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Abstract: In response to the limited accuracy of current three-dimensional (3D) object detection
algorithms for small objects, this paper presents a multi-sensor 3D small object detection method
based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane
to obtain a depth image. Subsequently, we propose a cascaded image fusion module comprising
multi-level pooling layers and multi-level convolution layers. This module extracts features from
both the camera image and the depth image, addressing the issue of insufficient depth information in
the image feature. Considering the non-uniform distribution characteristics of the LiDAR point cloud,
we introduce a multi-scale voxel fusion module composed of three sets of VFE (voxel feature encoder)
layers. This module partitions the point cloud into grids of different sizes to improve detection ability
for small objects. Finally, the multi-level fused point features are associated with the corresponding
scale’s initial voxel features to obtain the fused multi-scale voxel features, and the final detection
results are obtained based on this feature. To evaluate the effectiveness of this method, experiments
are conducted on the KITTI dataset, achieving a 3D AP (average precision) of 73.81% for the hard
level of cars and 48.03% for the hard level of persons. The experimental results demonstrate that this
method can effectively achieve 3D detection of small objects.

Keywords: three-dimensional object detection; autonomous vehicles; deep learning; multi-sensor

1. Introduction

With the rapid pace of urbanization and continuous advancements in technologi-
cal innovation, smart cities have emerged as a prominent trend in contemporary social
development [1]. In the realm of urban transportation, autonomous driving systems are
gradually evolving into a pivotal direction for development, representing a significant
technological breakthrough. Through the integration of autonomous driving technology,
vehicles can achieve intelligent navigation, self-driving capabilities, and automated hazard
avoidance mechanisms. Consequently, this facilitates a reduction in traffic accidents while
simultaneously enhancing transportation efficiency and mitigating energy consumption
and emissions [2].

In the current scenarios of autonomous driving or complex robot navigation, precise
detection results play a pivotal role in system performance. Despite significant advance-
ments in 2D object detection technology driven by deep learning, it still falls short in
providing precise spatial positioning information and accurately estimating the physical
dimensions of objects within 3D space. In comparison to 2D object detection methods, 3D
object detection technology provides advanced capabilities in accurately detecting object
attributes such as precise position and distance, thereby introducing a novel avenue for
research in environmental perception.

Through dependable 3D object detection technology, the autonomous driving system
can make more accurate decisions and controls, thereby enhancing driving safety and relia-
bility while effectively adapting to intricate and dynamic traffic environments. Currently,
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numerous well-established implementation methods exist for 3D object detection; however,
they encounter challenges and difficulties in detecting small objects.

Small objects typically refer to objects with few pixels on the image plane and relatively
distant distances in the world coordinate system. The precise detection of the 3D center
and size of small objects still present challenges, primarily due to the small proportion
that small objects occupy within the entire detection range, the sparse characteristics of
the point cloud, and the potential presence of occlusion or incomplete information in the
objects to be detected.

This paper aims to address the issue of poor accuracy in the 3D detection of small
objects by proposing a model that combines a LiDAR point cloud and camera images. In
real-world autonomous driving scenarios, small objects are often challenging to detect, and
single sensors typically suffer from limited information and poor robustness in complex
environments. Our approach addresses these issues by optimizing the 3D detection of
small objects in perceptual scenes, making our method more suitable for autonomous
driving perception tasks. The main contributions of this paper are as follows:

1. In order to integrate depth information into image features, we propose a cascaded
image fusion module to integrate depth information into image features, enhancing
their representational capacity;

2. In order to detect small objects by capturing grid features of different scales, we
introduce a multi-scale voxel module to extract features from the point cloud at
different scales and fuse them with features from corresponding scale images;

3. To validate the proposed methods in this paper, experiments are conducted on the
KITTI dataset, comparing them with current state-of-the-art algorithms.

2. Related Work
2.1. Camera-Based 3D Detection Methods

Three-dimensional object detection can be categorized into single-sensor and multi-
sensor methods, with single-sensor options including camera and LiDAR. The most direct
approach involves employing neural networks to estimate the 3D box parameters from the
image directly. These methods draw inspiration from the architectural design of 2D object
detection networks such as fast RCNNs [3], which have demonstrated efficacy in facilitating
end-to-end training. FCOS3D [4] introduces a 2D guided detection module for 3D object
detection. M3DRPN [5] is an innovative approach that leverages the intrinsic relationship
between 2D and 3D information through the utilization of multiple 2D convolutional
layers with independent weights. This enables the extraction of features at specific spatial
locations, facilitating simultaneous detection in both 2D and 3D domains.

In order to enhance the accuracy of detection results, some methods such as AM3D [6]
and DD3D [7] employ pre-trained auxiliary depth estimation networks. Initially, pretrained
depth estimators were utilized for generating pseudo-point clouds. Subsequently, a 3D
object detection approach based on point clouds or coordinates was employed for pseudo-
point cloud prediction.

Although camera-based methods are cost-effective, their performance is typically
inferior to LiDAR-based and multi-sensor methods due to the lack of depth information.
While images can provide some information regarding the position and appearance features
of objects, cameras are not as effective as LiDAR in delivering precise 3D positioning and
spatial information. Consequently, camera-based 3D detection methods often exhibit
subpar accuracy in terms of bounding box estimation.

2.2. LiDAR-Based 3D Detection Methods

According to different implementation routes, 3D detection methods based on LiDAR
can be divided into three categories: point cloud methods, voxelization methods, and depth
map methods. PointNet [8] and PointNet++ [9] are methods that directly extract features
from the point cloud, enabling tasks such as classification and segmentation of the point
cloud. The point cloud methods employed by these two methods serve as the foundation
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for other 3D object detection methods based on point clouds. Additional direct approaches
for 3D object detection using point clouds include Point2Seq [10] and 3DSSD [11].

Voxelization methods such as VoxelNet [12], SECOND [13], and Pointpillars [14]
extract features from the LiDAR point cloud in standardized grids. Compared to point
cloud methods, voxelization methods offer faster detection speed and are better suited
for autonomous driving scenarios. Pyramid RCNNs [15], CenterPoint [16], and Point
RCNNs [17] aim to enhance detection performance through a two-stage process. Firstly,
3D candidate regions are generated in a pyramid structure, and then fine detection of these
regions is performed in the second stage.

Additionally, methods like LaserNet [18] utilize depth images for 3D object detection,
implementing convolutional operators more suitable for depth images. Depth map methods
effectively address the issue of point cloud sparsity while compromising the 3D local
relationships within the LiDAR point cloud.

The circumferential distribution of laser rays emitted by LiDAR leads to an uneven
spatial distribution of point clouds, resulting in varying densities of the same object type
at different distances. This phenomenon presents a challenge for the feature extraction
process in 3D object detection. Hence, LiDAR-based methods face challenges in detecting
small objects and distant scenes due to the sparsity of the point cloud.

2.3. Multi-Sensor 3D Detection Methods

Multi-sensor 3D detection methods enable the integration of information from diverse
sensors, offering solutions to address challenges encountered in LiDAR and camera-based
detection methods. The synergistic combination of image and point cloud features ex-
emplifies the significance of sensor fusion, while the integration of multi-sensor aids in
mitigating single-sensor failures and enhancing adaptability across diverse environments.

F-PointNet [19] and F-ConvNet [20] represent two-stage fusion approaches; a 2D
object detection method like Fast RCNN [3] is initially employed to extract the ROI (region
of interest) from the image. Subsequently, a point cloud 3D detector is utilized to perform
3D object detection on the frustum region corresponding to the ROI.

MV3D [21] and AVOD [22] are representative works based on 3D candidate boxes,
which fuse ROI features obtained from the camera and LiDAR at the feature level. AVOD
initially projects the 3D point cloud onto the BEV (bird’s eye view) perspective, generating
candidate boxes for 3D objects based on this view. Subsequently, the 3D candidate boxes are
projected onto both the front view of the point cloud and image view; then, corresponding
features are fused by ROI pooling [3].

Pointpainting [23] and Fusionpainting [24] employ image segmentation networks to
extract semantic features from images, which are then integrated with point clouds for
enhanced fusion between the two modalities. Subsequently, a point cloud-based object
detection method is utilized to detect objects in the enhanced data. Overall, sensor fusion
plays a vital role in enhancing the accuracy and robustness of 3D object detection.

However, the aforementioned fusion methods encounter some challenges in real-world
scenarios. For instance, F-ConvNet [20] necessitates a series connection of two sensors for
execution, while Pointpainting [23] exhibits limited efficiency in harnessing image features.
Furthermore, these approaches are not optimized for detecting small objects. Our work
achieves bidirectional enhancement between point cloud and image information, fully
leveraging multi-sensor data fusion. Considering the difficulty of using a single-scale voxel
in complex scenes, we propose a multi-scale voxel module to effectively address object
detection requirements at different scales within the scene.

3. Scheme Design
3.1. Cascade Image Fusion Module

It is challenging to directly obtain the distance from the camera to the objects using
image features. However, depth features are crucial for 3D object detection. This paper
introduces a simple and efficient cascaded image fusion module (CIF) that can extract
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features effectively from both the LiDAR point cloud and the camera image, overcoming
the issue of lacking depth information in the camera image.

The structure of the cascaded image fusion module is illustrated in Figure 1. It
consists of two branches: depth and image. The module takes the RGB image and the
depth image obtained from the point cloud as input. The camera image has a size of
(416, 1344, 3), while the depth image is generated by projecting the point cloud onto
the image plane and has a size of (416, 1344, 1). Each pixel value in the depth image
represents the depth value at the corresponding position. The cascaded image fusion
module is based on a MobileNetV3-s [25] backbone. Number [0–12] represents different
output layers in MobilNetv3, including bottleneck module and convolution module. The
channel attention module in this structure allows for the dynamic allocation of attention
weights to different sensors by learning adaptive channel weights.

Figure 1. The structure of the cascade image fusion module.

The image branch consists of 11 layers, with downsampling applied in layers [1, 2, 4, 7, 9].
Similarly, the depth branch performs five maxpooling operations on the depth image and
merges the results with the image branch through additional channels for feature extraction.
The cascaded image fusion module generates a final output of seven-level image features. These
features are grouped into three sets [0, 1, 2], [2, 3, 4], and [4, 5, 6], which are then connected to
the corresponding 3D point vectors, resulting in three-level fused point features.

The cascaded image fusion module can perform depth completion on image features.
Compared to fusion methods that rely solely on image features, this fusion approach
integrates features of specific depth levels during the model’s autonomous learning process,
thereby reducing the overall loss of training.

3.2. Multi-Scale Voxel Module

Due to the non-uniform distribution of point clouds in 3D space, a single-size voxel
mesh may not adequately represent all scene information. Previous methods such as
SECOND [13] and Pointpillars [14] use different scale encoding structures for different
object categories to address this issue. For example, larger voxels may be used for larger
objects like vehicles, while smaller voxel sizes are employed for smaller objects such
as pedestrians.

However, this method proves less efficient when dealing with multi-category tasks.
This paper proposes a multi-scale voxel module (MSV) that covers voxel sizes of three
scales for direct multi-scale voxel encoding of point clouds. The larger-scale grid can
capture features over a larger range, while the smaller-scale grid increases the number of
voxels within the same range of point clouds to enhance the model’s ability to capture
fine-grained features.

The voxel sizes for the three scales set in this paper are (0.08, 0.08, 0.4), (0.16, 0.16, 0.4),
and (0.32, 0.32, 0.4) meters, respectively. The voxel sizes across the three scales are multiplied in
the width and height dimensions while keeping the height consistent. Points within different
scales of voxels are dynamically voxel encoded to obtain initial voxel features. Subsequently,
three sets of initial voxel features are fused with three-level fusion point features. The fusion
point features at lower levels contain rich original image information, which benefits the
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learning ability for details when matched with small-scale voxels. The fusion point features at
higher levels contain more deep semantic information, which enhances local perception when
matched with larger voxels.

The multi-scale voxel module utilizes two sets of VFE layers [12] to extract initial voxel
features for the three scales of voxels. Algorithm 1 demonstrates the overall procedure of
the VFE module. After the second VFE layer, the voxel features are fused at the voxel level
with multi-level fusion point features from the cascaded fusion image module.

Algorithm 1 Voxel Feature Encoding (VFE)

Require: Point cloud P = {p1, p2, . . . , pN}, where each point pi includes its position (x, y, z)
Ensure: Set of voxel features V

1: Divide the point cloud P into a voxel grid G
2: Initialize an empty set of voxel features V
3: for each non-empty voxel gi in G do
4: Extract all points {pi1, pi2, . . . , piM} within voxel gi
5: Initialize voxel feature vi to zero vector
6: for each point pij in gi do
7: Compute point feature fij (position of the point relative to the voxel center)
8: Accumulate point features: vi = vi + fij
9: end for

10: Normalize vi to obtain the final feature for voxel gi
11: Add the voxel feature vi to the set V
12: end for
13: return the set of voxel features V

3.3. Fusion Pipeline

The fusion pipeline in this paper consists of three types of fusion: cascaded image
fusion of depth and RGB images, point-level fusion with image features attached to the
point cloud, and voxel-level fusion with initial voxel features and multi-level fusion point
features. The fusion pipeline is illustrated in Figure 2.

Figure 2. The data pipeline of the network.
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Assume a 3D point set is P, the eigenmatrix is K, and the original image is I. The fusion
image feature process can be represented as follows:

σ(Proj(K, M, P), I) → f (1 − 7), (1)

where Proj(·) represents projecting the point cloud onto the image plane to generate a point
cloud depth image; σ(·) represents the feature extraction process of the cascaded image
fusion module; f (1 − 7) represents the output of image features at seven levels. Then,
image feature output is divided into three groups, which are fused with the point cloud.
The process of obtaining the three level fused point features can be expressed as follows:

P · (Fs, Fm, Fl) → (Ps, Pm, Pl), (2)

where P represents the point cloud projected onto the image plane, Fs, Fm, Fl represents
three sets of image feature outputs, and Ps, Pm, Pl represents the three-level fusion point
features obtained through point level fusion. Finally, fusion point features pass through
the FC (fully connected) layer and norm layer to adjust the channel size with initial voxel
features and then numerically add them to obtain fused voxel features. The process can be
abbreviated as follows:

α((v1, v2, v3)⊕ (Ps, Pm, Pl)) → (Vs, Vm, Vl), (3)

where α(·) represents the activation function, v1, v2, v3 represents initial voxel features
at three scales, ⊕ represents the sum of voxel features and fusion point features in the
corresponding dimension values, and Vs, Vm, Vl represents the fused voxel features of three
different scales in the final output.

3.4. Overall Structure

The overall structure of the model, as shown in Figure 3, can be divided into four parts:
a cascaded image fusion module, a multi-scale voxel module, a 3D convolution feature
integration module, and a standard 3D detector.

Figure 3. The structure of the network.

The cascaded image fusion module takes depth and RGB images as inputs and gener-
ates seven-level image features. These features are then fused with the original point cloud
to output three-level fused point features. The multi-scale voxel module encodes the point
cloud into voxel representations at three different scales, and the three sets of initial voxel
features are fused with the three-level fused point features, respectively, resulting in three
sets of fused voxel features.
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The 3D convolution feature integration module enhances feature extraction by adjust-
ing the size of the fused voxel features through sparse convolution and SEFPN [13] modules.
These enhanced features are combined to form the final fusion feature. The 3D detector
utilizes a detection head based on 3D anchor boxes to obtain the final detection results.

The loss function consists of three parts: boundary regression loss, orientation clas-
sification loss, and class loss. The boundary regression loss uses the SmoothL1 [3] loss
function to ensure smooth boundary localization, while the orientation classification loss
uses the Softmax loss. The class loss uses the focal loss [26] function to balance positive
and negative samples. The loss function can be represented as follows:

Ltotal = (βlocLloc + βclsLcls + βdirLdir), (4)

where βloc, βcls, and βdir are the hyper parameters to provide weightage for different losses.
For the loss function, the regression loss is set to 2.0, the focal loss hyperparameter is set to
1.0, and the class loss for angles is set to 0.2.

4. Details and Experiments
4.1. KITTI Dataset

The effectiveness of each module was assessed in our work using the KITTI [27]
dataset, which encompasses image data captured across diverse environments, including
urban and rural areas, as well as highways. Each image within the dataset can exhibit a
maximum of 15 vehicles and 30 pedestrians, along with varying levels of occlusion and
truncation. The dataset comprises a total of 7481 training samples and 7518 test samples,
consisting of RGB image frames and LiDAR point cloud with 64 lines.

Figure 4 illustrates an example from the KITTI dataset. On the left, the point cloud
and ground truth annotations are displayed from a bird’s-eye-view. The top-right part
displays the LiDAR point cloud projected onto the camera image, while the bottom-right
part displays the 3D ground truth overlaid onto the camera image. These three components
are from the same frame in the dataset. The ground truth of objects of different difficulty
levels are represented by boxes of different colors.

Figure 4. An example from the KITTI dataset.

4.2. Implementation Details

The objects in the dataset were categorized into easy, moderate, and hard levels.
The hard category includes smaller-sized objects, which present an increasing level of
difficulty for detection. This paper primarily focuses on analyzing the results for the car
and pedestrian categories. We only considered the LiDAR point cloud within the camera’s
field of view for detection.
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In terms of time alignment, the LiDAR serves as the timestamp reference, minimizing
deviations caused by dynamic objects by triggering the camera shutter accordingly. For
spatial alignment, the camera and point data are transformed into a unified coordinate
system through extrinsic calibration.

Setting the IoU threshold for each category enables an objective evaluation of model
performance. In vehicle detection, where bounding boxes typically exhibit regularity and
relatively fixed sizes, a higher IoU threshold is required to assess model performance
accurately. Conversely, for pedestrians and cyclists who display diverse poses and smaller
sizes, a lower IoU threshold is necessary to effectively evaluate the model’s performance in
these categories. Specifically, this paper focused on calculating the AP40 [28] for persons
and cyclists at an IoU threshold of 0.5, as well as the AP40 for cars at an IoU threshold
of 0.7.

The proposed method in this paper was implemented based on Python and the
MMDetection3D [29] framework, using the AdamW [30] optimizer for training with an
initial learning rate of 0.001 and an exponential decay factor of 0.01. The momentum decay
parameter during training varied between 0.95 and 0.99, and training was conducted for
40 epochs on a Tesla V100 GPU.

4.3. Quantitative Evaluation

The comparative results for 3D detection metrics are shown in Table 1. In the Methods
column, ‘L’ denotes LiDAR-based methods, while ‘L + C’ indicates fusion methods. N/A
indicates that this data is not disclosed in the relevant work. The performance of the
proposed model outperforms the SECOND [13] and PointPillars [14] methods based on
LiDAR. Compared to PointPillars [14], the proposed method achieves superior 3D AP across
different levels for both person and car categories, with an improvement of 6.54% in the
hard level for a person. Due to unrestricted 2D detectors, the proposed model demonstrates
superior performance compared to F-PointNet [19]. MVXNet [31] also utilizes point level
fusion, and in comparison, the proposed method achieves a 3.95% improvement in 3D
AP for the hard level of person categories and a 2.74% improvement for the hard level of
car categories.

Table 1. Results on the KITTI test 3D detection benchmark.

Methods
Car Person

Easy Mod Hard Easy Moderate Hard

SECOND [13] L 83.13 73.66 66.20 51.07 42.56 37.29
PointPillars [14] L 79.05 74.99 68.30 52.08 43.53 41.49
F-PointNet [19] L + C 81.20 70.39 62.19 51.21 44.89 40.23
MV3D [21] L + C 71.09 62.35 55.12 N/A N/A N/A
AVOD [22] L + C 81.94 71.88 66.38 50.80 42.81 40.88
MVXNet [31] L + C 87.77 75.94 71.07 53.15 48.05 44.08
Ours L + C 88.67 76.74 73.81 56.87 51.74 48.03

This paper further evaluates the model’s performance in the BEV detection metrics,
as shown in Table 2. Compared to Point RCNN [17] and F-ConvNet [20], the proposed
method shows significant improvement, primarily in the person category. Compared to
Pointpainting [23], the proposed model achieves a 3.24%, 6.61%, and 6.56% improvement
in BEV AP for person category across three levels.
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Table 2. Results on the KITTI test BEV detection benchmark.

Methods
Car Person

Easy Mod Hard Easy Moderate Hard

SECOND [13] L 88.07 79.31 77.95 55.10 46.27 44.76
PointPillars [14] L 90.07 86.56 82.81 57.6 48.64 45.78
F-PointNet [19] L + C 91.17 84.67 74.77 57.13 49.51 45.48
F-ConvNet [20] L + C 91.51 85.84 76.11 57.04 48.96 44.33
Point RCNN [17] L 92.13 87.39 82.72 54.77 46.13 42.84
LaserNet [18] L 79.19 74.52 68.45 N/A N/A N/A
AVOD [22] L + C 90.99 84.82 79.62 58.49 50.32 46.98
PointPainting [23] L + C 92.45 88.11 83.36 58.70 49.93 46.29
Ours L + C 95.07 88.21 83.90 61.94 56.54 52.85

4.4. Qualitative Results

This paper provides results from the dataset in Figures 5 and 6. In the point cloud on
the left, the blue boxes represent ground truth annotations, while the green boxes represent
the detection results. The red boxes of the camera images in top-right display the ground
truth, while the blue boxes of the camera images in bottom-right shows the detection results.
In the vehicle detection scenario, the proposed model accurately obtains the 3D bounding
boxes of vehicles parked on the roadside and achieves precise predictions for small objects
at long distances. Additionally, even without labeled data in the dataset, the model
successfully predicts three heavily occluded vehicle objects. In the pedestrian detection
scenario, the model exhibits good detection performance for small objects, especially at
long distances. However, there are also some false positives, such as detecting two bikes
parked side by side as one bike.

Figure 5. Detection results of vehicle scenes.

In order to evaluate the robustness of the model in the presence of external envi-
ronmental interference, we conducted experiments to simulate various conditions. The
blue boxes represents the detection results in the corresponding scenario. Specifically, we
compared the detection performance under image blur, light rain, and heavy rain with fog
weather. The actual detection results are presented in Figure 7, where the left side displays
images (from top to bottom: original image, blurred scene, light rain scene, and heavy rain
with fog scene) and the right side shows the corresponding detection results obtained by
our model. It should be noted that during these experiments, no processing was applied to
the LiDAR point cloud, and our model was not adaptively trained on disturbed data.
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Figure 6. Detection results of pedestrian scenes.

Figure 7. Comparison of model performance in different scenarios.

The model consistently generates accurate detection results in all four scenarios at nor-
mal distances, with only some difficulties observed in long-distance object boxes obtained
during heavy rain with fog scenes. However, this challenge remains within an acceptable
range. Comparative analysis reveals the commendable robustness of the proposed model
under diverse environmental conditions.

4.5. Ablation Study

To assess the impact of each module on performance, ablation experiments were
conducted on the KITTI validation dataset, using 3D mAP (mean average precision) to
evaluate different levels of car, cyclist, and pedestrian detection. The results are presented
in Table 3. ✓ means that the corresponding module or method was used during the
experimental process.
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Table 3. Ablation experiments on the KITTI validation dataset.

CIF MSV MLF
3D Detection (mAP)

Easy Moderate Hard

✓ ✓ 67.46 54.45 51.18
✓ ✓ 67.56 54.79 51.34

✓ ✓ 68.16 57.21 54.24
✓ ✓ ✓ 70.83 58.87 55.75

First, the effectiveness of the cascaded image fusion module (CIF) was validated by
comparing it to MobileNetV3-s [25] without depth image inputs. The cascaded image
fusion module showed a 1.21% improvement in the hard level compared to the backbone
based on the RGB image. Since no learnable layers were introduced, the model parameter
count did not significantly increase.

Next, compared to using single-scale voxel (0.08, 0.08, 4), the multi-scale voxel module
(MSV) significantly improved the performance, particularly in moderate and hard levels,
with increases of 4.08% and 4.41%, respectively. This improvement resulted from enhanced
voxel features at different scales, enhancing the model’s ability to small objects.

Lastly, the effectiveness of multi-level fusion (MLF) between corresponding features at
different levels was verified and compared with using only a single-level feature correspon-
dence. In single-level feature correspondence, the fusion point features from the final level
were only fused with the initial voxel features at different scales. The results demonstrate
that utilizing the multi-level fusion between corresponding features at different levels leads
to performance improvements.

5. Discussion

We proposed a novel 3D object detection model that integrates LiDAR and camera
data for accurate small object detection tasks. The key contribution lies in enhancing the
feature extraction process through a cascaded image fusion module and a multi-scale voxel
module. The proposed model was investigated and compared with current advanced
methods on the KITTI dataset, and the effectiveness of the proposed modules was verified
through ablation experiments.

By conducting experimental analysis on the KITTI dataset, we compared our method
with current 3D object detection algorithms and verified the effectiveness of the proposed
module through ablation experiments. The results of our experiments and data visualiza-
tion demonstrate that our 3D object detection method achieves superior accuracy across
various difficulty levels. Specifically, for vehicles at the hard level, the 3D detection accu-
racy reached 73.81%, while for pedestrians it was 48.03%. Moreover, our model exhibited
excellent performance in detecting occluded objects and small objects at long distances.

The detection method employed in this article belongs to the multi-sensor fusion 3D
object detection approach, which enables the acquisition of more comprehensive feature
information, thereby resulting in superior detection performance compared to single-sensor
methods. The cascaded image fusion module enhances the robustness of image features
and ensures reliable detection results even under image disturbances. Furthermore, the
multi-scale voxel module equips the model with point cloud features at varying resolutions,
enabling exceptional detection performance for distant or small objects. Therefore, it can
effectively achieve 3D detection of small objects.

Due to hardware limitations, our model has not yet been deployed on edge computing
devices. Further verification of the detection accuracy and performance of our method is
required in real-world scenarios.

6. Conclusions

Three-dimensional object detection serves as an upstream subsystem in autonomous
driving systems and plays a pivotal role in the development of smart cities. Precise 3D de-
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tection outcomes enable vehicles to monitor dynamic objects surrounding them in real-time,
identify potential collision hazards, and enhance vehicle safety performance. Therefore,
the accuracy and scene robustness of 3D object detection algorithms are crucial factors.

Autonomous vehicles in smart cities can realize intelligent transportation collaboration
through data sharing with urban traffic management systems. Based on the data of 3D
object detection, vehicles can better interact with traffic signals, road condition monitoring,
and other systems to jointly realize traffic flow optimization and congestion alleviation.

This paper proposes a model that integrates point cloud and RGB image features for
the 3D detection of small objects. The experimental results demonstrate the efficacy of the
proposed method in the 3D detection of small objects. This method offers a viable and
effective framework for accomplishing the 3D detection of small objects, thereby providing
valuable insights for future advancements in 3D object detection algorithms.

We will further focus on enhancing the interaction between the features at different
scales and improving the ability of the detection model in real-time inference. Addition-
ally, we aim to employ feature extraction operators with enhanced cross-modal feature
representation capabilities to improve the efficiency of the model for raw information.
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The following abbreviations are used in this manuscript:

AP Average Precision
mAP Mean Average Precision
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VFE Voxel Feature Encoder
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FC Fully Connected
IoU Intersection over Union
GPU Graphics Processing Unit
BEV Bird’s-Eye-View
CIF Cascaded Image Fusion Module
MSV Multi-Scale Voxel Module
MLF Multi-Level Fusion
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