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Abstract: To address the shortage of wireless spectrum resources caused by the rapid development of
the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this
issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm
is introduced. This algorithm enhances traditional energy detection technology to mitigate the
high sensitivity to noise interference in the Internet of Vehicles environment. A double-threshold
judgment mechanism can be established based on the uncertainty of noise. Varying fusion rules
are implemented in the collaborative spectrum sensing scheme according to the density of vehicles
and the spectrum resource demand. Simulation results demonstrate that the performance of the
double-threshold cooperative spectrum sensing algorithm surpasses that of the traditional single-
threshold energy detection scheme, particularly evident under lower Signal-to-Noise Ratio (SNR)
conditions. Moreover, the proposed algorithm exhibits superior sensing performance in environments
characterized by higher noise uncertainty.

Keywords: Internet of Vehicles; cognitive radio; cooperative spectrum sensing; energy detection;
double threshold

1. Introduction

With the advancement of the Internet of Vehicles (IoVs), it has emerged as a crucial
technology within the Intelligent Transportation System (ITS). However, the Internet of
Vehicles requires ample spectrum resources to facilitate data transmission and ensure com-
munication quality [1]. Insufficient spectrum resources can lead to unstable or delayed
communication. Nevertheless, wireless spectrum resources are a national asset and rep-
resent an exceedingly vital, scarce resource. The dedicated spectrum resources allocated
to the Internet of Vehicles are limited. For instance, the United States Federal Communi-
cations Commission has designated only 75 MHz (5.850~5.925 GHz) for the Internet of
Vehicles, while in China, only a 20 MHz (5.905~5.925 GHz) frequency band is utilized as the
operational frequency band for the Internet of Vehicles [2,3]. Furthermore, as the number
of vehicles increases and people’s demand for entertainment communication within the
Internet of Vehicles grows, the existing technology cannot adequately meet these spectrum
requirements. Hence, the challenge at hand is how to allocate, manage, and effectively
utilize the limited spectrum of resources in the Internet of Vehicles.

The advancement of technology in the Internet of Vehicles holds significant importance
for travel and traffic management. However, due to limited spectrum resources and
complex channel environments, the development of the Internet of Vehicles has presented
substantial challenges [4–7]. Internet of Vehicles technology offers extensive application
prospects in public safety communication, secure business communication, and non-secure
business communication among vehicles. Safety service communication between vehicles
primarily encompasses vehicle collision warnings, road condition information, etc. These
safety service communications need to ensure real-time reliability [8,9]. Non-secure service
communications include in-vehicle entertainment systems, navigation systems, etc., which
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require greater bandwidth and quality of service to enhance user experiences. Public
safety communication refers to communication between police on duty, fire engines, etc.,
necessitating significant spectrum resources during emergencies. Therefore, cognitive radio
technology will increasingly play a pivotal role in the Internet of Vehicles, steering vehicles
toward a more intelligent and digital future.

Spectrum sensing is pivotal in enabling cognitive radio technology for the next genera-
tion of wireless communication systems [10]. Despite advancements, current methods such
as energy detection, cyclostationary features, and matched filters have inherent limitations,
leaving the reliability of spectrum sensing an ongoing concern in wireless communica-
tion research. Recently, machine learning techniques have been explored for cooperative
spectrum sensing [11]. In [12], a spectrum sensing method rooted in machine learning
theory for cognitive radio networks is proposed, rigorously modeled, and validated using
a large-scale dataset. The models undergo extensive testing and evaluation, considering
metrics such as detection probability, false alarm probability, miss-detection probability, and
classification accuracy. Moreover, a novel spectrum sensing algorithm based on support
vector machines is introduced in [13]. This approach involves mapping received signals
into a multi-dimensional feature space derived from well-established spectrum sensing
statistics and their higher-order combinations. Notably, the receiver operating characteristic
(ROC) curve of the proposed detector outperforms classical spectrum sensing methods,
obviating the need for knowledge of noise variance.

The application of spectrum sensing technology in cognitive radio is extensive. It
can be applied not only to the Internet of Things (IoT) [14–16], but also to the Internet of
Vehicles to enhance the security and confidentiality of communications. The application
of cognitive radio (CR) technology in the context of the Internet of Vehicles facilitates
spectrum sharing by detecting idle spectrum, thereby improving spectrum utilization
rates and alleviating spectrum resource shortages [17]. In [18], the authors analyze how
dynamic access spectrum in cognitive radio can enhance spectrum resource opportunities
in IoV communications for unlicensed users by mitigating detrimental interferences for
primary users (PUs). In [19], the authors propose a novel spectrum sensing technique
wherein CR-assisted vehicles utilize backoff duration for sensing the CR network. Through
cooperative spectrum sensing, the information sensed is shared among vehicles, facilitating
data transmission through the available spectrum. In [20], a system model is proposed
for cooperative centralized and distributed spectrum sensing in vehicular networks. The
proposed architecture aims to mitigate both spectral scarcity and high-mobility issues.

In addition, authors in [21] propose a cognitive vehicle assistance network that adopts
a cooperative spectrum sensing and allocation model. This model enables cognitive ve-
hicles to detect current and future frequency spectrum usage on the highway, achieving
opportunistic access to authorized idle frequency bands. This improves the efficiency
of vehicle communication and accommodates different communication needs. Authors
in [22] propose a distributed collaborative spectrum sensing method for the Internet of
Vehicles, optimizing the threshold value based on single-threshold collaborative spectrum
sensing to enhance the success rate of spectrum sensing. However, this method still does
not completely resolve the issue of single-threshold energy detection’s over-dependence
on signal-to-noise ratio (SNR). Building upon the single threshold value in [22], authors
in [23] enhance the algorithm to utilize a double-threshold value, resulting in improved
spectrum sensing performance. This addresses the problem of the single-threshold value’s
excessive dependence on signal-to-noise ratio to some extent. Nevertheless, a drawback
is the simplicity of setting the thresholds; relying solely on the number of vehicles may
compromise the accuracy of simulation results.

Different from the single-threshold energy detection used in radar, the advantages of
the proposed double-threshold cooperative spectrum sensing algorithm in the Internet of
Vehicles are mainly reflected in the following aspects: (1) Improved detection probability
and reduced false alarm probability: Compared with the traditional single-threshold
energy detection algorithm, under the same conditions, the double-threshold collaborative
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detection algorithm is more likely to accurately identify the target signal while reducing
false alarms caused by misjudgment. (2) Adaptation to low-SNR environments: In relatively
low-SNR environments, the double-threshold collaborative detection algorithm exhibits
excellent performance. This is because the double-threshold design can better handle
noise interference, achieving more stable detection results in complex Internet of Vehicles
environments. (3) Reduction in the impact of error noise estimation: In real Internet
of Vehicles environments, the original signal may be mixed with ever-changing noise,
affecting detection accuracy and false alarm probability. The double-threshold collaborative
detection algorithm can better handle noise interference by setting two threshold values,
thus reducing the influence of error noise estimation on detection performance.

The major contributions of this article are as follows:
A system model of the cognitive Internet of Vehicles is constructed, which combines

the double-threshold decision criterion and collaborative spectrum sensing technology
to enhance spectrum sensing performance and significantly increase the utilization of
spectrum resources in vehicles within the Internet of Vehicles.

The proposed algorithm dynamically adjusts the threshold value according to noise un-
certainty, broadening the range of confusion interval in high-noise environments,
thereby improving detection probability even under conditions of low SNR in the Internet
of Vehicles.

The paper is organized as follows: Section 2 discusses the system model of the pro-
posed scheme in the Internet of Vehicles. Section 3 presents a double-threshold cooperative
spectrum sensing algorithm. Simulation results are discussed in Section 4. Section 5 dis-
cusses the findings, validation of the method and shortcomings of this study. We conclude
the paper in Section 6.

2. System Model

The system model of the cognitive Internet of Vehicles is depicted in Figure 1. It
comprises the Primary Base Station (PBS), the Fusion Center (FC), and several cognitive
vehicle nodes capable of facilitating communication between vehicles and the FC, along
with communication among vehicles. In this scenario, in the event of a significant traffic
accident or congestion, numerous vehicle nodes may simultaneously initiate vehicle service
communication requests, potentially leading to a shortage of spectrum resources. In such
instances, the cognitive Internet of Vehicles must promptly activate cognitive functions
to conduct spectrum sensing, identify the available idle spectrum, enhance spectrum
utilization, and ensure the efficiency and reliability of vehicle communication.

The PBS transmits signals within the authorized frequency band to cognitive vehicles
within its coverage range, typically operating within the television frequency band. The
yellow region illustrated in Figure 1 delineates the coverage area of the PBS. In the absence
of the PU’s signal transmission, certain cognitive vehicles can utilize these idle frequency
bands for data transmission, effectively alleviating pressure on the frequency band.

The cognitive vehicle user primarily obtains the vehicle’s position, speed, and driving
route through onboard sensors and Global Positioning System (GPS) positioning. On one
hand, the cognitive vehicle user can employ spectrum sensing to detect idle spectrum
within the frequency band authorized by the PU, as depicted by the red arrow in Figure 1.
On the other hand, vehicles outside the coverage range of the PBS can communicate with
covered vehicles to exchange data and obtain information, such as the driving status and
road conditions faced by the other vehicle, as illustrated by the blue arrow in Figure 1.

The role of the fusion center in collaborative spectrum sensing is to communicate with
cognitive vehicles within its range. Since the coverage area of the PBS is limited, multiple
cognitive vehicle users collect vehicle data within their respective ranges and then upload
the data to the fusion center, as indicated by the yellow arrow in Figure 1. The fusion
center collects spectrum sensing judgment results uploaded by cognitive vehicles, selects
appropriate fusion rules based on different situations to make the final judgment, and
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then transmits the judgment results to each cognitive vehicle user. This allows for them to
dynamically access idle frequency bands for communication.
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Given the high velocity of vehicles and the intricacies of the continuously evolving
communication landscape, the conventional single-threshold spectrum sensing algorithm
frequently encounters difficulties to achieve high detection probability in low-SNR en-
vironment. In response to this challenge, the double-threshold collaborative spectrum
sensing algorithm endeavors to enhance detection probability effectively in a low-SNR
environment.

3. The Proposed Double-Threshold Cooperative Spectrum Sensing Algorithm

The energy detection technology is simple, can be implemented on low-cost hardware,
and has a wide range of applications with good real-time performance. However, it also
possesses a notable disadvantage: susceptibility to interference from noise. When energy
detection is impacted by noise, improving the accuracy of spectrum sensing becomes
challenging, making the threshold setting particularly crucial. To address the issue of
noise interference in energy detection, this paper proposes a double-threshold cooperative
spectrum sensing algorithm. The threshold setting can be flexibly adjusted according to
changes in noise uncertainty within the environment.

3.1. Energy Detection Technology

It is assumed that y(t) represents the signal received by the cognitive vehicle user,
while n(t) denotes the Additive Gaussian White Noise (AWGN) with a mean value of zero
and variance σ2

n , where N is the number of samples. Detection statistic T for the cognitive
vehicle user is

T =
1
N

N

∑
k=1

|y(t)|2 (1)
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Detection statistic T can approximate Gaussian distribution{
H0 T ∼ N(σ2

n , 2σ4
n/N)

H1 T ∼ N((1 + γ)σ2
n , 2(1 + γ)2σ2

n/N)
(2)

where σ2
s is the average power of the received signal, γ = σ2

s
σ2

n
represents the signal-to-noise

ratio received by the cognitive vehicle user, and detection probability Pd and false alarm
probability Pf of energy detection can be obtained, respectively.

Pf = P(T > λ|H0) = Q

(
λ − Nσ2

n√
2Nσ2

n

)
(3)

Pd = P(T > λ|H1) = Q

(
λ − N(1 + γ)σ2

n√
2N(1 + γ)σ2

n

)
(4)

In Equation (3), P refers to the probability that detection statistic T of cognitive vehicle
users exceeds decision threshold λ when the authorized spectrum resources are idle (H0),
representing false alarm probability. In Equation (4), P denotes the probability that detection
statistic T of cognitive vehicle users exceeds decision threshold λ when the authorized spec-

trum resource is occupied (H1), representing detection probability. Q(x) = 1√
2π

∫ ∞
x e−

t2
2 dt is

the complementary cumulative distribution function of the Standard Normal Distribution,
and λ represents the threshold value. Since false alarm probability is predetermined, the
threshold value can be derived from Equation (3).

λ = σ2
n(
√

2NQ−1(Pf ) + N) (5)

3.2. A Double-Threshold Cooperative Spectrum Sensing Scheme

The threshold value of traditional energy detection technology is fixed, making it
suitable for low-speed and stable communication environments. However, it proves
inadequate for complex and dynamic Internet of Vehicles scenarios featuring high-speed
moving vehicles. In real vehicular road environments, adopting traditional energy detection
technology leads to the underutilization of spectrum resources. The implementation of a
double-threshold spectrum sensing algorithm enhances the flexibility and adaptability of
spectrum sensing.

Different wireless environments may require varying threshold values for energy
detection, rendering a single threshold method inadequate in adapting to changes across
environments. Through employing the double-threshold spectrum sensing algorithm,
distinct threshold values can be established corresponding to different environments,
enhancing the flexibility and adaptability of spectrum sensing. Moreover, the double-
threshold spectrum sensing algorithm can effectively mitigate the energy consumption
associated with spectrum sensing. In contrast, the single threshold method necessitates
substantial computing and communication resources due to the requirement for all-band
signal energy detection. Using the double-threshold spectrum sensing algorithm, energy
detection can be confined to a specific frequency band, thus reducing energy consumption
and computational complexity. Therefore, the adoption of the double-threshold method
introduces only an uncertain interval between the decision interval and the non-decision
period when compared to the single-threshold approach.

In the double-threshold spectrum sensing algorithm, if the energy value received by
the cognitive vehicle user is less than threshold value λ1, the local judgment result is H0. If
the energy value received by the cognitive vehicle user is greater than threshold value λ2,
the local judgment result is H1. If the energy value received by the cognitive vehicle user is
greater than λ1 but lesser than λ2, the local judgment result is inconclusive.
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The double-threshold value can be derived from the single-threshold value. This
double-threshold value can be determined based on noise uncertainty, as outlined in [24].
Noise uncertainty refers to the fluctuation in the size of the noise signal within a certain
range due to randomness during noise measurement. Assuming u (in dB) represents noise
uncertainty, we let τ = 10

u
10 . The greater the instability of noise in the communication

environment, the higher the value of τ. Consequently, the power of the noise is evenly
distributed within interval [σ2

n/τ, τσ2
n ]. Based on noise uncertainty u, the double threshold

can be set as
λ1 =

λ

τ
, λ2 = τλ (6)

Detection probability Qd and false alarm probability Q f under the double-threshold
spectrum sensing algorithm can be derived from Equation (6) as follows:

Qd = P(T > λ2|H1) = Q

(
λ2 − N(σ2

s + σ2
n)√

2N(σ2
s + σ2

n)

)
(7)

Q f = P(T > λ2|H0) = Q

(
λ2 − Nσ2

n√
2Nσ2

n

)
(8)

When the cognitive vehicle user conducts spectrum sensing, it calculates the energy
and threshold values based on the received signal. Subsequently, the energy value is
compared with the threshold value. If the energy value is less than the smaller threshold
value λ1, the local judgment indicates that the PU does not exist. Conversely, if the energy
value exceeds the larger threshold value λ2, the local judgment indicates the presence of
the primary user. If the energy value falls between the two threshold values, then the local
decision is inconclusive.

When multiple cognitive vehicle users perform collaborative spectrum sensing, the
OR fusion rule and the AND fusion rule are adopted, and then the fusion center chooses
the fusion rule to use according to the actual traffic environment.

The concept behind the AND rule is that the fusion center employs a logical “AND”
method to determine the judgment results submitted by each cognitive vehicle user. In
essence, the final decision infers the existence of the primary user’s (PU) signal within
a specific frequency band only when all cognitive vehicle users conclude that the PU’s
signal is present. The advantage of the AND rule lies in its ability to reduce false alarm
probability and prevent the wastage of idle spectrum when the PU’s signal is absent
but mistakenly detected as present. However, its drawback is a reduction in detection
probability, potentially leading to excessive occupation of the primary user’s frequency
band by the secondary user, thus impacting the primary user’s operation. In the context of
the IoVs, the AND rule can be applied in scenarios characterized by high vehicle density
and less urgent PU information. This allows for more vehicle users to utilize the idle
frequency band of the primary user, thereby alleviating pressure on spectrum resources.
The fusion detection probability and false alarm probability are illustrated in Equation (9):

Qd,AND =
M
∏

k=1
Qd,k

Q f ,AND =
M
∏

k=1
Q f ,k

(9)

The concept behind the OR rule is that the fusion center utilizes a logical “OR” method
to determine the judgment results provided by each cognitive vehicle user. The final
decision indicates the presence of a PU signal if any vehicle user detects its existence. The
advantage of this rule is its potential to enhance the overall detection probability to a
certain extent and diminish the impact of secondary user signals on PU communication.
However, this may result in reduced spectrum utilization. In the context of the Internet
of Vehicles, this rule can be applied in scenarios characterized by low vehicle density and
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minimal interference with PU information. Its fusion detection probability and false alarm
probability are depicted in Equation (10):

Qd,OR = 1 −
M
Π

k=1
(1 − Qd,k)

Q f ,OR = 1 −
M
Π

k=1
(1 − Q f ,k)

(10)

The flowchart of the double-threshold cooperative spectrum sensing algorithm is
presented in Figure 2. When multiple cognitive vehicle users participate in collaborative
spectrum sensing, each cognitive vehicle user initially transmits its local decision results
to the fusion center, which then consolidates these decisions. Subsequently, the fusion
center chooses the appropriate fusion rule based on the prevailing road traffic conditions.
If the number of cognitive vehicle users is small and the PU information requires urgent
communication, the fusion center selects the OR rule for collaborative spectrum sensing.
Conversely, if there is a high number of vehicle users and the PU’s information is not
urgent, the fusion center opts for the AND rule for collaborative spectrum sensing.

The specific algorithm flow is as follows:
Firstly, the double-threshold collaborative spectrum sensing algorithm determines the

received signal energy by setting two distinct threshold values: the upper and the lower
threshold. These thresholds are usually determined based on the uncertainty of noise in the
Internet of Vehicles communication environment to ensure an effective distinction between
authorized user signals and noise signals.

In the Internet of Vehicles environment, every vehicle is outfitted with a cognitive radio
device dedicated to spectrum sensing and communication. Each vehicle autonomously
conducts local spectrum sensing, employing a radio-frequency receiver to capture the
signal and compute its energy value. Subsequently, each vehicle compares the derived
energy value with predetermined upper and lower thresholds.

Based on the comparison results, a local decision is generated for each vehicle. If
the received signal energy value is higher than the upper threshold, it is judged that an
authorized user exists. If the energy value is lower than the lower threshold, it is determined
that the authorized user does not exist. If the energy value falls between the two threshold
values, it enters an uncertain region and requires further processing.

Subsequently, each vehicle sends its own local decision to the fusion center. The fusion
center is responsible for collecting the decision results of all vehicles and selecting a fusion
rule for global decision-making according to the spectrum resource requirements of the
vehicles. The final decision is based on either the AND or the OR rule.

Finally, the fusion center assesses whether the current frequency band is occupied by
authorized users based on the global decision results and disseminates these findings to all
vehicles. Each vehicle then adapts its communication strategy under the received results to
prevent interference with authorized users.
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4. Simulation Results and Discussion

To verify whether the spectrum sensing accuracy of the proposed double-threshold
collaborative spectrum sensing algorithm is superior to that of a traditional single-threshold
energy detection, simulations were conducted using the MATLAB simulation platform [25].
The signal received by the cognitive vehicle user was a Binary Phase Shift Keying signal,
with the sampling number N set to 500 and the number of Monte Carlo experiments set to
10,000. Firstly, the proposed double-threshold collaborative spectrum sensing algorithm
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was compared with traditional single-threshold energy detection to determine whether
detection probability improved. We observed the simulation results under different signal-
to-noise ratios and noise uncertainty to assess whether they met expectations and analyzed
the reasons behind the simulation results. Finally, we compared the detection probabilities
under two fusion rules in collaborative spectrum sensing.

Figure 3 compares the detection probabilities of the traditional single-threshold energy
detection and the double-threshold collaborative spectrum sensing algorithm. The noise
uncertainty is set to 0.5, and the SNRs are set to −5 dB and −20 dB.
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single−threshold energy detection under different SNRs.

When the SNR is −5 dB and the false alarm probability is 0.1, the detection probability
of the double-threshold algorithm is 0.9659, while that of single-threshold energy detection
is 0.8388. The detection probability of the double-threshold algorithm increases by only
0.1271 compared to single-threshold energy detection. With a high signal-to-noise ratio,
the improvement in sensing performance using the double-threshold algorithm is limited.
However, when the SNR is −20 dB and the false alarm probability is 0.36, the detection
probability of the double-threshold algorithm is 0.9712, whereas that of single-threshold en-
ergy detection is 0.0589. Here, the detection probability of the double-threshold algorithm
increases by 0.9123 over single-threshold detection. Obviously, in a low-SNR environment,
the performance of single-threshold detection significantly deteriorates due to noise inter-
ference. In such scenarios, the double-threshold detection algorithm markedly enhances
the performance of single-threshold detection, indicating its effectiveness in mitigating the
impact of noise on energy detection.

Figure 4 compares the detection probabilities of the double-threshold detection al-
gorithm with single-threshold energy detection when the noise uncertainty is 0.5 and
0.9, with a signal-to-noise ratio of −15 dB. As shown in Figure 4, the performance of the
double-threshold detection algorithm is superior to that of single-threshold energy detec-
tion under the same signal-to-noise ratio. Furthermore, the detection probability of the
double-threshold algorithm is higher when the noise uncertainty is greater. This indicates
that the double-threshold detection method performs better in environments with higher
noise instability.
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The double-threshold spectrum sensing algorithm is applied to multi-user collabora-
tive spectrum sensing, with the number of cognitive vehicle users participating set to 20. In
Figure 5, the signal-to-noise ratio is set to SNR = −15 dB, and the noise uncertainty of the
double threshold is set to u = 0.5. Figure 5 compares the cooperative detection probabilities
of multiple cognitive vehicle users under both OR and AND rules.
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On one hand, the OR rule proves more effective as it enhances detection probability,
albeit at the expense of an increased false alarm probability, as depicted in Figure 5. Under
this rule, the fusion center confirms the presence of the PU’s signal once any cognitive
vehicle user detects it. Conversely, the AND rule mandates fusion centers to confirm
the PU signal’s presence only when all cognitive vehicle users detect it. Consequently,
the detection probability of the AND rule is lower compared to that of the OR rule, as it
prioritizes lower false alarm probability over detection probability. Furthermore, the double
threshold performs notably better under the AND rule. Different fusion rules are suitable
for different scenarios; the OR rule is preferable in scenarios with low vehicle density where
PU information is crucial, whereas the AND rule is preferred in the opposite scenario.

On the other hand, under the OR rule, the performance improvement of the proposed
algorithm compared with the traditional single threshold is not obvious. This is due to the
decision criterion of the OR rule itself. However, the proposed algorithm demonstrates that
the performance of the double-threshold detection algorithm is significantly better than the
single-threshold detection criterion when using the AND rule.

Figure 6 compares the collaborative spectrum sensing performance of cognitive vehicle
users using double-threshold collaborative spectrum sensing under the AND fusion rule
and the OR fusion rule at SNRs of −5 dB, −10 dB, and −15 dB, respectively. As depicted in
the figure, regardless of whether it is the OR rule or the AND rule, a decrease in SNR from
−5 dB to −10 dB leads to a significant deterioration in detection performance over a wide
range. Moreover, when the SNR decreases from −10 dB to −15 dB, there is a corresponding
deterioration in detection performance. Notably, it is observed that when the SNR decreases
from −5 dB to −10 dB, despite the same amplitude decrease in signal-to-noise ratio, the
detection performance experiences a substantial decline.
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It can be concluded that although the sensing performance of the double-threshold
collaborative spectrum sensing algorithm declines with decreasing SNR in multi-user
collaborative spectrum sensing, given that SNR is the primary factor affecting sensing
performance in any spectrum sensing, this decline cannot be mitigated at low SNR. How-
ever, the proposed double-threshold method mitigates the decline in sensing performance
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with decreasing SNR. In other words, the double-threshold method is more suitable under
low-SNR scenarios.

5. Discussion

To address the impact of low SNR on spectrum sensing performance in IoV environ-
ments, this paper proposes a double-threshold collaborative spectrum sensing algorithm.
In low SNR environments, the performance of the double-threshold algorithm is superior
to that of the single-threshold algorithm. The double-threshold spectrum sensing method
performs better in environments with higher noise instability. Additionally, the application
scenario of the double-threshold cooperative spectrum sensing algorithm is discussed. The
double-threshold algorithm is more suitable for improving spectrum sensing performance
among multiple vehicle users using the AND rule.

Indeed, verification at the analog signal level alone is insufficient, especially in sce-
narios involving complex and demanding real-world applications such as the Internet
of Things or Vehicle-to-Vehicle (V2V) communication. Verification in a real environment
can directly reflect the algorithm’s performance in actual operation, considering various
possible disturbances and variables. Nevertheless, due to the complexity and uncontrol-
lable factors in real-world environments, it may be difficult to perform and may involve
challenges, potentially high costs and risks. In addition, it is also feasible and practical
to simulate traffic systems and virtual vehicles in a virtual environment for verification.
Due to current research conditions and resource constraints, it is impossible to build the
required virtual environment.

6. Conclusions

This paper first introduced the system model of the cognitive Internet of Vehicles,
then derived the threshold value from the detection probability and false alarm probability
formulas of energy detection. Subsequently, a double-threshold detection method was
proposed based on noise uncertainty, and the flow chart of the proposed method when cog-
nitive vehicle users performed spectrum sensing was analyzed. Following this, a simulation
of the double-threshold spectrum sensing algorithm was conducted and compared with
single-threshold energy detection, demonstrating the intuitive performance improvement
of double-threshold detection over single-threshold detection. Finally, collaborative spec-
trum sensing was performed under multiple cognitive vehicle users, and the differences in
sensing performance between the OR rule and the AND rule were analyzed.

The research results of the proposed algorithm demonstrate that the performance
of the double-threshold detection algorithm is significantly better than that of the single-
threshold detection criterion when using the AND rule. The value of the proposed spectrum
sensing algorithm lies in providing ample spectrum resources for the vehicle users of the
Internet of Vehicles. This aids in integrating Internet of Vehicles technology with 5G technol-
ogy, facilitating efficient interconnection between vehicles and infrastructure, and further
enhancing the safety and convenience of intelligent connected vehicles. Simultaneously,
it also offers urban traffic control centers more flexible access to spectrum resources for
allocation and management.

While this paper enhances the spectrum sensing performance of vehicle networking
and increases the utilization rate of spectrum resources, it still faces certain shortcomings
and limitations in the context of complex and dynamic vehicle networking environments.
With the rapid development of intelligent vehicle networking, the demand for spectrum
resources for human–vehicle interaction and vehicle–vehicle interaction is also increasing.
Addressing a more unstable noise environment will be the main focus in the later stages of
this research. The next step will involve addressing additional challenges encountered in
the vehicle networking environment.
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Abbreviation

AWGN Additive Gaussian White Noise
CR Cognitive Radio
FC Fusion Center
IoT Internet of Things
IoVs Internet of Vehicles
ITS Intelligent transportation system
PBS Primary Base Station
PUs Primary Users
SNR Signal-to-noise Ratio
V2V Vehicle-to-Vehicle
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