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Abstract: Accurate disease severity assessment is critical for plant breeders, as it directly impacts
crop yield. While hyperspectral remote sensing has shown promise for disease severity assessment
in breeding experiments, most studies have focused on either leaf or canopy levels, neglecting the
valuable insights gained from a combined approach. Moreover, many studies have centered on
experiments involving a single disease and a few genotypes. However, this approach needs to
accurately represent the challenges encountered in field conditions, where multiple diseases could
occur simultaneously. To address these gaps, our current study analyses a combination of diseases,
yellow rust, brown rust, and yellow leaf spots, collectively evaluated as the percentage of the diseased
leaf area relative to the total leaf area (DA) at both leaf and canopy levels, using hyperspectral data
from an ASD field spectrometer. We quantitatively estimate overall disease severity across fifty-two
winter durum wheat genotypes categorized into early (medium milk) and late (late milk) groups
based on the phenophase. Chlorophyll content (CC) within each group is studied concerning infection
response, and a correlation analysis is conducted for each group with nine vegetation indices (VI)
known for their sensitivity to rust and leaf spot infection in wheat. Subsequent parametric (linear
and polynomial) and nonparametric (partial least squares and kernel ridge) regression analyses were
performed using all available spectral bands. We found a significant reduction in Leaf CC (>30%) in
the late group and Canopy CC (<10%) for both groups. YROI and LRDSI_1 are the VIs that exhibited
notable and strong negative correlations with Leaf CC in the late group, with a Pearson coefficient of
−0.73 and −0.72, respectively. Interestingly, spectral signatures between the early and late disease
groups at both leaf and canopy levels exhibit opposite trends. The regression analysis showed we
could retrieve leaf CC only for the late group, with R2 of 0.63 and 0.42 for the cross-validation and
test datasets, respectively. Canopy CC retrieval required separate models for each group: the late
group achieved R2 of 0.61 and 0.37 (cross-validation and test), while the early group achieved R2

of 0.48 and 0.50. Similar trends were observed for canopy DA, with separate models for early and
late groups achieving comparable R2 values of 0.53 and 0.51 (cross-validation) and 0.35 and 0.36
(test), respectively. All of our models had medium accuracy and tended to overfit. In this study,
we analyzed the spectral response mechanism associated with durum wheat diseases, offering a
novel crop disease severity assessment approach. Additionally, our findings serve as a foundation
for detecting resistant wheat varieties, which is the most economical and environmentally friendly
management strategy for wheat leaf diseases on a large scale in the future.

Keywords: disease severity; hyperspectral data; leaf spectroscopy; field spectroscopy; rust; winter
durum wheat
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1. Introduction

Winter durum wheat (Triticum turgidum ssp. durum (Desf.) Husnot., 2n = 4x = 28;
AABB genome) is a vital crop in agricultural landscapes, providing a robust foundation for
global food security. Despite constituting less than 10% of global wheat production [1], its
economic significance is notable due to its distinctive traits and role in producing essential
food items like pasta and other food products (macaroni, couscous, bulgur, and bread).

A critical issue impacting winter durum wheat production is the appearance of
pathogens that cause diseases, leading to a decrease in the yield and quality of the grain [2,3].
Yellow leaf spot or tan spot is an economically significant disease occurring in most wheat-
growing regions worldwide that causes considerable damage and losses in yield and crop
quality. The negative effect on wheat plants is mainly due to reduced photosynthetic area
and accelerated leaf senescence [4]. Recently, leaf spots on wheat have been observed
more and more often in Bulgaria. Their increased economic importance is due to: the
introduction of high-yielding, low-stemmed, sensitive wheat varieties; changes in crop cul-
tivation technology; the increased use of nitrogen fertilizers; and the lag in the use of genetic
resistance compared to increased resistance to other foliar pathogens [5–9]. Moreover, new
pathogenic strains have emerged with the introduction of foreign varieties. Regrettably, the
indigenous Bulgarian varieties lack resistance to these newly identified strains, leading to a
noticeable escalation in pathogen prevalence since 2005–2006 [10].

Pathogens such as brown rust, yellow rust, and leaf spots on durum wheat, Figure 1,
manifest annually to varying degrees [11].
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Figure 1. Examples of flag leaf diseases observed in the studied wheat genotypes and brief descrip-
tions of each disease. (a) Yellow rust. (b) Brown rust. (c) Leaf spots [12,13].

In the breeding process, alongside all qualitative and quantitative indicators crucial
for genotype selection, the manifestation of resistance to pathogens is of great importance.
Timely and accurate disease severity detection becomes paramount in effectively managing
these threats. Providing such information to breeders, whether brown rust, yellow rust,
or leaf spots have appeared, allows them to react promptly for timely observation and
marking of genotypes in the field. These three pathogens manifest at different times during
the vegetation period depending on meteorological conditions, from late autumn to early
spring, continuing until harvest. Traditional disease detection methods, such as visual
inspection by plant breeders, often involve laborious field surveys and extensive laboratory
analyses. These methods, while established, are time-consuming and may not offer the
immediacy required for timely intervention. In recent years, advancements in spectroscopic
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technologies have opened new avenues for rapid and precise crop health assessment. Lever-
aging the power of field and laboratory spectroscopy presents a promising opportunity to
advance disease severity detection and monitoring in winter durum wheat.

Spectroscopy enables a fast, affordable, and powerful approach for disease detec-
tion and severity estimation, both in controlled laboratory settings [14–17] and directly
in the field wheat infected with rust and leaf spots experiences a significant decrease
in crop photosynthesis, transpiration, stomatal conductance, leaf area index, changes in
leaf moisture and pigment levels, and a reduction of dry matter accumulation [18–20].
These physiological and biochemical alterations, including reduced chlorophyll content
and disrupted cell structure, lead to distinctive changes in the spectral reflectance of the
infected leaves, making them detectable through spectroradiometry and remote sensing
techniques [21–23]. Consequently, wheat canopies under disease stress exhibit altered
spectral properties related to pigmentation, moisture, and biomass. These changes are re-
flected in specific spectral reflectance bands and derived vegetation indices (VIs) associated
with crop growth, such as plant growth status, vegetation coverage, and pigment con-
tent [19,24,25]. Based on these established associations, hyperspectral data can effectively
be utilized for wheat rust detection and monitoring.

Numerous studies have focused on disease severity assessment using spectral data,
primarily through regression analysis at either leaf [14,26] or canopy level [19,21,27]. Alter-
natively, some studies initially aimed at disease detection by distinguishing healthy from
diseased leaves before proceeding to disease severity assessment at the leaf level [28–30].
Other studies solely considered disease detection, employing classification techniques at
leaf [23,26,31,32] and canopy levels [33–36].

Studying winter durum wheat disease severity detection with both canopy and leaf
spectroscopy in phenotyping experiments offers several advantages over studies focusing
solely on one approach. Firstly, combining canopy and leaf spectroscopy provides a
more comprehensive understanding of disease dynamics across different spatial scales.
Assessing disease severity at the canopy level provides insights into the overall health
and productivity of the crop within the field. On the other hand, leaf spectroscopy allows
for finer-scale assessments of disease symptoms at the individual leaf level, providing
detailed information on disease progression and variation within the crop population.
While some studies have explored disease severity detection using both canopy and leaf
spectroscopy, they remain relatively scarce [18,37]. These studies have demonstrated
promising outcomes for single-disease detection at both leaf and canopy levels. However,
crops in field conditions frequently encounter multiple diseases concurrently. This calls for
additional investigation to ascertain the efficacy of hyperspectral reflectance data in such
complex scenarios. Additionally, to our knowledge, our study is the first conducted under
field natural conditions with a large number (fifty-two) of genotypes exhibiting significant
variation in their response to the pathogens.

Regressions employing parametric functions or nonparametric algorithms offer viable
avenues for assessing disease severity. These algorithms use independent variables such
as VIs [27,35], spectral features like the maximum of first derivatives within specific spec-
trum regions [29], wavelets [38,39], texture information [28,40], or a combination thereof.
However, it is worth noting that machine learning algorithms coupled with dimensionality
reduction methods could directly handle the hyperspectral data [41–43].

With this study, we aimed to automate the assessment of yellow rust, brown rust, and
leaf spot diseases in a comprehensive plant breeding field trial under natural conditions.
High-throughput phenotyping data obtained from canopy and leaf spectroscopy was inte-
grated with parametric regression and advanced machine learning regression techniques
to achieve this.
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2. Materials and Methods

In this study, we utilize both in situ and optical spectral measurements. To evaluate
the effectiveness of spectral measurements in estimating disease severity at both leaf and
canopy levels, we follow the schematic workflow depicted in Figure 2.
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Figure 2. Workflow for disease severity assessment in the study. The process involved data acquisition
and pre-processing, followed by data analysis and presentation of results. Various scenarios were
explored based on the input data and the type of regression, whether parametric or nonparametric.
An additional analysis was conducted to investigate the influence of disease and phenophase on
chlorophyll content (CC). These steps were carried out independently at both leaf and canopy levels.

2.1. Investigated Wheat Diseases and Study Area

We conducted this study during the 2020/2021 growing season within the breed-
ing fields of the Field Crops Institute, Chirpan (FCI-Chirpan), South Bulgaria (Figure 3).
Fifty-two winter durum wheat genotypes (Triticum turgidum L. var. durum) were cultivated
in four replicates on flat terrain, with an altitude ranging from 208 to 209 m above sea level.
The soil type is identified as Pelic Vertisol, per the World Reference Base for Soil Resources
classification system [44]. Genotypes included in the field trial are local varieties, breeding
lines, and foreign-origin varieties with different levels of observed pathogen manifestation
and varying degrees of resistance to yellow and brown rust and leaf spots.

Crucial weather conditions for the appearance and development of fungal pathogens,
such as Puccinia recondita f. sp. Tritici and Puccinia striiformis f. sp. Tritici, which cause
brown and yellow rust on cereals, as well as the pathogens associated with the leaf staining
complex, occur during the period from April to June in the respective year. In 2021, the
air temperature t (◦C), the amount of precipitation (mm), and the relative moisture of
the air (%) in April fully provided optimal conditions according to the epidemiology of
fungal pathogens. In May, there was a significantly smaller amount of precipitation. The
relatively good low humidity in the last tenth of the month—about 75%—in parallel with an
optimal temperature of about 23 ◦C, fully facilitates and creates the necessary conditions for
developing fungal pathogens causing rust and leaf stains on cereals. Weather conditions in
June were favorable for developing fungal diseases on wheat; air temperature, precipitation,
and relative humidity remain the optimum for developing Puccinia recondita f. sp. tritic,
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Pucinia striiformis f. sp. Tritici and tan spots. The three diseases were often observed as
mixed infections in the studied genotypes, with yellow and brown rust predominating.
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2.2. Input Data

In our study, we generated a minimal amount of digital data, which are not typically
collected and stored by breeders. Specifically, at the canopy level, it amounted to 6.7 KB/m2,
while at the leaf level, it was 3.4 KB per leaf.

2.2.1. Phenological Observations

During the field measurements, the phenological growth stage for each genotype was
recorded with the BBCH scale [45] during the field measurements. All genotypes were in
BBCH75 (medium milk) or BBCH77 (late milk). The genotypes in BBCH75 will hereafter be
referred to as the “early group” and those at BBCH 77 as the “late group”.

2.2.2. Laboratory Measurements, Leaf Level

At midday on 16 June 2021, several plants per genotype were gathered from the first
replicate and transported to the laboratory. The measurements were conducted within a
few hours of plant collection on four randomly selected flag leaves.

Each Leaf chlorophyll content (Leaf CC) measurement was taken from the central
region of the leaf, excluding areas visibly affected by disease. The measurement was
conducted using the OPTI-SCIENCES CCM 300 chlorophyll meter equipped with a leaf
clip, and the values are expressed in mg/m2. The measured area is a 3 mm diameter
circle [46]. The CCM 300 was calibrated with the provided calibration slide and leaf clip
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after each power cycle. The measurements obtained from the CCM 300 were calibrated
through comparison with laboratory-based determinations of chlorophyll [47].

The leaf spectral reflectance measurements were carried out using the ASD FieldSpec
4 HiRes Field Spectrometer (ASD HH FS4 HiRes) with a contact probe placed at the ex-
act locations where OPTISCIENCES CCM 300 measurements were conducted. The ASD
FieldSpec 4 HiRes is a high-resolution spectroradiometer designed for precise spectral data
measurements across a wide range of remote sensing applications. It is manufactured by
Malvern Panalytical, Cambridge, UK [48]. The instrument offers superior spectral perfor-
mance with a spectral range that spans from 350 nm to 2500 nm. The spectral resolution is 3
nm in the Visible Near-Infrared (VNIR) range and 8 nm in the Short-Wave Infrared (SWIR)
range. The leaf chip contact probe of the ASD Field Spectrometer includes a white reference
and a light source transmitted through fiber optics. The measured spot size is 10 mm [48].
Each reading represents an average of 30 spectral reflectance measurements obtained using
the instrument to minimize individual measurement errors. This contact method offers
advantages such as eliminating atmospheric effects and precisely targeting measurements
to the area of interest. This enables a meaningful comparison of results between the two
contact methods performed with the CCM 300 and ASD Field Spectrometer.

To quantify leaf disease severity, the percentage of the diseased leaf area relative
to the total leaf area (DA) was recorded through visual assessment for each leaf. Given
the subjective nature of this method, the assessment was conducted by a single crop
breeder to mitigate bias stemming from individual differences. Additionally, the leaves
were categorized into five disease severity levels, denoted as B, as follows: DA in 0–20%
corresponds to B1, DA in 21–40% corresponds to B2, DA in 41–60% corresponds to B3, DA
in 61–80% corresponds to B4, and DA in 81–100% corresponds to B5. At the leaf level, the
maximum recorded B value was 3, while the minimum was 1. Examples of leaves with the
estimated B are shown in Figure 4, right side.
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Figure 4. Canopy and leaf images of four winter durum wheat genotypes at two growth stages and
different disease severity levels (B). Within each genotype, leaves are numbered sequentially from
top to bottom at the leaf level.

2.2.3. Field Measurements, Canopy Level

The canopy-level measurements and observations were conducted in the field between
16 June and 17 June 2021, from 12 to 3 PM, across the two or four replications.

The canopy chlorophyll content (Canopy CC) was estimated by measuring four ran-
domly selected flag leaves within a 1 m2 central area of each genotype plot. Measurements
were obtained from only two repetitions (first and second). The measurement procedure
mirrored that of the Leaf CC. The Canopy CC value for each plot represents the averaged
values obtained from the measurements of the four flag leaves.

The canopy spectral reflectance measurements were carried out using the same ASD
Field Spectrometer as the leaf spectral measurements. Similarly to the leaf spectral mea-
surements, each reading represents an average of 30 spectral reflectance measurements
obtained by the instrument. Unlike leaf measurements, the canopy spectral readings were
obtained at the center of the four repetitions for the genotype, covering an area of 1 m2

within each plot. The spectra were collected at approximately 1 m above the canopy by po-
sitioning the pistol grip with bare fiber optics downward, simulating nadir measurements,
when the weather was sunny and cloudless between 10:00 and 15:00. Calibration was
conducted before each repetition utilizing a Spectralon calibration plate [49]. Consequently,
all genotypes within a repetition were assessed using identical calibration values.

For the canopy disease severity estimation, the disease area (DA) at a plot level was
calculated as the averaged DA of 10 flag leaves for each plot. Subsequently, disease severity
level (B) was assigned using the same method employed for leaf level. The same breeder
performed both leaf and canopy severity assessments. At the canopy level, the maximum
recorded B value was 4, while the minimum was 1. Examples of canopy with the estimated
DA at different levels are shown in Figure 4, left side.

2.3. Spectra Preprocessing

Bias correction, termed Splice Correction [50,51], was conducted for both the VNIR and
SWIR2 regions. This correction involved adjusting these regions to align with the SWIR1 at
the splice point. Additionally, all acquired spectra were rectified for any spectroradiometer
sensitivity drift observed in the spectral signatures at 1000 nm, following the method



Remote Sens. 2024, 16, 1762 8 of 26

outlined by Beal and Eamon (1996) [52]. These preprocessing steps were executed utilizing
the ASD software ViewSpec Pro v6.2.0.

We focused our research on both leaf and canopy levels. While measurements at the
leaf level are less burdened by water absorption bands, at the canopy level, they are, and
the signal is much noisier. Moreover, while the SWIR range also provides valuable data,
the VNIR range offers the most pertinent wavelengths for our research objectives [24].
Consequently, this work used 400 to 1000 nm electromagnetic regions across both leaf and
canopy levels. The averaged spectra are shown in Figure 5, and the original spectra used
for the regression analysis are shown in Figure A5.
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ples, (b) the leaf late group with 68 samples, (c) the canopy early group with 129 samples, and (d) the
canopy late group with 65 samples.

Additionally, a subset of the canopy initially collected spectra were excluded from the
analysis (eleven samples from the early group and three samples from the late group) due
to elevated levels of noise and measurement anomalies.

2.4. Effect of Disease Severity and Phenophase on Chlorophyll Content

We analyzed the CC for the three groups (all data, early, and late groups) based on the
disease severity for normality and equal variance assumption. The normality was tested
with the Shapiro–Wilk test [53] and the equal variance with Leneve’s test [54]. Due to
the non-normal distribution of our data, for each group, we utilized the nonparametric
Kruskal–Wallis test [55] to examine whether a statistically significant difference exists in
the median chlorophyll content (CC) across distinct disease severity levels. This analysis
aimed to provide further insights into the relationship between senescence impact, chloro-
phyll content, and disease severity. The Kruskal–Wallis test does not require assumptions
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about normality and homoscedasticity, making it a robust option for comparing multiple
independent samples [56]. With the Kruskal–Wallis method, we employed the commonly
used post hoc procedure called Conover-Iman [57]. The statistical analysis was performed
in Python, using the SciPy and scikit-posthocs libraries.

2.5. Correlation and Regression Analysis
2.5.1. Correlation Analysis

Correlation analysis was performed for all the data and each group using VI, selected
from the literature (Table 1). These indices exhibit sensitivity to rust and leaf spot infection
in wheat. The correlation analysis for both parameters DA and CC was evaluated using the
Pearson correlation coefficient. Depending on the correlation analysis, a further parametric
regression analysis was carried out.

Table 1. List of spectral vegetation indices (VI) used in the study to detect and monitor rust and leaf
spots on winter wheat crops.

Name Formula The Author Who First
Introduced the SVI

Selected Studies Utilizing the
Index for Wheat Disease at the

Leaf and Canopy Level

Photochemical Reflectance Index
(PRI)

PRI =
(R_570 − R_531)/(R_570 + R_531) [58] Canopy: [18,19,25,27,35,36,58]

Leaf: [18,23,32]
Structure insensitive pigment

index (SIPI)
SIPI =

(R_800 − R_445)/(R_800 − R_680) [59] Canopy: [18,35]
Leaf: [18,23,32,59]

Yellow rust index (YRI)
YRI =

(R_730 − R_419)/(R_730 + R_419) +
0.5 × R_736

[32] Canopy: [32,35]

Anthocyanin Reflectance
Index (ARI) ARI = 1/R_550 − 1/R_700 [60] Canopy: [18,22,25,35,36]

Leaf: [18,23,32,60]
Carotenoid Reflectance Index 550

(CRI550) CRI550 = 1/R_510 − 1/R_550 [61] Leaf: [24,61]

Leaf rust disease severity index 1
(LRDSI_1) LRDS_1 = 6.9 × R_605/R_455 − 1.2 [31] Canopy: [35]

Leaf: [31,62]
Leaf Rust Disease Severity Index 2

(LRDSI_2) LRDS_2 = 4.2 × R_695/R_455 − 0.38 [31] Leaf: [31,62]

Yellow Rust Optimal Index
(YROI) YROI = (R_611 − R_452)/R_550 [18] Leaf and Canopy: [18]

Red-Green Pigment Index (RGI) RGI = R_690/R_550 [63] Canopy: [19]
Leaf: [63]

2.5.2. Training and Validation Strategies for the Regression Analysis

We employed cross-validation to evaluate the performance and generalizability of
our predictive model. In addition, we set aside a separate test set, distinct from the cross-
validation dataset, for final evaluation. The data were partitioned into a 2/3 ratio for the
cross-validation dataset and a 1/3 ratio for the test dataset. This approach allows us to
rigorously assess the model’s performance and ensure its effectiveness on unseen data.

At the leaf level, the dataset comprises spectral reflectance, DA, CC, and growth stage
values, totaling 208 samples, 140 of which are in the early group and 68 in the late group.
However, at the canopy level, there are two datasets. The first includes spectral reflectance,
DA, and growth stage values, totaling 194 samples, 129 of which are in the early group
and 65 in the late group. Additionally, a second canopy level dataset includes spectral
reflectance, CC, and growth stage values, with 90 samples, 59 of which are in the early
group and 31 in the late group.

Due to variations in sample sizes across different datasets, we implemented k-fold
cross-validation, ensuring that each fold contains a comparable number of samples, typi-
cally between 12 and 15. Consequently, the distinct elements are outlined in Table 2.
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Table 2. Number of samples per dataset and number of folds in k-fold cross-validation.

Total Numbers of Samples/Numbers of Samples in
Cross-Validation/Number of Samples in Test/K-Fold

BBCH75 & BBCH77 BBCH75 BBCH77

Canopy level DA 194/129/65/10-fold 129/86/43/6-fold 65/43/22/3-fold
Canopy level CC 96/64/32/5-fold 65/43/22/3-fold 31/21/10/2-fold

Leaf Level DA & CC 208/138/70/10-fold 140/93/47/7-fold 68/46/22/3-fold

2.5.3. Regression Analysis

To explore whether any of the selected indices could accurately capture disease severity
in our study, we conducted parametric regressions using the formulas listed in Table 1,
the 16 spectral bands (SS) identified in the Vis in Table 1, along with the linear (1) and
polynomic (2) functions. This analysis was referred to as scenario 1 in Figure 2.

f (x) = a·x + b (1)

f (x) = a·x2 + b·x + c (2)

Furthermore, we chose two nonparametric algorithms, partial least squares regression
(PLSR) [64] and kernel ridge regression (KRR) [65], for our regression analysis. PLSR
and KRR offer complementary approaches to regression analysis, providing robust solu-
tions for handling complex datasets and improving the accuracy and generalizability of
regression models.

PLSR projects predictor and response variables into latent components that explain
maximum covariance. This approach effectively addresses high dimensionality and multi-
collinearity in the data. By focusing on informative latent variables, PLSR helps avoid over-
fitting and captures the essential relationships between predictors and the response variable.

On the other hand, KRR utilizes kernel functions to map the data into higher-
dimensional feature spaces, capturing complex, nonlinear relationships between predic-
tors and the response variable. By incorporating a penalty term, KRR controls model
complexity, mitigating overfitting and enhancing generalizability, particularly in noisy or
high-dimensional data situations.

Moreover, with KRR, we employed the Band Analysis Tool (BAT) [43] to identify the
most responsive bands for a given variable while also determining the minimum number
of bands necessary to maintain an acceptable level of accuracy. A backward band reduction
approach was utilized through BAT, whereby the modeling commenced with all bands.
Subsequently, the least influential band was eliminated after each iteration, followed by
recalibration of the model. Accuracy was assessed at each stage and with each subset of
bands, ultimately identifying the most effective bands.

Two additional scenarios were conducted, each using the nonparametric algorithms
and different independent feature sets (Figure 2). Scenario 2 used all 601 spectral bands
from 400–1000 nm (S), and Scenario 3 used the VIs identified in Table 1.

All scenarios were applied at leaf and canopy levels, separately for both phenological
groups, using all available data.

The regression modeling was carried out with the ARTMO toolbox [66,67] (https:
//artmotoolbox.com/, accessed on 29 February 2024), version 3.31.

3. Results

This Section, organized into subsections, provides a brief overview of the experi-
mental results, aligning with the corresponding subsections outlined in the Materials and
Methods Section.

https://artmotoolbox.com/
https://artmotoolbox.com/
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3.1. Effect of Disease Severity and Phenophase on Chlorophyll Content

To study the effect of disease severity and phenophase on chlorophyll content mea-
surement, the studied genotypes were classified based on their BBCH, as shown in Table 3.
The reduction in Leaf CC from severity disease level 3–4 over level 1 was under 1% for
the genotypes in the early group and almost 31% for the genotypes in the late group. The
reduction in Canopy CC from severity disease level 3–4 over level 1 was under 10% for
all genotypes.

Table 3. Results of the classification of genotypes based on BBCH and disease, represented by the
parameter B, in relation to CC at leaf and canopy levels. Reduction in CC between different disease
severity levels per group and per leaf and canopy level.

Group
Early Group
Leaf Level

1st Repetition

Late Group
Leaf Level

1st Repetition

Samples at
Leaf Level

Early Group
Canopy Level

1st and 2nd
Repetitions

Late Group
Canopy Level

1st and 2nd
Repetitions

Samples at
Canopy Level

BBCH 75 77 75 77
Number of

samples 140 68 208 70 34 104

B1 92 40 132 19 8 27
B2 44 24 68 45 18 63

B3 & B4 4 4 8 6 8 14
Average CC

(range)
441.36

(243–528)
423.49

(167–528)
523.79

(428–623.5)
501.79

(412.5–601)
Average DA

(range) 19 (5–55) 22 (5–80) 27 (15–50) 33 (15–65)

CC-1 1 444.39
(344–528) 434.7 (319–528) 526.64

(460–577.25)
489.47

(430–562.75)

CC-2 2 434.93
(243–509)

423.54
(275–515)

528.6
(429.75–623.5)

515.29
(412.5–601)

CC-3_4 3 442.5 (401–490) 302.0 (167–433) 478.71
(428.25–567.5)

468.4
(434.5–577.5)

% Reduction in
CC-3_4 over CC-1 0.43 30.53 9.10 4.31

% Reduction in
CC-3_4 over CC-2 −1.74 28.70 9.44 9.10

1 CC-1: Average and range of CC if B is 1. 2 CC-2: Average and range of CC if B is 2. 3 CC-3_4: Average and range
of CC if B is 3 AND B is 4.

The data were visualized and analyzed for normality and equal variance. The results
are depicted in Figures A1–A4.

We applied the Kruskal–Wallis test to examine whether a statistically significant differ-
ence exists in the median chlorophyll content (CC) across distinct disease severity levels.
When the null hypothesis (H0) was rejected, we conducted a Conover-Iman post hoc
procedure, Table 4. Our findings indicate that at the leaf level, there exists a statistically sig-
nificant difference in the median chlorophyll content (CC) among distinct disease severity
levels only for genotypes in the late group. Specifically, the difference is observed between
genotypes in categories B1 and B2 and between B1 and B3_4. However, considering all
genotypes, a statistically significant difference in the median chlorophyll content (CC)
among distinct disease severity levels is evident at the canopy level. Notably, this difference
is observed between categories B2 and B3_4.
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Table 4. Kruskal–Wallis test and Conover-Inman post hoc results for statistically significant differences
in the median chlorophyll content (CC) across distinct disease severity levels.

Leaf Level Canopy Level

All Data Early Group Late Group All Data Early Group Late Group

Kruskal–Wallis
Statistic 4.208 0.929 0.066 8.167 5.426 2.165

Kruskal–Wallis
p-Value 0.122 0.629 0.049 0.017 0.066 0.339

Conover-Iman p-value between B1/B2 0.824 0.419
Conover-Iman p-value between B1/B3_4 0.043 0.081
Conover-Iman p-value between B2/B3_4 0.045 0.012

3.2. Correlation and Regression Analysis

The results from the correlation analysis at the canopy and leaf level are presented in
Table 5.

Table 5. Correlation results, expressed in Pearson correlation coefficient (r), for Chlorophyll content
(CC) and disease area (DA) and the VI used to detect and monitor rust and leaf spots on winter wheat
crops. In bold are the significant correlations with a coefficient higher than 0.7.

Parameter SVI
Leaf Level, 1st Repetition Canopy Level, 1st and 2nd Repetitions

All Data Early Group Late Group All Data Early Group Late Group

CC

PRI −0.45 * −0.26 * −0.59 * −0.26 * ns ns
SIPI −0.33 * −0.19 * −0.57 * 0.2 * 0.28 * ns
YRI −0.27 * ns −0.49 * −0.23 * ns ns
ARI ns ns ns 0.42 * 0.42 * 0.45 *
CRI1 ns ns ns ns −0.28 * ns

LRDSI_1 −0.54 * −0.34 * −0.72 * −0.21 * ns ns
LRDSI_2 −0.49 * −0.29 * −0.68 * 0.2 * 0.26 * 0.38 *

YROI −0.52 * −0.31 * −0.73 * ns 0.24 * 0.4 *
RGI ns ns ns 0.43 * 0.51 * 0.5 *

DA

PRI 0.46 * 0.33 * 0.51 * ns ns ns
SIPI 0.33 * 0.25 * 0.49 * ns ns ns
YRI ns ns ns ns ns ns
ARI 0.26 * 0.26 * 0.31 * ns ns ns
CRI1 ns ns ns ns ns ns

LRDSI_1 0.39 * 0.30 * 0.48 * ns ns ns
LRDSI_2 0.38 * 0.31 * 0.46 * ns ns ns

YROI 0.39 * 0.29 * 0.5 * ns ns ns
RGI 0.19 * 0.17 * 0.24 ns ns ns

*: significant at p-value ≤ 0.05; ns: Non significant.

Table 6 presents a parametric regression analysis with the best correlating VIs from
Table 5. Table 7 displays the results from scenario 1, which involves nonparametric models
using the 16 selected spectral bands. In Table 8, the results from scenario 2 are presented,
wherein nonparametric models are utilized with all available 601 spectral bands (ranging
from 400 nm to 1000 nm). As for scenario 3, involving nonparametric models with the nine
selected VIs, no satisfactory retrieval results were achieved; hence, no results are displayed.
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Table 6. Parametric regression results: predicting CC and DA with selected VIs. Only the highest
correlated VIs from the correlation analysis are presented.

Level/
Phenophase

Model/
Bands

Parameter
Cross-Validation Test

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

Leaf/
Late group

YROI *, Linear/611,
452, 550 Leaf CC 0.40 55.83 15.46 13.36 0.35 0.44 37.18 23.53 8.54 0.29

Leaf/
Late group

LRDSI_1 *,
Polynomial/605, 455 Leaf CC 0.36 60.78 16.84 14.55 0.23 0.45 36.22 22.92 8.32 0.33

*: The VI is calculated with its original bands.

Table 7. Parametric regression results; predicting of CC and DA with scenario 1. Only the best-
performing models, those with cross-validation or test R2 equal to or higher than 0.5, are listed.

Level/
Phenophase

Model/
Bands

Parameter

Cross-Validation Test

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

Leaf/
Late group

SIPI, Linear
/800, 690, 700 Leaf CC 0.63 42.20 11.63 10.10 0.63 0.42 38.32 24.25 8.80 0.25

Canopy/Late
group

SIPI, Polynomial/445,
550, 531 Canopy CC 0.61 34.50 18.30 6.84 0.60 0.37 53.27 31.71 10.45 0.25

Canopy/Early
group

SIPI, Polynomial
/570, 445, 455 Canopy CC 0.48 31.59 19.53 6.04 0.48 0.50 42.77 21.90 8.04 0.47

Table 8. Nonparametric regression results: predicting CC and DA with scenario 2. Only the best-
performing models are listed, namely, those with cross-validation or validation R2 equal to or higher
than 0.5.

Phenophase Model/
Number of Bands

Parameter

Cross-Validation Test

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

Leaf/
Late group KRR/6 1 Leaf CC 0.54 48.25 13.37 11.55 0.51 0.33 51.49 32.59 11.83 −0.35

Canopy/Late
group KRR/30 2 Canopy DA 0.51 9.36 18.73 28.86 0.50 0.36 12.47 24.94 34.72 0.36

Canopy/
Early group KRR/28 3 Canopy DA 0.53 7.17 20.48 25.58 0.50 0.35 8.65 24.72 32.78 0.21

1: The band wavelengths are 439, 711, 712, 714, 715, and 975. 2: The band wavelengths are 400–402, 405, 406, 458,
459, 481–488, 606, 702, 703, 711–713, 733–735, 935, 939–942, and 950. 3: The band wavelengths are 400, 401, 403,
405, 434, 630, 705, 708, 712, 724, 729, 730, 735, 736, 759, 760, 762, 763, 765, 773, 777, 778, 863, 878, 943, 946, and 958.

4. Discussion

With this study, we aimed to evaluate the performance of various regression mod-
els and machine learning algorithms to automate the assessment of disease severity in
winter durum wheat. Hyperspectral data collected from field spectroscopy phenotyping
experiments under natural field conditions were utilized at the canopy and leaf levels. We
assessed the severity of rust and leaf spot infestations across 52 test genotypes.

4.1. Effect of Disease Severity and Phenophase on Chlorophyll Content

Our findings revealed that at the leaf level (Tables 3 and 4), there is a statistically
significant difference observed in CC between genotypes in categories B1 and B2, as well
as between B1 and B3_4. These results are consistent with previous studies demonstrating
that wheat leaf rust accelerates leaf and ear senescence [68], significantly affecting leaf
physiological processes and morphology [69,70]. Pathogens such as leaf rust and leaf spot
reduce photosynthetic activity in infected leaves by diminishing green leaf area, thereby
decreasing chlorophyll content [70].

However, at the canopy level (Table 4), a statistically significant difference is evident in
CC when considering all genotypes. Notably, this difference is observed between categories
B2 and B3_4. It is worth noting that while CC and disease severity at the canopy level
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were measured in the flag leaf, rust, and leaf spots typically progress from the lower leaves
toward the flag leaf. Therefore, a variety may exhibit higher mean rust severity, but less on
the flag leaves when measuring chlorophyll contents [71].

4.2. Spectral Reflectance of Wheat Disease at Different Growth Stages

Analyzing the spectral reflectance of both leaf and canopy samples, as presented
in Figure A5, proved challenging due to significant variations in values across different
disease levels. Therefore, we opted to average the spectral reflectance data to discern
underlying trends, as summarized in Figure 5.

At the leaf level and within the early group (Figure 5a), we observed a decrease in VIS
reflectance as their disease level increased, accompanied by a slight rightward shift of the
red-edge and a reduction in NIR reflectance. Up to 550 nm in the VIS region, our findings
align with those of Devadas et al. (2009) [23], except for the red region, where leaves with
higher disease levels exhibit greater reflectance than healthy ones. Furthermore, our NIR
region data pattern corresponds to that reported by Ashourloo et al. (2014) [31]. Conversely,
within the late disease group at the leaf level (Figure 5b), we noted an increase in VIS
reflectance with rising disease levels, a slight leftward shift of the red-edge and an increase
in NIR reflectance. While our VIS and red-edge region data coincide with Ashourloo et al.
(2014) [31], our NIR region data aligns with Devadas (2009) [23].

At the canopy level within the early group (Figure 5c), increasing disease levels led to
increased VIS reflectance, a leftward shift of the red-edge, and an increase in NIR reflectance.
Our observations across the VIS, red-edge, and NIR regions mirror those reported by
Liu et al. (2023) [72]. However, within the late group at the canopy level (Figure 5d), an
increase in disease level resulted in decreased NIR reflectance, consistent with findings by
Huang et al. (2022) [35] and Zheng et al. (2019) [25]. Interestingly, differences in disease
levels did not significantly impact reflectance in the VIS and red-edge areas.

The spectral signatures of crop leaf and canopy display unique trends influenced not
only by the type of disease [14], but also by the stage of phenological development [24].
This multifaceted relationship adds complexity to both model selection and interpretation.

Notably, spectral signatures between the early and late disease groups at both leaf and
canopy levels exhibit opposite trends. This discrepancy likely contributed to our inability
to develop a single model for all data, necessitating the creation of separate models for the
early and late disease groups (refer to Tables 7 and 8).

4.3. Disease Severity Assessment

Our experiment assessed disease severity at the BBCH 75 and BBCH 77 stages, ac-
knowledging its late occurrence within the cropping season. While ideal for accurate
disease evaluation, this timing presents limitations for implementing control measures,
as most effective interventions require earlier application. While early rust detection is
crucial for farmers, early stage symptoms are often mild and challenging to identify [73].
However, for breeders, the information provided by our study can be valuable for timely
field monitoring and identification of relevant genotypes for further analysis.

The genotypes observed at BBCH 75 or BBCH 77 represent crops at distinct phenologi-
cal growth stages. However, considering environmental factors and agrotechnical practices
such as soil cultivation, sowing, fertilization, and pest and disease management, we classify
those at BBCH 75 as “early genotypes” and those at BBCH 77 as “late genotypes”. Notably,
this classification may align differently from the original categorization of genotypes as
early or late. Instead, it reflects their behavior during the studied growing year at the time
of measurement. Furthermore, our findings indicate that these two groups exhibit different
spectral behaviors concerning disease severity and chlorophyll content (refer to Figure 5
and Table 5).
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4.3.1. Leaf Level

Generating representative and accurately labeled training data for disease detection at
the leaf scale under controlled laboratory conditions presents a significant challenge [14]. In
our case, this limitation stems from the fact that only spectra from the green portions of the
leaf exhibiting disease characteristics are measured. At this level, spectral data are collected
from the exact location as chlorophyll measurements rather than where the disease is visibly
present. Consequently, it indirectly detects changes in a leaf affected by disease.

This is likely why, at the leaf level, leaf CC is primarily retrieved with hyperspectral
data. Our correlation analysis tested nine VIs specifically developed for wheat disease
detection (refer to Table 1). The VIs with the highest correlation to leaf CC are YROI
(Pearson coefficient = −0.73) for the genotypes in the late group, closely followed by
LRDSI_1 (Pearson coefficient = −0.72). YROI was developed for both leaf and canopy levels
and utilizes three bands in the spectrum’s red, green, and blue regions, whereas LRDSI_1 is
designed for the leaf level and employs only two bands in the red and blue regions.

Despite the strong correlation between leaf CC and the selected VIs, no parametric
model could retrieve leaf CC accurately (refer to Table 6). However, parametric models
utilizing the SIPI formula between the data from bands at 800 nm, 690 nm, and 700 nm
achieved relatively good results during cross-validation (R2 = 0.63). Still, they exhibited
unsatisfactory results during the test (R2 = 0.42).

The nonparametric models using the nine selected VIs (refer to Table 1) did not yield
favorable results during either cross-validation or the test. Consequently, these results are
not presented. Like scenario 1 (refer to Table 7), the nonparametric models employing all
available spectral bands (refer to Table 8) tended to overfit and performed poorly with the
test data.

Our findings (refer to Tables 7 and 8) confirm that infections by pathogens lead to
necrotic or chlorotic lesions, which subsequently diminish the chlorophyll content response
in the spectrum’s visible (VIS) and red-edge regions [18,19,32,72,74]. Moreover, our results
suggest that the near-infrared (NIR) spectral region also plays a role in this process [35].

In our results, the direct measurement of disease severity, DA, is present in the correla-
tion analysis (refer to Table 5). The highest significant correlation coefficient is 0.51 for the
late group and SIPI, indicating the involvement of the blue, red-edge, and NIR bands.

4.3.2. Canopy Level

Generating representative and accurately labeled training data for disease detection at
the canopy scale under natural field conditions also poses a significant challenge, albeit
different from that encountered at the leaf level, yet equally crucial. The data for disease
severity, DA, is collected from several flag leaves and subsequently averaged per plot,
similar to the canopy chlorophyll content (CC) measurements. However, the spectral data
consists of mixed plant, fungal material, and soil spectra. Additionally, it is influenced by
the weather conditions at the time of data acquisition, the complexity of the canopy, and
non-uniform backgrounds.

It is noteworthy that for the canopy level, we obtained relatively good results for both
canopy CC and canopy DA for each group, early and late, when considered separately (refer
to Tables 7 and 8). However, we could not identify a model that effectively incorporates all
available data.

Comparable models were identified for canopy CC (refer to Table 7) in each group,
early and late, using scenario 1, which involves parametric functions with 16 selected bands
and the SIPI formula. The spectral bands utilized are slightly different for each group and
arranged in a different order within the formula. However, the bands are part of the blue
and green spectral regions in both cases.

Similarly, comparable models were identified for canopy DA (refer to Table 8) in each
group, early and late, using scenario 2, which involves nonparametric algorithms with all
available spectral bands. Interestingly, in both cases, the selected bands by the machine
learning algorithm are part of the blue, red, red-edge, and NIR spectral regions.
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4.4. Limitations and Future Work
4.4.1. Challenges in Disease Data Collection for Hyperspectral Disease
Severity Assessment

While visual assessment by plant breeders remains the prevalent method for collecting
disease data, it suffers from inherent limitations. The subjectivity associated with individ-
ual expertise and training can lead to inconsistent results and hinder the comparability
of data collected by different breeders within the same study and across different studies.
For example, our disease assessment method shares similarities with the canopy-level
assessment used for wheat in the study by Koc et al. (2022) [19], but there are key differ-
ences. We focused solely on flag leaves for assessment, whereas Koc et al. (2022) utilized
the “whole plot”. Additionally, in our study we employed a different grouping scheme
for the percentage of diseased area compared to their disease scale. Relying solely on
visual assessment introduces limited objectivity, making it challenging to quantify disease
severity accurately.

To address these limitations and improve data quality, exploring objective analysis
methods such as sampling and image analysis of diseased leaves offers a more quantifiable
and standardized approach than visual assessment. Furthermore, standardizing data
collection across different studies is crucial. This could involve establishing consistent
definitions for disease assessment or implementing standardized scales for disease severity
levels for wheat, similar to those existing for grapevine powdery mildew [75].

By adopting objective and standardized data collection practices, we facilitate data
comparison and analysis, ultimately enabling the development of more robust and reliable
disease prediction models. These models can then be leveraged for earlier and more accu-
rate disease detection, targeted resource allocation for disease control, and the development
of improved disease management strategies.

4.4.2. Chlorophyll Content as a Proxy for Detecting Disease Severity

Chlorophyll content (CC), a crucial indicator of wheat health and productivity, reflects
photosynthetic capacity and nitrogen status [36,70]. Multiple factors, including disease in-
fection, genetic variation, nitrogen deficiency, and environmental conditions, can influence
CC [25]. In our breeding experiment, all plots were subjected to identical environmental
conditions and received the same level of nitrogen fertilizer. Our results showed that leaf
CC in the late group displayed a sharp decline as disease severity increased, Table 3, unlike
the early group where CC remained stable. Canopy CC, on the other hand, exhibited
a slight downward trend across all genotypes with increasing disease severity. A study
conducted by Ren et al. (2021) [18] revealed a correlation between leaf disease severity and
the distribution of leaf chlorophyll content, suggesting a downward trend as the severity of
leaf disease increases. However, we also noted that as the disease advanced, a decrease in
chlorophyll content was merely one among several symptoms of yellow rust. Therefore,
while monitoring chlorophyll content could partly indicate crop health conditions, it did
not directly reflect the disease status of wheat leaves. Hence, it is imperative to understand
the precise relationship between wheat diseases and CC thoroughly. This understand-
ing is essential for evaluating whether, and under what conditions, predicting CC could
effectively serve as a proxy for determining disease severity.

4.4.3. Phenological Crop Growth Stages on Monitoring Crop Disease

Our investigation focused on two closely related phenological crop growth stages,
BBCH 75 and BBCH 77, to determine their significance for disease severity assessment.
Our findings revealed the importance of these stages as key characteristics at both the leaf
and canopy levels. However, in our case, those growth stages are related to early and late
genotypes; refer to Section 4.1 for more explanation.

Phenological crop growth stages were discussed in other studies, where the crop was
inoculated at a particular growing stage. Then, the progress of the disease was monitored
during the consecutive growing stages. In this case, contrasting results were observed
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regarding the influence of phenological crop growth stages on monitoring crop disease
using remotely sensed derived information. For instance, Huang et al. (2007) [27] found
that the growth development stage of the varieties does not affect the discrimination of rust
incidence, in contrast to the findings of Heidarian Dehkordi et al. (2021) [21], who reported
a strong correlation between cropping season progression and wheat strip rust.

A third case of using the growth stage in disease detection and severity assessment is
when the crop is inoculated at different growing stages. In this case, Khan et al. (2021) [28]
observed that disease detection during the booting stage outperformed that during the
jointing stage, possibly due to differing rates of disease spread at these two growth stages.

In natural field experiments, environmental conditions conducive to disease onset
can initiate or accelerate disease development, leading to noticeable alterations in plants’
biophysical and biochemical parameters, consequently affecting spectral responses [76].
However, whether the same disease severity at different phenological growth stages will
exhibit the same spectral response is still being determined. Further investigation is needed
into the impact of phenological crop growth stages on crop disease.

4.4.4. Texture Information, Short-Wave Infrared Regions, and Application to Hyperspectral
Airborne or Space-Borne Imagery

In our study we concentrated on the visible and NIR regions of the spectrum. How-
ever, it is important to note that the shortwave infrared (SWIR) region contains valuable
information regarding plant water content and cell structure [24], which are influenced by
disease. Subsequent investigations could explore the potential of incorporating SWIR fea-
tures alongside existing NIR and visible features to enhance the accuracy of disease severity
assessment. Moreover, research [28,40] has shown that incorporating texture information
alongside spectral data enhances the models for disease detection. Furthermore, although
our studies relied on ground-based spectroscopy, scaling the methodology to airborne or
spaceborne platforms presents significant opportunities. Future research could focus on
adapting current disease detection models to analyze hyperspectral data from UAVs or
satellites. This advancement would facilitate large-scale, non-invasive disease monitoring
across extensive agricultural fields, improving disease management strategies and crop
health assessment.

4.4.5. Replicability of the Proposed Approach

Considering the diverse factors that can influence the spectral response of disease
severity in wheat, such as wheat variety, weather conditions, and growth stage, it is crucial
to evaluate the reproducibility of using canopy and leaf spectroscopy for assessing wheat
disease severity.

Addressing the sources of variability in winter durum wheat leaf disease detection
with canopy and leaf spectroscopy requires careful consideration and implementation of
appropriate mitigation strategies. Firstly, incorporating diverse wheat varieties in the study
can help account for varietal differences in symptom expression. By including a range of
wheat cultivars known to exhibit varying disease susceptibilities and symptomatology, re-
searchers can obtain a more comprehensive understanding of the spectral response patterns
associated with different disease states across diverse genotypes. Secondly, conducting mea-
surements under controlled lighting conditions is crucial for minimizing the influence of
weather variability on spectroscopic data. By standardizing lighting conditions during data
acquisition, researchers can reduce the impact of fluctuations in sunlight intensity, cloud
cover, and shadowing effects, ensuring more consistent and reliable spectral measurements.
Additionally, capturing data at multiple growth stages throughout the growing season
is essential for capturing temporal variations in disease incidence and plant physiology.
By monitoring spectral responses at key phenological stages, researchers can assess how
disease severity evolves over time and identify critical stages for disease management
interventions. Overall, integrating these mitigation strategies into the experimental design



Remote Sens. 2024, 16, 1762 18 of 26

and data analysis process can enhance the robustness and replicability of the spectroscopic
approach for winter durum wheat leaf disease detection.

Additionally, expanding the scope of comparison to encompass a wider range of crops
would be valuable. This would allow us to assess the generalizability of our findings and
determine if the observed relationships between spectral data and disease severity hold
true across different plant species. By drawing on results already established in precision
agriculture for other crops, we can strengthen the overall understanding and applicability
of this approach for disease detection.

5. Conclusions

We investigated the potential of field spectroscopy-derived hyperspectral data, an-
alyzed at both leaf and canopy levels, coupled with machine learning regression, for
assessing the disease severity of rust and leaf spots in winter durum wheat. This approach
offers a cost-effective and sustainable solution for phenotyping experiments, complement-
ing efforts in developing resistant wheat varieties. To assess disease severity, we conducted
a field experiment with 52 winter durum wheat genotypes, grouped into early (medium
milk) and late (late milk) based on phenophase, under natural field conditions.

We showed that the spectral signatures between the early and late disease groups
at both leaf and canopy levels exhibit opposite trends. This characteristic impacted all
our results. We argued for the pertinence of the CC as a proxy for the disease severity
assessment and its link to the growth stage, because we found a significant reduction in
Leaf CC (>30%) in the late group and Canopy CC (<10%) for both groups.

We were unable to develop a single model for all the data, necessitating the creation of
separate models for the early and late disease groups. From the correlation analysis, only
two vegetation indices, YROI and LRDSI_1, from the nine tested revealed significant and
strong negative correlations (r > 70%) with Leaf CC in the late group. Despite this strong
significant correlation, the parametric regression models lacked the necessary accuracy (R2

< 0.5). To address this limitation, we explored parametric functions and nonparametric
algorithms utilizing hyperspectral data covering all spectral bands. Those models have
improved performance, but it is essential to acknowledge that they still exhibit only moder-
ate accuracy and limited generalizability. The best model that we obtained was for leaf CC
retrieval for the late group, achieving an R2 of 0.63 and 0.42 for cross-validation and test
datasets, respectively.

Due to the complex interaction of factors like wheat variety, weather conditions,
and plant growth stage that affect the spectral response of disease severity, assessing
the repeatability of canopy and leaf spectroscopy for wheat disease detection is essential.
Additionally, expanding the scope of comparison to encompass a wider range of crops
would be valuable. Further multidisciplinary research is crucial, alongside standardized
data collection methods, to unlock the full potential of spectral disease detection. This
collaborative effort will equip crop breeders with powerful tools for early and targeted
interventions, enabling them to quickly identify resistant wheat varieties and promote
sustainable and efficient crop management.
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