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Abstract: Over a comprehensive 5-year assessment, and extrapolating it prospectively until 2025,
a thorough examination was conducted of productive agrobiodiversity in nine rural agricultural
districts across Peru. The present study involved in-depth interviews with 180 representative farmers
of the Coast, Highlands, and Jungle natural regions. Employing the Shannon-Weiner diversity index
and the Margalef species richness index, the dynamics within years and across different zones were
analyzed. Utilizing quadratic trend models, we assessed the frequency of each crop, aiming for the
optimal fit concerning absolute deviation from the mean, mean squared deviation, and mean absolute
percentage error. These findings revealed five distinct crop types—tuberous, fruits, cereals, legumes,
and roots—distributed across 25 diverse families. Looking ahead to 2025, our projections indicated
positive trends in 15 families and negative trends in 9 crop families. The nuanced mathematical
distinctions observed in crop management decisions varied significantly depending on the specific
area and year, underscoring the importance of localized considerations in agricultural planning.

Keywords: agrobiodiversity; sustainability; quadratic trend models; agricultural projections

1. Introduction

Factors such as global food demand, scarce cereal stocks, and climate change are
emerging challenges to be confronted for the stability of food systems at the national and
global levels [1-3]. Likewise, hunger has increased in Latin America and the Caribbean [4]
and threatened a massive resurgence amid the coronavirus/COVID-19 pandemic [5-7].
Peru has a commodity-based economy in which agriculture plays an essential role in the
nation’s development [8,9].

Various critical factors, including increased global food demand and the pervasive
impacts of climate change, pose substantial threats to the stability of food systems both na-
tionally and globally [2,3]. The escalation of hunger in Latin America and the Caribbean [4]
has been exacerbated amid the challenges posed by the COVID-19 pandemic [7]. Peru, with
its economy heavily reliant on commodities, underscores the pivotal role of agriculture
in national development [9]. Species diversity, defined as the variability of living organ-
isms in ecosystems [10-12], has long been acknowledged for its crucial role in ecosystem
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functioning [13,14]. Particularly in spaces dedicated to food cultivation, the correlation
between biodiversity and nutritional security becomes evident [7,15]. The alarming decline
in agricultural biodiversity on a global scale underscores the urgent need for the develop-
ment of multifunctional and sustainable agriculture [4,16]. Recognizing the significance of
productive agricultural biodiversity, it becomes imperative to make informed decisions for
conservation and cultivation. Numerous indices have been proposed to measure species
diversity and richness [17,18]. The Shannon Diversity Index was primarily used to identify
species richness and diversity. In 1958, Margalef popularized the concept of species diver-
sity among the scientific community [19]. Assessments of species uniformity, diversity, and
richness have been instructive for future research in various forest ecosystems at spatial
scales [20,21].

Agriculture is the second largest economic sector in Peru after mining [22] and faces
numerous challenges. Now, it is known that Peru’s agricultural industry has experienced
remarkable growth in recent decades due to consumer demand for healthier, fresher,
and more convenient food products [9]. Nutrition, food systems, and food biodiversity
in smallholder farmers are being transformed in the Andean countries, despite urgent
concerns for food sovereignty, uneven geographic development, and climate change [7].

The role of Peruvian rural agriculture in supporting employment, ancillary businesses,
and environmental services remains largely unknown. Understanding the prospective
planting of specific crops is crucial for effective agricultural production planning, facili-
tating inventory control of agricultural commodities, and optimizing the allocation and
conservation of natural resources. Regrettably, detailed information regarding the future
planting of crops is generally scarce [23]. Therefore, this research aims to document the
historical facets of Peru’s productive agricultural diversity, forecasting future trends, and
elucidating their implications for food security. This study will provide insights that
will enhance agricultural management in Peru. Consequently, the historical variability
of agricultural crops across the three natural regions of Peru was identified, calculating
indices of agricultural diversity and trends. Models are being presented for projecting crop
types and families, offering valuable guidance for Peruvian farmers in optimizing their
agricultural practices.

2. Materials and Methods
2.1. Location of the Study

Peru is a South American country located on the Pacific coast (0°02/, 18°20’ south and
68°30’, 81°25" west) and has an area of 1,285,215 km? [24]; due to the variability of climate
change, each zone of the country has very specific and different characteristics [24].

A total of 180 rural farmers located in the different districts of the three natural regions
of Peru were randomly identified: from the coast (Sapillica, Guadalupe, and Atico), the
highlands (Lucanas, Lonyachico, and Sapillica), and the jungle (Villa Rica, Jepelacio, and
Santa Rosa). Each site was georeferenced according to map 1 and represents the productive
agricultural diversity of Peru (Figure 1).

2.2. Historical Variability of Agricultural Crops

Data were collected through semi-structured interviews with 180 farmers. We recorded
the values of crops planted each year, and then we registered the scientific name in the
different databases according to procedures already established in Excel [25].
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Figure 1. Geographic location of districts in Peru, where the surveys were conducted.

2.3. Index of Agricultural Diversity and Trends for 9 Districts of the Three Natural Regions of Peru

The present study identified the concentration of species among the productive agri-
cultural diversity in nine districts of the three natural regions of Peru. Five-year data
(2018-2022) was collected for two indices of ecological indicators and their trends were
plotted. The Shannon-Weiner index (H’) (to assess species diversity) and the Margalef
index (SR) (to assess species richness) were evaluated [10].

The Shannon-Weiner index (H’) was determined with the following formula [26]:

S
H/ = Zizl pilnp; @
where

H/ = Shannon-Weiner index
pi = Proportion of individuals belonging to species i
In = natural logarithm

The Margalef index (SR) was determined with the formula [27]:

S—1
SR:W @)

where

SR = Margalef Species Richness Index
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S = Number of species
N = Total number of individuals

2.4. Current Models for Future Trends in Agricultural Species, According to Crop Type and
Crop Families

To generate the graphs for annual trend values, as well as the model formulas, the
quadratic model was chosen in all cases because it has the greatest fit in the absolute
deviation of the mean (MAD), the mean square deviation (MSD), and the mean absolute
percentage error (MAPE) [28].

3. Results

The presence of 47 crops was recorded for 5 years (2018-2022) in the nine districts of
the three natural regions of Peru. When we divided the crops according to type, 13.51%
were cereals, 13.51% were legumes, and fruits corresponded to 51.35% of the total types of
crops, registering as the highest percentage. As for the roots, they were registered as 24.32%
of the total, the tuberous with 2.70% and the vegetables correspond to 21.62% with respect
to the type of crop (Table 1).

Table 1. Historical Variability of Agricultural Crops in the Three Natural Regions of Peru.

N° Type Common Name Scientific Name Family F. 2018 2019 2020 2021 2022
1 C. Maiz Zea mays L. Poaceae 61 62 55 63 65
2 L. Fréjol Phaseolus vulgaris L. Fabaceae 33 33 29 29 29
3 E. Café Coffea arabica L. Rubiaceae 60 62 61 61 61
4 E Cafa de aztcar Saccharum officinarum L. Poaceae 7 8 8 9 8
5 E Platano Musa paradisiaca L. Musaceae 26 28 28 26 25
6 R. Yuca Manihot esculenta C. Euphorbiaceae 26 22 25 18 23
7 Le. Arverja Pisum sativum L. Fabaceae 25 20 23 20 21
8 Le. Habas Vicia faba L. Fabaceae 16 14 17 13 21
9 C. Trigo Triticum aestivum L. Poaceae 28 27 30 23 24
10 L. Mani Arachis hypogaea L. Fabaceae 2 1 0 3 3
11 F. Cacao Theobroma cacao L. Malvaceae 1 1 0 0 0
12 V. Pepinillo Cucumis sativus L. Cucurbitaceae 0 0 1 0 0
13 V. Caigua Cyclanthera pedata L. Cucurbitaceae 0 0 1 0 0
14 V. Lechuga Lactuca sativa L. Asteraceae 1 1 1 2 2

15 R. Rabanito Raphanus sativus L. Brassicaceae 0 0 0 0 1

16 T. Papa Solanum tuberosum L. Solanaceae 29 28 27 26 27

17 R. Camote Ipomoea batatas L. Convolvulaceae 5 4 5 4 11

18 E Olivo Olea europaea L. Oleaceae 12 14 11 9 6

19 E Palta Persea americana M. Lauraceae 2 1 4 5 9

20 E. Ciruela Prunus domestica L. Rosaceae 1 0 0 1 0

21 F. Manzana Malus domestica B. Rosaceae 2 1 0 1 1

22 E membrillo Cydonia oblonga M. Rosaceae 1 0 0 0 0

23 R. Cebolla Allium cepa L. Amaryllidaceae 1 1 0 0 0

24 F. Higo Ficus carica L. Moraceae 1 1 1 0 1

25 E Pacae Inga feuilleei DC Fabaceae 1 0 0 0 2

26 E. Naranja Citrus sinensis L. Rutaceae 1 1 1 0 2

27 F. Granada Punica granatum L. Lythraceae 1 0 0 2 3

28 E Durazno Prunus persica L. Rosaceae 6 7 5 6 9

29 V. Alfalfa Medicago sativa L. Fabaceae 9 10 10 8 8
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N° Type Common Name Scientific Name Family F. 2018 . E E E
2019 2020 2021 2022
30 E Limoén Citrus limon L. Rutaceae 0 1 1 1 1
31 E. Nispero Eriobotrya japonica T. Rosaceae 0 0 0 1 0
32 C. Cebada Hordeum vulgare L. Poaceae 13 8 7 11 15
33 R. Ollucos Ullucus tuberosus C. Basellaceae 1 1 1 3 1
34 R. Mashua Trapeolum tuberosum Ruiz & Pav.  Tropaeolaceae 2 1 0 0 1
35 R. Oca Onxalis tuberosa M. Oxalidaceae 5 6 9 5 3
36 C. Quinoa Chenopodium quinoa W. Amarantaceae 1 2 4 3 1
37 C. Avena Avena sativa Poaceae 1 0 0 0 1
38 F. Granadilla Passiflora ligularis J. Passifloraceae 1 1 1 2 1
39 E Rocoto Capsicum pubescens Ruiz & Pav Solanaceae 0 0 0 1 1
40 V. Aji Capsicum annuum L. Solanaceae 1 1 1 1 1
41 F. Sandia Citrullus lanatus T. Cucurbitaceae 1 0 0 0 0
42 R. Bituca Colocasia esculenta L. Araceae 1 1 1 1 1
43 R. Racacha Arracacia xanthorrhiza B. Apiaceae 4 4 4 4 3
44 V. Zapallo Cucurbita Maxima D. Cucurbitaceae 1 0 0 0 0
45 V. Repollo Brassica oleracea L. Brassicaceae 0 0 0 0 2
46 V. Zanahoria Daucus carota L. Apiaceae 2 3 2 3 3
47 L. Chocho Lupinus mutabilis S. Leguminosae 1 1 1 1 1

F/year = absolute frequency over 180 farmers interviewed. C = cereal, L = legume, F = fruit, R = root, T = tuberose,
V = vegetable.

The crops (with common names and their respective scientific names) were matched
in 25 plant families that showed the diversity of Peruvian foods. The case of corn and
coffee leads in frequency with respect to their presence in all locations and years recorded.
The frequencies with which the farmers registered their crops the most in 2018 were
corn (61 farmers) and coffee (60 farmers). For 2019, they were also corn and coffee (with
62 farmers), followed by beans (33 farmers). For 2020, the frequency of corn was 61
and coffee was 55, while for 2021 these crops reached frequencies of 65 and 61 farmers,
respectively (Table 1).

The trend in the average number of species grown by farmers in the districts is
represented (Table 2). In the coastal region, and for all years (2018-2022), the highest values
were presented in the district of Paccho, with up to 3.9 crops (2018); however, this district
presents a variability of —12.82%. In Atico, the trend is increasing (24.53%), as well as in
Guadeloupe 6.45%, while in the highland region, the highest values for average number of
crops per farmer are in Lonya Chico with up to 4.75 average crops in 2018. However, this
district shows a reduction in crop variability (—5.26%), as well as in Sapillica with up to a
—27.66% reduction. On the contrary, in Lucanas, there was greater variability with 7.25%.
For the jungle region, in Jepelacio, there was the highest average for the number of crops
per farmer (3 in 2018), despite the fact that the variability trend is reduced by —11.67%. In
Santa Rosa, the value of 1.65 crops was maintained and in Villa Rica, there was a trend of a
4.76% increase.

If analyzed from various approaches (context according to natural regions, according
to districts, even according to the post-COVID-19 pandemic impact), Table 2 shows the
great dynamics existing in the indicators of agrobiodiversity, which can be exploited by
farmers, and the great need to manage the conservation of current crops. Furthermore, the
results reinforce the need to join efforts to avoid the reduction in the average number of
crops per farmer, which currently varies by —2.87% at a general level.
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Table 2. Historical records of the average number of agricultural species cultivated per farmer in nine
districts of the three natural regions of Peru.

Average Number of Agricultural Species Cultivated A
Region District per Farmer 2018-2022 Tendency
2018 2019 2020 2021 2022
Atico 265+150 21+£1.02 215+£0.88 2254+125 334142 24.53% _
Coast Guadalupe  155+051 16+060 1.65+059 1.65+059 1.65=+0.59 6.45%
Paccho 39+117 38+120 34+094 33£080 3.4+082 —12.82% N
Lucanas 345+128 294097 275+112 325+085 3.7+134 7.25% ~—
Highlands  Lonya Chico 4.75+137 444160 44+160 44+154 45+£150 —5.26% S
Sapillica 235+109 224+111 18+077 18+0700 1.7=+0.60 —27.66% T~
Santa Rosa  1.65+1.09 1654+099 1.65+099 1.65+0.99 1.65%+0.99 0.00%
Jungle Jepelacio 3.00+1.08 284101 29+£079 27+£098 265+£099 —11.67% _
Villa Rica 1.05+022 14001 1+0.01 1.05+022 1.1+045 4.76% -
Summary 271+157 249+144 2414136 245+136 2.63+1.49 —2.87% o

3.1. Indices of Agricultural Diversity and Trends for 9 Districts of the Three Natural Regions
of Peru

From the Shannon index, the maximum number of species was recorded along with
their uniform distribution; on the coast, it was the district of Guadalupe (H/ =2,94) in 2018
and Paccho in the years 2019-2022 (H/ =2.94 and H/ = 2.95, H/ = 2.96, respectively). In the
highland region, the highest Shannon index was presented in Lonya Chico for the year 2018;
Lucanas in the years 2019, 2021, and 2022 (H/ =2.92, H/ =2.09, H/ =2.95, and H/ =2.93,
in the given order); and Sapillica in 2020 (H/ = 2.90). Likewise, from the Shannon index,
the maximum number of species was recorded along with their uniform distribution for
the jungle region, and the indices with the highest values were in the district of Villa Rica
(H/ =2.98) in 2018, 2019 (H/ = 2.99), and 2020 (H/ = 2.99). This analysis resulted in lower
values for diversity indices for the district of Santa Rosa in all years (2018-2022) due to the
consideration of both the number of species recorded and their relative abundance in the
forest (Table 3).

Table 3. Retrospective values of the Agricultural Diversity Index, and trends for 9 districts of the
three natural regions of Peru.

Natural Region District Index 2018 2019 2020 2021 2022 Trend

Atico Shannon_H 2.84 2.88 291 2.86 29

Margalef 4.79 5.08 5.05 4.99 453

_ Paccho Shannon_H 2.96 2.95 2.96 2.97 2.97 T
Coast Region - o

Margalef 4.36 4.39 45 453 45

Guadalupe Shannon_H 2.94 2.93 294 2.94 2.94

Margalef 5.33 5.48 5.43 5.43 5.43
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Table 3. Cont.
Natural Region District Index 2018 2019 2020 2021 2022 Trend
Lucanas Shannon_H 2.92 2.94 291 2.96 2.93
Margalef 4.49 4.68 4.74 4.55 441
Lonyachico Shannon_H 2.95 291 291 291 2.2
e
Highlands 3
Region Margalef 4.17 4.02 4.02 4.02 4 =
e
Sapillica Shannon_H 2.89 2.88 291 292 2.93
Margalef 4.94 5.02 5.30 5.30 5.39
Villa Rica Shannon_H 2.98 2.3 3.00 2.98 2.94 = ;__
Jungle g
Region ——
Margalef 6.24 6.34 6.34 6.24 6.14
Jepelacio Shannon_H 2.93 2.93 2.96 2.94 2.94
Margalef 4.64 4.72 4.68 4.76 4.79
Santa Rosa Shannon_H 2.8 2.86 2.86 2.86 2.86
Margalef 5.15 5.43 5.43 5.43 5.43

Regarding the value of the Margalef species richness index, it is directly related to the
number of species present in each district. Thus, for the coastal region, the highest values
were recorded in Guadalupe in the 5 years (SR 2018= 5.53, SR 2019= 5.48, SR 2020 = 5.43, SR
2021 = 5.43, and SR 2022 = 5.43). In the highland region, the highest SR was in all years for
Sapillica (SR 2018 = 4.93, SR 2019 = 5.02, SR 2020 = 5.30, SR 2021 = 5.30, and SR 2022 = 5.38);
and in the jungle, for the 5-year study, the highest index values were presented in Villarica
(SR 2018 = 6.24, SR 2019 = 6.34, SR 2020 = 6.34, SR 2021 = 6.24, and SR 2022 = 6.14). The
lowest value with respect to the total corresponded to Lonya Chico (highland region, 2022)
with an SR index of 4.

3.2. Models of Historical and Future Trends for Productive Agricultural Diversity at the Level of
Crop Type and Family

The annual frequency (2018-2022) on average was represented in trend models for
the different types of crops. In all cases, the best fit (according to MAPE, MAD, and MSD)
was presented using the quadratic trend model. MAD values showed values of 0.27 in
tuberoses, 0.07 in fruits, 0.09 in cereals, 0.29 in legumes, and 0.30 in roots. Since tuberous
are the lowest value, it means that they had the best fit for crop types. For all crop types,
the model forecasts a positive upward trend (Figure 2). Regarding the ASM for crop type,
the forecast for roots is wrong by 6.80%, this being the highest value of error identified. The
rest of the ASM values for crop types are between 2.12% (legumes) and 0.46% (cereals). For
the MSD measure, the accuracy of the adjusted values of the time series ranges from 0.07 in
fruits (highest fit) to 0.27 in tuberoses, representing the lowest fit (Figure 2).

The historical trend and projection models to 2025 for productive agricultural diversity,
according to crop family, are presented in Figures 3 and 4. A total of 25 plant families
were identified in the three natural regions, corresponding to nine districts of Peru. In
this sense, the MAPE, MAD, and MSD values had the best fit for the quadratic trend
model in all cases. For the year 2025, the projections in a positive trend correspond to the
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families of the poaceae, rutaceae, rosaceae, solanaceae, tropaeolaceae, malvaceae, lythraceae,
moraceae, lauraceae, fabaceae, euphorbiaceae, convolvulaceae, brassicaceae, asteraceae,
and amarillydaceae. On the other hand, the projections in a negative trend correspond to
the families of passifloraceae, rubiaceae, olaceae, oxalidaceae, musaceae, cucurbitaceae,
basellaceae, apiaceae, and amarantaceae.
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4. Discussion

Agrobiodiversity is underutilized in national food systems; although this is critical
for healthy agro-ecosystems [29]. The present study focused on investigating the historical
variability of agricultural crops in the three natural regions of Peru; from these crops, the
indices of agricultural diversity and trends were obtained, to finally present models for the
projection of crop types and crop families for the Peruvian farmer. The diversity of crops is
very dynamic between years and areas. Genetic diversity is not only necessary to maintain
among species [30] but it is also responsible for the diversity of food, medicines, and
fibers available to humans in ecosystems. Therefore, it is essential to adopt differentiated
approaches to the conservation and promotion of agrobiodiversity in local contexts. Natural
and modified ecosystems provide a multitude of functions and services that contribute to
human well-being [2]. It has long been recognized that biodiversity plays an important
role in the functioning of ecosystems [31,32]. It is proposed to use crop-specific planting
frequency data as indicators to provide indirect information on the planting of future
crops [23]. While later studies suggest that a few dominant species can provide most
ecosystem services [26], the case of productive agricultural diversity requires wealth and
abundance. Therefore, they are dependent on many complementary species to provide
ecosystem services. Changes in the response of ecosystem services to biodiversity can
operate in combination [33]. Depending on the type of crop, farmers assess the yield of
marketable crops on acreage and also on the basis of the weight of the fruits or seeds [9].

The Peruvian economy has grown at a dizzying pace in recent decades. Peru’s GDP
has more than tripled, from $60 billion in 1990 to $215 billion in 2019 [34]. In line with
economic growth, Peru is facing a higher consumption of food, so the data from this
research show an alert for conservation and the search for new sources to strengthen food
security in the countryside and the city [9]. Smallholder farmers are the most important
custodians of plant genetic resources for in situ conservation. Despite this, the complexity
of rural agricultural Peru incorporates the conditions of poverty and development in a
geographical context, which are combined with the transformation of food systems and
climate change [7]. The retrospective diversity values in this study will allow us to relate to
the availability of food in each area. Likewise, prospective trends will allow us to look for
strategies to anticipate this lack of future food in terms of quantity and availability for local
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consumption. It is, therefore, reaffirmed that the emerging capacities of agrobiodiversity
actively provide a partial degree of food sovereignty [35].

This dynamic of productive agricultural diversity can be attributed to various factors
such as the adoption of agricultural practices and sustainable agricultural developments.
The literature reports that biologically diverse communities are also more likely to contain
species that confer resilience to that ecosystem because, as a community accumulates
species, there is a greater likelihood that any of them will have traits that allow them to
adapt to a changing environment [36,37]. Such species could buffer the system against
the loss of other species [38]. These findings highlight the importance of promoting
agrobiodiversity conservation and management strategies to ensure food security and
sustainable development in Peru.

Studies have documented the effects of COVID-19 on public health, as measures to
contain the disease pose significant risks to food and nutrition security due to declines in
food production, distribution, and access [39-41]. This phenomenon primarily affected low-
income families in poorer areas of Lima and the main cities. Faced with the situation, they
had to migrate back to their centers of origin in the hope of finding better conditions [42—-44].
Reverse migration can have both positive and negative effects on agrobiodiversity [45,46].
On the one hand, it can promote the revitalization of traditional agricultural practices
and the use of local varieties, which contributes to the conservation of agrobiodiversity.
Also, the pandemic offers opportunities to rethink the whole aspect of migration, and,
using the innate or acquired skills of returning migrants, outstanding problems in the rural
sector can be tried to solve [47—49]. On the other hand, reverse migration has wide-ranging
direct and indirect effects on biodiversity loss and ecosystem health. Due to financial,
cultural, and many other factors, people engage in activities that promote deforestation
and wildlife trade to support their livelihoods. Certain policy actions, such as subsidies
to extractive, agricultural, and development industries, can generate rapid economic
growth, but they can also exacerbate land use changes, biodiversity loss, greenhouse gas
emissions, and unsustainable agricultural intensification, all of which can create conditions
for future emerging diseases [50]. Therefore, it is also necessary to implement appropriate
management strategies and policies that promote the sustainability of agrobiodiversity in
the context of reverse migration.

The diversity indices of 47 crops recorded in rural areas of Peru are grouped into
types of crops that are part of the country’s food security [51], as well as crops of economic
importance such as coffee and cacao. This research will allow for decisions to be made
to prioritize and zone territories with aptitudes for these crops, as has been performed
for potatoes [52], coffee [53], and cocoa [54]; there have even been studies of the potential
distribution of crop species of medicinal importance in the country [25] and of the floral
resources for bees in rural areas [55].

5. Conclusions

In conclusion, this study reveals significant changes in the diversity of agricultural
species cultivated in different districts of Peru during the period from 2018 to 2022, influ-
enced by the phenomenon of reverse migration caused by the COVID-19 pandemic.

These results highlight the importance of adopting differentiated approaches for the
conservation and promotion of agrobiodiversity in local contexts, as well as implementing
appropriate management strategies and policies to ensure the sustainability of agrobiodi-
versity in the context of reverse migration. Future research could deepen the analysis of the
drivers of these changes and assess the impact of agrobiodiversity conservation policies
and programs in the context of reverse migration.
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