
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land surface temperature (Ts) and found that the MSAVI-Ts feature space index model
performed the best in desertification extraction under different vegetation cover and soil
backgrounds. Mohamed et al. [11] quantitatively assessed desertification in the central
region of the Moulouya basin in northeastern Morocco based on Sentinel-2 satellite imagery
data and found that the feature space index model of NDVI-Albedo and MSAVI-Albedo
showed the best correlations. Vani et al. [12] constructed a feature space model using the
NDVI and LST to calculate the soil moisture index and then combined the crop condition
classification map with SMI to evaluate the drought conditions of four different types in
India in 2016.

Compared to other vegetation indices, the kernel normalized difference vegetation
index (KNDVI) [13] could integrate information from different scales based on kernel
functions, resulting in stronger spatial resolution. It is suitable for various research and
monitoring needs, showing higher sensitivity to vegetation and better capturing vegetation
characteristics. At the same time, it reduces the impact of land use and land cover on
remote-sensing data to reflect the vegetation status more accurately. Gustau et al. proposed
that the correlation of the KNDVI (0.68) was higher than that of the NDVI in the calculation
of monitoring accuracy of total primary productivity and solar-induced chlorophyll fluores-
cence, and the correlation of the NDVI was 0.59 [14]. However, there have been no reports
on desertification monitoring models based on the KNDVI and feature space methods.

The northern agro-pastoral ecotone of Gulang County is a typical fragile ecological area
that has been plagued by desertification for a long time. In this study, based on Landsat time
series data from 2013 to 2023, various desertification characterization parameters, including
the KNDVI, were introduced to construct different types of feature space desertification
monitoring index models. The optimal monitoring index method was determined through
ground-truth data. The gravity center model and other methods were introduced to reveal
the spatial and temporal evolution characteristics and laws of desertification in Gulang
County. Through the remote-sensing monitoring of desertification areas, we can more
objectively understand the impact of desertification on local residents’ quality of life and
regional economic development. In relation to desertification prevention and control, we
can provide a scientific basis and public opinion support for government decision-making
and community participation, ultimately providing decision and data support for the
prediction and regulation of regional desertification.

2. Research Methods and Data Sources
2.1. Overview of the Study Region

Gulang County (102◦43′~103◦51′E, 37◦09′~37◦54′N), with an area of 5046 km2, has
a roughly east–west length of about 102 km and a north–south width of about 88 km
(Figure 1). It is located at the eastern end of the Hexi Corridor, bordered to the north by the
Tengger Desert, adjacent to Jingtai County to the east, and relying on the Tianzhu Tibetan
Autonomous County to the south [15]. The terrain shows a decreasing trend from south
to north, exhibiting diverse and complex landforms with elevations ranging from 1577 m
to 3536 m [16]. Gulang County is dominated by the climates of the cold arid zone of the
Qilian Mountains and the cold temperate arid zone of Hexi, characterized by abundant
sunlight, strong radiation, significant temperature differences, and sparse and uneven
precipitation [17]. The rate of precipitation decreases from over 400 mm in the southern
mountainous areas to less than 175 mm in the northern deserts, leading to severe soil
erosion. The county’s soil types are diverse, primarily consisting of loess soil, calcareous
soil, and aeolian sandy soil. It is rich in mineral resources, with significant deposits of
limestone, coal, and granite [18]. Due to the combined effects of climate change and human
activities, desertification in Gulang County is relatively severe.
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Figure 1. Overview of the study area.

2.2. Data Source and Preprocessing

In this study, Landsat 8 OLI/TIRS remote-sensing images with a spatial resolution
of 30 m in August of 2013, 2018, and 2023 were utilized, and these datasets with cloud
cover of less than 10% were derived from the Geospatial Data Cloud Platform (http:
//www.gscloud.cn (accessed on 22 May 2023)), orbit number 131/34) of the Computer
Network Information Center of the Chinese Academy of Sciences. ENVI 5.3 software
was used to perform radiometric calibration and atmospheric correction preprocessing
on remote-sensing images. The land use data of Gulang County originated from the
Resource and Environmental Science and Data Center of the Chinese Academy of Sciences
(https://www.resdc.cn/ (accessed on 20 May 2023))) with a spatial resolution of 30 m. The
ArcGIS10.2 tool was used to remove buildings and water, which can eliminate their impact
on the inversion of the desertification index.

2.3. Research Method
2.3.1. Feature Parameters Extraction

Based on preprocessed remote-sensing images, feature parameters were extracted
using band calculations (Table 1), including the normalized difference vegetation index
(NDVI), kernel normalized difference vegetation index (KNDVI), modified soil adjusted
vegetation index (MSAVI), Albedo, topsoil grain size index (TGSI), LST, and surface water
content index (SWCI).

(1) The NDVI is widely utilized as a vegetation status indicator in remote-sensing moni-
toring applications. It can assess vegetation coverage and growth conditions through
measurement of the difference in reflectance between near-infrared and red light
bands. In desertification monitoring, decreased vegetation coverage accompanies

http://www.gscloud.cn
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desertification, thus exhibiting a correlation [19]. Wang et al. studied the driving
factors of the NDVI in the desertification area of northern China from 1998 to 2015 [20].

(2) The KNDVI is an enhanced version of the NDVI, commonly employed to improve the
sensitivity and accuracy of vegetation monitoring compared to the traditional NDVI.
The KNDVI may be able to capture more accurately the multiple scattering effects
within vegetation canopies, thereby providing more precise vegetation information.
Hence, in desertification monitoring, a decrease in the KNDVI can indicate vegetation
degradation and the progression of desertification [14].

(3) The MSAVI aims to mitigate the influence of the soil background on vegetation
signals via the computation of specific reflectance ratios in the red and near-infrared
bands. It provides more accurate assessments of vegetation coverage and growth
conditions, particularly in areas with low vegetation cover or complex backgrounds.
Thus, the MSAVI is particularly suitable for vegetation monitoring in arid and semi-
arid regions [21]. Wu et al. studied the desertification index of semi-arid grassland
based on the Albedo-MSAVI feature space [22].

(4) Surface Albedo represents the ability of the ground to absorb and reflect solar radiation.
The greater the Albedo, the less the ground absorbs solar radiation, and vice versa.
In the process of desertification, the surface vegetation coverage decreased and the
surface reflectance increased, resulting in an increase in Albedo. Therefore, the degree
and trend of desertification could be monitored by monitoring the change in surface
Albedo [23].

(5) TGSI can reflect the particle composition of the surface soil. The thickness of the soil
particles affects the soil’s water retention capacity, aeration, and erosion resistance.
The coarsening in soil particle size is a sign of land degradation. The coarser the soil
particle size, the more serious the desertification. Therefore, the surface soil particle
size index could be used as one of the indicators for monitoring desertification [24].
Hashem et al. used wavelet and time series analysis to simulate different degrees of
desertification based on the TGSI and Albedo index [25].

(6) Land surface temperature is the most intuitive reflection of the surface temperature
of rock, soil, and vegetation. The surface temperature is directly related to the soil
moisture content. The higher the surface temperature, the lower the soil moisture
content, which in turn affects vegetation coverage and accelerates the desertifica-
tion process [26]. The higher the degree of desertification, the higher the surface
temperature, so the surface temperature can also be used to reflect the change in
desertification. Kumar et al. used the LST and NDVI to monitor and evaluate the
geological environment of land degradation and desertification in semi-arid areas [27].

(7) The SWCI is a unified surface water content model constructed by Du et al. After
testing and evaluation, the model integrates the influence of water absorption char-
acteristics of vegetation and soil on spectral reflection. It requires fewer parameters
and can be quickly calculated. Compared with the NDVI, it is less affected by soil
vegetation coverage. Soil water content gradually decreases with the aggravation of
desertification; otherwise, it gradually increases, so the model can be used to monitor
desertification [28].

In the formula, BRED, BBLUE, BGREEN, BNIR, SWIR1, and SWIR2 are the red band,
blue band, green band, near-infrared band, shortwave infrared band 1, and shortwave
infrared band 2 of the remote-sensing image, respectively. σ is a length-scale parameter
to be specified and represents the sensitivity of the index to sparsely/densely vegetated
regions; a and b are coefficients; τ is atmospheric transmittance; ε is surface emissivity; T is
the radiation brightness temperature; and Ta is the atmospheric average temperature.
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Table 1. Calculation formula for characteristic parameters.

Characteristic Parameter Calculation Formula

NDVI NDVI =
BNIR − BRED
BNIR + BRED

(1)

KNDVI KNDVI = tanh((
BNIR − BRED

2σ
)

2
) (2)

MSAVI MSAVI =
2BNIR + 1 −

√
(2BNIR + 1)2 − 8(BNIR − BRED)

2
(3)

Albedo Albedo = 0.356BBLUE + 0.13BRED + 0.373BNIR
+0.085BSWIR1 + 0.072BSWIR2 − 0.0018 (4)

TGSI TGSI =
(BRED − BBLUE)

(BRED + BBLUE + BGREEN)
(5)

LST
LST = a(1 − C − D) + (b(1 − C − D) + C + D)T − DTa

C = τε
D = (1 − τ)[1 + (1 − ε)τ]

(6)

SWCI SWCI =
SWIR1 − SWIR2
SWIR1 + SWIR2

(7)

2.3.2. Parameter Standardization

In order to eliminate the difference between typical surface parameters and determine
the maximum and minimum values of each parameter, the following equations were
applied in the process of data standardization to normalize the data [29]:

Mi =
MIi − MIi,min

MIi,max − MIi,min
(8)

In the formula, Mi represents the i-th normalized index; MIi represents the i-th char-
acteristic parameter; MIi, min represents the minimum value of the i-th characteristic
parameter; and MIi, max represents the maximum value of the i-th characteristic parameter.

2.3.3. Principle of Feature Space Model

Due to the complex diversity of terrain, landforms, and other environments in the
study area, the accuracy of a single index for desertification monitoring was limited.
Therefore, the feature space model was adopted to add a variety of feature parameters
to improve the monitoring accuracy. In this study, a two-dimensional feature space was
used, i.e., two typical feature parameters were utilized, the X-axis and Y-axis, to construct
a two-dimensional feature space. Each point in the feature space was a sample, and
similar samples would gather together to form different point groups, which were easier
to classify [30]. As shown in Figure 2, the surface Albedo had a significant point–line
negative correlation with the KNDVI. The Albedo-KNDVI feature space was constructed
using the KNDVI as the abscissa and Albedo as the ordinate. The upper boundary A-D
edge represented the high Albedo line and reflected the drought condition, which was the
limit of the highest Albedo corresponding to the completely dry land under the condition
of given vegetation coverage. The lower boundary B-C was a low Albedo line, which
represented the condition of sufficient surface water. In Figure 2, four points, A, B, C, and
D, represent four extreme states. The closed area surrounded by the four points contains
all types of ground objects except clouds and water bodies and presents a certain spatial
differentiation law.
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3. Results
3.1. The Distribution of Different Degrees of Desertification in the Feature Space

In this study, the above seven parameters are divided into vegetation parameters and
soil parameters. According to the research of Dai et al. investigating agricultural drought
based on feature space, the vegetation parameters are placed on the X axis, while the soil
parameters are placed on the Y axis [31]. The vegetation parameters include the NDVI,
KNDVI, and MSAVI, and the soil parameters include Albedo, LST, SWCI, and TGSI. Taking
the SWCI-KNDVI feature space as an example, the spatial distribution laws of different
levels of desertification in the feature space were analyzed. It was discovered that the
spatial distribution of different degrees of desertification and their corresponding points in
SWCI-KNDVI feature space had obvious relationships. With the increase in the SWCI, the
KNDVI increased, and the degree of desertification gradually decreased. According to the
distance from any point to the (0, 0) point in feature space(Figure 3), the farther the distance
from the (0, 0) point, the more serious the degree of desertification. Desertification could be
divided into five categories, namely, slight desertification, mild desertification, moderate
desertification, severe desertification, and extreme desertification. These five categories
were clearly distributed in different locations in the feature space.
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3.2. Construction of Desertification Remote-Sensing Monitoring Index Model

As shown in Figure 4, in the SWCI-KNDVI feature space, there was a spatial differ-
entiation law. According to the law, the straight line perpendicular to the AB line could
distinguish different degrees of desertification. The distance from any point in the feature
space to point A (0, 0) could be used to divide different states of land desertification. That
is to say, the further away the distance from point A (0, 0) was, the sparser the vegetation
coverage, the higher the surface Albedo, and the more serious the desertification. Using
the distance formula between two points, the distance L from point B (x, y) (any point in
the SWCI-KNDVI feature space) to point A (0, 0) could be expressed as:

L =
√

x2 + y2 (9)

Based on this, the SWCI-KNDVI point-to-desertification difference index model (DDI)
can be constructed as follows:

DDI =
√

SWCI2 + KNDVI2 (10)

As shown in Figure 5, according to the research conclusions of Verstrate and Pinty [32,33],
if the SWCI-KNDVI feature space was divided in the vertical direction of the desertification
change trend, different desertification lands could be effectively distinguished. According
to this principle, 2000 sample points in the study area were randomly selected, and the
SWCI and KNDVI values of the sample points were extracted to construct the point–line
regression equation (Equation (11)). According to the coefficients a, SWCI, and KNDVI
in the equation, the point–line desertification difference index model (Equation (12)) was
constructed as follows:

SWCI = aKNDVI + b (11)

DDI = (−1
a
)KNDVI − SWCI (12)

In the formula, a and b are the coefficients and intercepts of the point–line regression
equation, respectively.
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monitoring models were constructed with seven characteristic parameters(Figures 6 and 7).
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3.3. Accuracy Evaluation

Based on the measured ground data and Google Earth images, 216 verification points
were selected in the study area to construct the confusion matrix [32]. Taking the KNDVI-
Albedo index model of point–line mode as an example (Table 2), the accuracy and Kappa
coefficient of each model were calculated based on the confusion matrix (Table 3). The
closer the Kappa coefficient was to 1, the higher the consistency. According to the accuracy
of each model, the accuracy of each surface parameter was statistically analyzed (Figure 8).
As shown in Table 3 and Figure 9, the KNDVI-Albedo index model in point–line mode
had the highest accuracy of 94.93% with a Kappa coefficient of 0.934, followed by a point
distance MSAVI-SWCI index model with an accuracy of 88.94% and a Kappa coefficient
of 0.856. The accuracy of 54.38% for the NDVI-TGSI point–line model was the lowest,
with a Kappa coefficient of 0.405. Among the seven surface parameters, the accuracy of
the point distance model and point–line model constructed using the KNDVI index was
higher than that of the point distance model and point–line model constructed with the
NDVI and MSAVI. There are many factors affecting the surface temperature and surface
reflectance, so these will, in turn, affect the accuracy of the model. The surface water
content directly reflects the degree of soil desertification, and the measurement accuracy is
high. The composition of soil particles is complex, and the soil desertification standards
of different components are different, so the accuracy of the soil particle size index is low.
Compared with the NDVI and MSAVI, the KNDVI has higher sensitivity and stability
due to the large number of terrain types and complex vegetation types in Gulang County.
Therefore, in summary, the point–line model KNDVI-Albedo index was more suitable for
the remote-sensing monitoring of desertification in Gulang County.

Table 2. The confusion matrix of the MSAVI-SWCI desertification monitoring model.

Predicted Value
Reference Value

Micro Slight Moderate Severe Extreme Total User Accuracy

Micro 11 1 0 0 0 12 91.67%
Slight 1 44 5 0 0 50 88%

Moderate 0 0 66 0 0 66 100%
Severe 0 0 1 46 0 47 97.87%

Extreme 0 0 0 2 40 42 95.24%
Total 12 45 72 48 40 217

Producer accuracy 91.67% 97.78% 91.67% 95.83% 100% Expected consistency rate 0.2353
Overall accuracy 95.39% Kappa coefficient 0.9397
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Table 3. The evaluation results of 24 desertification monitoring models.

Model Formulation Model Types Model Accuracy Kappa Coefficient

NDVI-Albedo
Point Distance 61.26% 0.508

Point–line 54.84% 0.425

NDVI-LST
Point Distance 58.53% 0.446

Point–line 61.75% 0.502

NDVI-TGSI
Point Distance 55.76% 0.425

Point–line 54.38% 0.405

NDVI-SWCI
Point Distance 83.87% 0.790

Point–line 85.25% 0.807

KNDVI-Albedo
Point Distance 86.47% 0.825

Point–line 94.93% 0.934

KNDVI-LST
Point Distance 66.36% 0.566

Point–line 72.35% 0.642

KNDVI-TGSI
Point Distance 62.67% 0.511

Point–line 74.65% 0.669
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Table 3. Cont.

Model Formulation Model Types Model Accuracy Kappa Coefficient

KNDVI-SWCI
Point Distance 76.04% 0.688

Point–line 73.27% 0.651

MSAVI-Albedo
Point Distance 65.28% 0.558

Point–line 66.36% 0.572

MSAVI-LST
Point Distance 69.12% 0.605

Point–line 64.06% 0.542

MSAVI-TGSI
Point Distance 62.67% 0.515

Point–line 64.98% 0.549

MSAVI-SWCI
Point Distance 88.94% 0.856

Point–line 85.71% 0.815

3.4. The Spatial Distribution of Different Degrees of Desertification Area in Gulang County

Based on the KNDVI-Albedo remote-sensing monitoring model in point–line mode,
this study inverted the desertification datasets of 2013, 2018, and 2023 (Figure 9). The area
and proportion of different degrees of desertification in 2013–2023 are shown in Table 4.
In 2013, the area of extreme desertification of 1598.22 km2 was the largest, accounting for
32.13% of the land area and mainly distributed in Haizitan Town, Huanghuatan Town,
Xijing Township, and Minquan Township. The area of micro-desertification of 416.01 km2

was the smallest, accounting for 8.36%, and was mainly distributed in Yongfengtan Town,
Dajing Town, Zhitan Town, Shibalipu Township, Heisongyi Town, and Peijiaying Town. In
2018, the area of severe desertification of 1350.54 km2 was the largest, accounting for 27.17%,
which was mainly distributed in Sishui Town, Haizitan Town, Xinbao Township, Minquan
Township, Xijing Township, and Huanghuatan Town. The area of micro-desertification of
430.55 km2 is the smallest, accounting for 8.66% of the land area. The spatial distribution
areas were essentially the same as those in 2013. In 2023, the area of severe desertification
of 1677.74 km2 was the largest, accounting for 33.76%, and mainly distributed in Haizitan
Town, Huanghuatan Town, Peijiaying Town, Hengliang Township, Qiancheng Town, and
Xinbao Township. The area of slight desertification accounted for the smallest proportion,
which was 470.37 km2, accounting for 9.46%, and was mainly distributed in Yongfengtan
Town, Dajing Town, Tumen Town, Sishui Town, Zhitan Town, Heisongyi Town, and
Shibalipu Township. According to the changes in different degrees of desertification
area, compared with 2013, the area of desertification mitigation in Gulang County in
2023 was 103.95 km2 more than the area of desertification intensification. Therefore, on
the whole, Gulang County showed a slight trend of improvement, mainly from extreme
desertification to severe desertification. Wuxiaomei’s research showed that due to global
warming, vegetation restoration and growth were affected, and most areas of Wuwei City
still showed a trend of increasing desertification; meanwhile, the sand control measures
undertaken in Gulang County achieved remarkable results [34]. This is consistent with the
conclusion that the degree of desertification in human-intensive areas is alleviated and the
degree of desertification in human-sparse areas is aggravated.

Table 4. The areas of different degrees of desertification in 2013–2023.

Degree

Year 2013 2018 2023

Area/km2 Proportion/% Area/km2 Proportion/% Area/km2 Proportion/%

Micro Desertification 416.01 8.36 430.55 8.66 470.31 9.46
Slight Desertification 533.39 10.72 796.32 16.02 513.89 10.34

Moderate Desertification 897.25 18.04 1222.15 24.58 1036.94 20.87
Severe Desertification 1528.72 30.74 1350.54 27.17 1677.74 33.76

Extreme Desertification 1598.22 32.13 1172.05 23.57 1270.76 25.57
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3.5. Migration Trajectory of Desertification Gravity Center in Gulang County

The gravity center represents the spatial and temporal characteristics of geographi-
cal elements. In this study, the gravity center represented the unevenness of the change
in desertification degree. As shown in Figure 10, from 2013 to 2023, the average grav-
ity center of desertification was mainly concentrated at the junction of Xijing Township,
Huangyangchuan Town, and Minquan Township. From 2013 to 2018, the average gravity
center of desertification was 6.66 km in the east–south direction. During this period, the
change rate in desertification in the south of Gulang County was greater than that in
the north, and the change rate in desertification in the east was greater than that in the
west. From 2018 to 2023, the average gravity center of desertification moved 7.67 km in
the northeast direction, indicating that during this period of time, the aggravation rate
of desertification in the north of Gulang County was greater than that in the south, and
the aggravation rate of desertification in the east was greater than that in the west. From
2013 to 2023, the average desertification center in Gulang County moved 8.61 km to the
northeast. On the surface, the aggravation rate of desertification in the northeast of Gulang
County was greater than that in the southwest during this decade.
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3.6. Transformation of Desertification Degree in Gulang County

In order to study the transfer of desertification degree, the transfer types of different
degrees of desertification were divided into nine categories, which are stable area, mild
weakening area, moderate weakening area, severe weakening area, extreme weakening
area, mild strengthening area, moderate strengthening area, severe strengthening area, and
extreme strengthening area, as shown in Table 5.

As shown in Figure 11 and Table 6, from 2013 to 2018, the area of the desertification
stable zone of 2298.5 km2 was the largest, accounting for 25.23%. The area of the slightly
weakened zone was the second largest, with 1548.74 km2, accounting for 22.74%. Among
them, the area of extreme desertification transferred to severe desertification of 600.74 km2
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was the largest. As shown in Figure 11 and Table 7, from 2018 to 2023, the area of the deser-
tification stable zone of 2230.82 km2 was the largest, accounting for 27.48%. The slightly
intensified zone of 1445.28 km2 represented the second largest area, accounting for 15.11%.
Among them, the area of moderate desertification transferred to severe desertification of
584.02 km2 was the largest. As shown in Figure 11 and Table 8, from 2013 to 2023, the area
of the desertification stable zone of 2712.48 km2 was the largest, accounting for 27.51%. The
slightly weakened zone of 1032.71 km2 was the second largest area, accounting for 10.59%.
Among them, the area of extreme desertification transferred to severe desertification was
565.35 km2, which represented the largest area.

Table 5. Different degrees of desertification transfer types.

Type of Transfer Strength Strength Transfer Name Examples of Strength Transfer

Remain constant Stable zone Extreme → Extreme

Intensify

Slightly intensified zone Severe → Extreme
Moderately intensified zone Moderate → Extreme

Severely intensified zone Slight → Extreme
Extremely intensified zone Micro → Extreme

Weaken

Slightly weakened zone Extreme → Severe
Moderately weakened zone Extreme → Moderate

Severely weakened zone Extreme → Slight
Extremely weakened zone Extreme → Micro

Table 6. The transfer of different degrees of desertification area in Gulang County from 2013 to
2018 (km2).

2013
2018

Micro Slight Moderate Severe Extreme

Micro 250.68 77.91 38.11 45.78 1.75
Slight 126.09 287.21 73.35 35.08 2.09

Moderate 30.47 324.91 422.08 97.53 13.87
Severe 12.84 75.98 484.47 567.65 371.67

Extreme 5.54 21.86 195.18 600.74 765.13

Table 7. The transfer of different degrees of desertification area in Gulang County from 2018 to
2023 (km2).

2018
2023

Micro Slight Moderate Severe Extreme

Micro 224.04 136.10 45.13 11.88 8.76
Slight 67.88 222.21 377.81 100.26 20.04

Moderate 60.45 31.05 141.70 584.02 419.44
Severe 103.63 56.89 126.39 642.38 418.21

Extreme 10.38 15.97 37.38 408.69 685.88

Table 8. The transfer of different degrees of desertification area in Gulang County from 2013 to
2023 (km2).

2013
2023

Micro Slight Moderate Severe Extreme

Micro 250.45 103.39 36.84 14.73 11.12
Slight 91.44 209.29 183.61 31.60 11.03

Moderate 47.01 119.24 481.82 208.51 38.44
Severe 48.86 50.36 264.52 851.83 303.73

Extreme 31.34 30.46 68.33 565.35 894.59
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4. Discussion
4.1. The Superiority of Monitoring Index Method Based on the KNDVI-Feature Space Model

The image classification method had certain advantages in defining the scope of
desertification, but it was not able to obtain internal spatial variation information. The com-
prehensive index method and multiple regression analysis methods were able to consider
the influence of multiple factors on the desertification process but could not consider the
interaction between factors and the nonlinear characteristics of their impact on the deserti-
fication process [35]. Image classification can only simply represent the different degrees
of desertification of the land. The feature space can accurately obtain the desertification
index while reflecting the degree of desertification. Combined with the desertification
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index in different periods, it can more clearly reflect the desertification trends in a certain
area, which is more conducive to analysis and prediction. The feature space method could
fully consider the complex impacts of the interaction between different biotic and abiotic
factors on the process of desertification. In addition, the feature space model could cover
multi-dimensional information about the evolutionary process of desertification, such as
soil, vegetation, and climate, and could evaluate the development trend and influencing
factors of desertification more comprehensively [36]. Based on the feature space, this study
introduced the KNDVI as the desertification characterization parameter to construct a
desertification remote-sensing monitoring index and achieved accurate results [37]. This is
because the KNDVI could reduce the influences of the atmosphere and soil on the vegeta-
tion index to a certain extent by improving the algorithm so that it could more accurately
reflect the vegetation situation. In areas with dense vegetation or biologically rich areas,
the NDVI had a certain saturation effect, which made it impossible to accurately display
vegetation coverage, and the KNDVI mitigated this saturation issue [38]. In addition, the
KNDVI had better compatibility with other vegetation indices and could be applied in
combination with other indices to improve the accuracy of monitoring. By evaluating the
accuracy of the constructed feature space model, the monitoring accuracy of the KNDVI
model was higher than that of the NDVI and MSAVI models, and its applicability to
the remote-sensing monitoring of desertification was better than that of the NDVI and
MSAVI [39]. However, the KNDVI has a low correlation with the SIF value of vegetation
in areas with low vegetation coverage. As a relatively new vegetation parameter, the
research on the KNDVI is currently insufficient and comprehensive, and the universality
and reliability of the index application need to be further studied.

4.2. Cause Analysis of Temporal and Spatial Evolution of Desertification in Gulang County from
2013 to 2023

From 2013 to 2023, desertification in Gulang County showed an overall improving
trend. The micro- and slight-desertification areas in Gulang County were mainly dis-
tributed in Yongfengtan Town, Tumen Town, Sishui Town, Gulang Town, Dajing Town,
the west of Zhitan Town, and the north of Peijiaying Town. These areas are those with a
high population density in Gulang County. Therefore, human activities can be identified as
principally protecting the environment and preventing and controlling sand [2]. On the
whole, the stable zone of desertification had the largest area, mainly distributed in Haizitan
Town, Yongfengtan Town, Dajing Town, Peijiaying Town, and Zhitan Town. The slight
desertification zone was the second largest area, which was mainly degraded from extreme
desertification to severe desertification and was distributed in the central and southern
parts of Haizitan Town. Human activities have contradictory effects on the evolution of
desertification. Unreasonable economic activities, such as overgrazing, deforestation, blind
reclamation, and other acts that destroy the vegetation, as well as urban and rural construc-
tion and the irrational use of water resources due to the continuous growth in population,
contribute to the degradation of forest land and grassland, the lack of water resources,
and the aggravation of land desertification. However, nowadays, under the regulation
and supervision of laws and regulations, humans have strengthened their awareness of
the need to protect the environment, carrying out a series of activities such as returning
farmland to forests, closing sand for afforestation, and strengthening soil and water conser-
vation. These activities have achieved remarkable results in land desertification control and
alleviated land desertification. Intensification has improved the desertification of Haizitan
Town in the Tengger Desert in the northern part of Gulang County. This is mainly due
to the inaccessibility of warm and humid ocean currents in the region, the hot and dry
summer, strong solar radiation, and scarce precipitation. With global warming, more fre-
quent sandstorms and other severe weather are intensifying land desertification [40]. The
central area of Gulang County is flat, making it difficult for surface water to converge. This
aggravates wind erosion and promotes the intensification of desertification. In addition,
the soil in Gulang County is mainly sandy, with strong water permeability and poor water
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retention, which also aggravates desertification. Therefore, in areas with fewer human
activities, such as Gulang County, it is imperative to strengthen desertification control,
develop green ecological technology, expand the area of afforestation, strengthen publicity
and education about desertification control, regularly monitor the desertification situation
in Gulang County, and carry out targeted prevention and control [41]. Therefore, the effect
of desertification control in the northern part of Gulang County is obvious, and the central
and southern regions now need to strengthen desertification control.

5. Conclusions

Based on the principle of feature space, seven types of surface feature parameters were
selected, and the KNDVI was introduced. Based on the spatial distribution differentiation
law of different degrees of desertification, the desertification remote-sensing monitoring
model was constructed, and an optimal model was selected on the basis of accuracy
verification. The spatial and temporal evolution patterns and causes of desertification in
Gulang County from 2013 to 2023 were analyzed from the aspects of area distribution, area
transfer intensity, and center of gravity transfer through the introduction of a geographical
detector and other methods. The specific conclusions are as follows:

(1) Compared with the NDVI and MSAVI, because the KNDVI has a higher sensitivity to
vegetation, it solves the problem of NDVI saturation and can more accurately capture
vegetation characteristics and reflect vegetation status. Therefore, the KNDVI has
better applicability to desertification research.

(2) The point–line pattern KNDVI-Albedo remote-sensing index model had the high-
est monitoring accuracy, reaching 94.93%, while the point–line pattern NDVI-TGSI
remote-sensing monitoring index had the lowest accuracy of 54.38%.

(3) From 2013 to 2023, the overall desertification situation in Gulang County showed an
improved trend with a pattern of “firstly aggravation and then alleviation.” The grav-
ity center of desertification in Gulang County first shifted to the southeast and then to
the northeast, indicating that the intensification of desertification in the northeast was
higher than that in the southwest during this period.

From 2013 to 2023, the area of stable desertification in Gulang County was the largest,
followed by the slightly weakened zone, with extreme desertification to severe desertifi-
cation representing the largest transition area. According to the research conclusions, the
experience of sand prevention and control in the areas with improved desertification is
understood, and the desertification land in the northern part of Gulang County and the
sparsely populated areas in the central part are scientifically controlled. According to the
actual situation in each region and local conditions, different means of sand control have
been adopted to carry out targeted governance.
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