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Abstract: This study investigates for the first time how public charging infrastructure usage differs
under the presence of diverse pricing models. About 3 million charging events from different
European countries were classified according to five different pricing models (cost-free, flat-rate,
time-based, energy-based, and mixed) and evaluated using various performance indicators such as
connection duration; transferred energy volumes; average power; achievable revenue; and the share
of charging and idle time for AC, DC, and HPC charging infrastructure. The study results show that
the performance indicators differed for the classified pricing models. In addition to the quantitative
comparison of the performance indicators, a Kruskal–Wallis one-way analysis of variance and a
pairwise comparison using the Mann–Whitney-U test were used to show that the data distributions
of the defined pricing models were statistically significantly different. The results are discussed
from various perspectives on the efficient design of public charging infrastructure. The results show
that time-based pricing models can improve the availability of public charging infrastructure, as the
connection duration per charging event can be roughly halved compared to other pricing models.
Flat-rate pricing models and AC charging infrastructure can support the temporal shift of charging
events, such as shifting demand peaks, as charging events usually have several hours of idle time per
charging process. By quantifying various performance indicators for different charging technologies
and pricing models, the study is relevant for stakeholders involved in the development and operation
of public charging infrastructure.

Keywords: electric vehicles; usage behavior of charging infrastructure; charging tariffs; pricing
models; pricing of PEV charging; pricing policy; pricing mechanisms

1. Introduction

The transport sector is a central source of greenhouse gas (GHG) emissions in modern
economies [1,2]. For instance, the transport sector is responsible for around 25 and 28% of
total GHG emissions in Europe and the USA, respectively, and road transport accounts
for the largest share of emissions at around 3/4 [3–6]. In addition to a modal shift, the
electrification of vehicles is a crucial field of action for reducing GHG emissions in the
transport sector.

In 2023, 14.2 million new plug-in electric vehicles (PEVs) were registered worldwide,
which corresponds to an increase of 35% compared to the previous year with 10.5 million
PEVs [7,8]. Various studies have indicated that the acceptance and spread of PEVs can
be supported by the development of public charging infrastructure (CI) [9–11]. In this
context, understanding usage behavior is the basis for optimizing the existing and future
public CI. Consequently, the usage behavior of CI has already been investigated in many
aspects. Various studies have investigated, for example, the effect of push measures that
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include price incentives on mobility behavior. For example, research shows that introducing
parking fees or increasing existing fees helps to reduce the use of private vehicles and make
alternative modes of transportation more attractive [12–14]. However, charging behavior
under the presence of different pricing schemes has yet to be examined in detail. The
current state of research and the novel contribution of this study are presented below.

Table 1 shows an overview of relevant investigations into public CI usage behavior.
The column Number of CEs lists the number of charging events (CEs) at the charging points
(CPs) on which the research was based. The column Period lists the collection period of
the CEs. The subsequent columns CI-Types, Location, and Pricing Models provide thematic
insights into the investigations. CI-Types indicates whether the study differentiated between
types of public CI and different charging technologies. Location indicates whether charging
infrastructure locations were considered in the investigation, and Pricing Models whether
the pricing of public CEs was considered in the study.

Table 1. Overview related literature.

Authors Number of CEs Country Period CI-Types Location Pricing Models

Sun et al. (2015) [15] 61,000 Japan 2011–2013 - - -
Sun et al. (2015) [16] 5000 Japan 2011–2013 - - X
van den Hoed et al. (2013) [17] 135,000 Netherlands 2012–2013 - - -
Motoaki and Shirk (2017) [18] 8000 USA 2013 - - X
Morrissey et al. (2016) [19] 40,000 Ireland 2012–2015 X X -
Wolbertus et al. (2016) [20] 1.6 m Netherlands 2014–2015 - - -
Wolbertus et al. (2017) [21] 1.3 m Netherlands 2016 - - -
van der Kam et al. (2020) [22] 1 m Netherlands 2016–2018 - - -
Wolbertus et al. (2021) [23] 1.6 m Netherlands 2017–2018 X - -
Fischer et al. (2022) [24] 300,000 Germany 2020 X X -
Hecht et al. (2020) [25] - Germany 2019–2020 - X -
Friese et al. (2021) [26] - Germany 2021 X X -
Mortimer et al. (2022) [27] 1.8 m Germany - - X -
Hecht et al. (2022) [28] 9 m Germany 2019–2021 X - -
Jonas et al. (2023) [29] 2.3 m Canada 2018–2019 X X -
Borlaug et al. (2023) [30] 1.5 m USA 2019–2022 X X -
Mahlberg et al. (2023) [31] 4000 USA 2022 X - -

In [15,16], the charging behavior of private and commercial PEVs was investigated,
with a focus on AC CEs in the former, and DC CEs in the latter. The data of about 500 battery
electric vehicles (BEVs) with a maximum range of up to 180 km collected in Japan from
2011 to 2013 served as the basis for the study. For AC CEs, the study examined whether
the CE started immediately after the arrival of the last trip or whether there was a delay in
between. A delay was assumed if the CE had not started within 30 min after arrival. The
analysis of AC CEs showed that there was a delay in 20% of the CEs of commercial BEVs
and in 55% of private BEVs. According to [15], the high share of delay in private BEVs
resulted from the CEs at private charge points (CPs). The users waited until a favorable
electricity tariff was in effect between 11 p.m. and 7 a.m. Part of the DC CI was cost-free,
and part was paid. The results of the study showed no relevant difference between the
cost-free and paid use of DC CI in terms of the state-of-charge (SOC) at the start of the CE
and, thus, in terms of the energy quantities transferred.

In [18], the usage behavior at DC CI was investigated for two different pricing mod-
els. For this purpose, the connection duration and the transferred energy quantity were
compared for a cost-free and flat-rate charging of USD 5 per CE. Approximately 6000 DC
CEs from private Nissan Leaf owners with a nominal DC power of 50 kW were used as
the database. The results showed that CEs with flat-rate pricing models had lower energy
volumes per minute and longer connection times than cost-free CEs.

In [17,20,21], the usage behavior at public CI was investigated using public CE data
from different Dutch cities collected from 2012 to 2016. These studies quantified characteris-
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tic values for connection duration, transferred energy quantities, and the share of idle time
for individual charging locations. Comparable research was presented in [19,24–26,28] for
public CI from the European countries of Ireland, Northern Ireland, and Germany from
2012 to 2021. These studies thus form a reasonable basis for comparing usage behavior.
Tariffs were not investigated in these studies.

In [22,23,27], different planning approaches for scaling public CI were compared. The
studies were based on an extensive dataset of over one million CEs. In [22], possible
roll-out strategies for policymakers were structured using a decision tree. Accordingly, the
recommendations for action were mainly based on the share of charging and idle time.
In [23], different approaches for the roll-out of public CI in cities were investigated with the
installation of isolated AC charging stations (CSs) and several AC CSs at one location as
charging hubs and DC CI. In [27], a competitive and cooperative planning approach for the
roll-out of public CI were compared. The competitive approach resembled a market-based
approach, in which private companies build charging sites primarily in the most attractive
locations. In contrast, the cooperative approach was more like a policy-driven approach,
where new CSs are primarily developed at locations with a low density of existing CSs,
to improve the overall coverage of public CI. The study was based on data from publicly
available websites. Since this dataset only contained information about the temporal
occupancy of public CI, relevant aspects such as the transmitted energy quantity or tariffs
were not considered in the evaluation.

In [29], patterns were identified in the charging behavior of PEVs at private and
public charging points. The study was based on data from around 2.3 million CEs at over
7000 public and private CSs in Canada. The results indicated an “EV duck curve” with a
peak in demand in the evening hours due to private CEs. Due to the loss of solar power
during this time, there is a risk that the energy demand will be covered by fossil fuels, thus
worsening the carbon footprint of PEVs. Dynamic pricing strategies were mentioned as a
possible solution to shift the demand for power to periods with electricity from renewable
energy sources. In [30], the usage behavior of public CI in the USA and the influence of
various factors were examined using regression analyses. The study differentiated between
AC and DC CSs and between free and paid CEs. The results showed that the proportion of
idle connection time at AC CSs was much higher (30 to 76%) than the proportion at DC CSs
(5 to 11%). The comparison of free and paid CEs showed that offering cost-free CEs can
improve the utilization of AC CI in particular. This study also pointed to the need for future
studies in which the usage behavior of public CI is examined for different pricing models.
In [31], the activity of users during public CEs was observed using cameras. In total, the
activities during 4000 CEs at 16 DC and HPC CSs with 50, 150, and 350 kW nominal power
were evaluated in the period from May to July 2022 at two charging locations in America.
It should be noted that only the camera data on user activity were evaluated. Data on the
actual CEs, such as the amount of energy transferred, were not recorded. The driver’s
activity during the CEs was divided into six categories (wait in vehicles, travels to stores,
travels to stores and waits in vehicles, walks pet, unknown, and left the premises), with
each activity affecting the average time spent at the CSs. For example, the connection time
for users who left the charging location was 30 to 60 min longer than for users who waited
in their vehicles.

In summary, the previous studies primarily investigated the user behavior of public CI
on the basis of various data sources from single countries. In some studies, user behavior
was examined separately for individual CI and location types. However, pricing models
were not considered. In [16,18], CE pricing was considered as a secondary aspect for DC
CEs, but only whether pricing occurred or whether CEs were free. Furthermore, since these
studies were conducted on PEV-based datasets, the number of CEs was comparatively
small. In contrast to previous studies, the study at hand provides a detailed evaluation
of different pricing models separately for AC, DC, and HPC CI. Based on an extensive
dataset of real public CEs from different European countries, different pricing models are
identified and classified for this purpose. Furthermore, the charging locations are classified
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and analyzed into different location types and analyzed. Thus, the present study covers all
research areas listed in Table 1.

2. Materials and Methods
2.1. Dataset

This study is based on a dataset containing more than 3.1 million charge detail records
(CDRs) from public CEs. Such records are the data footprint of CEs and are utilized, among
other things, in the billing process. Table 2 lists the data points included in these records.
Each record contains an EVSEID (“Electric Vehicle Supply Equipment Identification”) as
unique identifier for the utilized CP, the transaction_begin and transaction_end that allow
calculating the connection duration, the amount of transferred energy, the price billed to the
customer, the tariff applied as a unique code, as well as the tariff_text, a textual description
of this tariff. The dataset contains a total of over 4000 different tariffs. The data points
latitude and longitude describe the location of the CP, while charging_type and power indicate
the charging technology and the nominal power of the CP. Here, a DC CP with a power
of 150 kW or more is considered as HPC [32]. Various logical checks were performed to
filter out erroneous and illogical CEs. For example, CEs with no transferred energy or CEs
with more than 150 kWh transferred were excluded, as in the record period there were no
PEVs in the market able to accumulate so much energy. CEs with a connection duration
below 5 s or above 48 h were excluded, since these records have a high probability of error.
Further exclusions were made of incomplete records. The remaining 2.6 million CEs were
the basis for subsequent analyses.

Table 2. Description of the dataset.

Variable Name Description Unit

EVSEID Identification of the charging point Unique ID
transaction_begin Start time of the connection dd:mm:yyyy hh:mm:ss
transaction_end End time of the connection dd:mm:yyyy hh:mm:ss
kWh Transmitted energy during the connection kWh
price Accounted price for the charging event Euro
tariff Tariff code Unique ID
tariff_text Description text for the tariff code String
latitude and longitude Longitude and latitude to identify the location of the charging station Geographical coordinates
charging_type Information whether it is an AC or DC charging point AC or DC
power Nominal charging power of the charging point kW

The dataset for this study is provided by Wirelane, a backend provider for public CI,
and includes CEs from 2020 till 2022. Wirelane, as an e-mobility service provider (EMSP),
enables PEV users to access various public CI. A charge point operator (CPO) operates the
CPs and provides the EMSP with technical and economic access to the CP for its e-mobility
users. Access is provided via authorization media that the EMSP provides to the e-mobility
user. In addition, a core task of the EMSP is to charge the e-mobility user for the CE [33,34]
in accordance with the CPO’s terms.

In contrast to the CPO view, the dataset of this study only included the CEs that
had been processed via the respective EMSP. Thus, the dataset at hand did not include
the entirety of all CEs at single CPs but only those that had been handled by the EMSP.
Therefore, the dataset at hand did not allow for a thorough analysis of usage of each
individual CP but gave insights into the general usage of CPs based on different tariffs for
a multitude of CPs for various CPOs.

Taking the city of Munich as an example, the EMSP-dataset includes about 50% of the
CEs from 2020 to 2022 that were made at the public CSs of Stadtwerke München (SWM),
Munich’s largest CPO. For reference, the SWM’s CPO dataset was used in [24,35]. However,
unlike CPO datasets, the EMSP dataset includes greater geographic coverage of charging
locations. Statements such as the utilization or the profitability of individual CSs or charging
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locations cannot be calculated based on the EMSP dataset, since only the EMSP’s share of
CEs is included. Figure A1 in the Appendix A compares the relative data distributions from
the EMSP and CPO datasets for Munich. The EMSP dataset comprises 800,000 AC-CEs and
11,000 DC-CEs that took place in Munich between 2020 and 2022. The CPO dataset, which
contains the population of all CEs at the charging locations, comprises 1.7 million AC-CEs
and 25,000 DC-CEs for the same period. The distribution of the connection duration and the
amount of energy transferred were visualized separately for AC and DC CEs and showed
similarities in the data distributions of the EMSP and CPO dataset for Munich.

Figure 1 visualizes the CI locations. The map shows that most CPs are located in
Germany and France; 70% of the CPs are located in Germany, while 18% are located
in France. The remaining 12% of CPs are spread over 21 other countries. Figure A2
in the Appendix A shows the distribution of CEs by country and their evolution from
2020 through 2022. Accordingly, about 88% of CEs were made in Germany and 11% in
France, and the remainder were distributed among other countries. It should be noted that
the share of CEs made in Germany increased over the years 2020, 2021, and 2022 from 60 to
87 and 99%. In the same period, the share of CEs in France decreased from 39 to 12 and
below 1%. Since the dataset mainly contains CEs from Germany and France, additional
KPIs for these two countries have been included in the Appendix A. Tables A1–A3 list
KPIs for CI separately by charging technology for France and Germany. However, as the
analyzed dataset does not cover any customer-specific information or any information
on the used vehicles, no further analysis was carried out in the work at hand. This is
elaborated in more detail in Section 5.

Figure 1. Location of the charging points in the dataset.

For a more differentiated assessment of the spatial distribution of CI, the charging
locations were divided into four location types: highway, urban, intermediate, and rural.
The location type highway was defined in dependence of the distance to the next highway
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and the other categories in dependence of the population density [36,37]. The thresholds
used for highway location type were 500, 1000, and 2000 m. The results show that the ma-
jority of HPC CIs had the highway location type. In contrast, AC and DC CI was preferably
located in urban or intermediate areas. Table A4 and Figure A3 in the Appendix A show
the results and the geospatial data used. The location types are used in the following as a
basis for further analyses.

Tables 3–5 describe the dataset separately for AC, DC, and HPC CEs and for the years
2020, 2021, and 2022. This differentiated view is intended to enable a more profound
understanding of the dataset. The columns Number of CPs and Number of CEs indicate how
many CPs and CEs the dataset contains in the respective year and the column Power Range
indicates the range of the nominal charging power of the CPs. The last two columns contain
key figures for the amount of energy transferred and the connection duration per CEs. All
charging technologies showed an increasing Number of CPs and Number of CEs over time.

Table 3. KPIs of AC charging events from the real-world dataset.

Period Number of CPs Number of CEs Power Range [kW] Avg./Median Con. Duration [h/CE] Avg./Median
Energy [kWh/CE]

2020 11,700 390,000 3–43 4.9/2.8 16.4/11.2
2021 16,300 790,000 3–43 5.1/3.1 15.7/10.9
2022 18,900 1.1 m 3–43 4.8/3.1 14.9/10.6

Table 4. KPIs of DC charging events from the real-world dataset.

Period Number of CPs Number of CEs Power Range [kW] Avg./Median Con. Duration [h/CE] Avg./Median
Energy [kWh/CE]

2020 1300 25,000 22–125 0.8/0.5 18.4/14.4
2021 2200 41,000 22–140 0.9/0.6 21.1/17.7
2022 2000 45,000 22–140 1.0/0.7 23.1/19.9

Table 5. KPIs of high-power charging events from the real-world dataset.

Period Number of CPs Number of CEs Power Range [kW] Avg./Median Con. Duration [h/CE] Avg./Median
Energy [kWh/CE]

2020 260 900 150–320 0.6/0.6 30.3/27.6
2021 2800 26,000 150–400 0.6/0.5 27.1/23.5
2022 4700 76,000 150–400 0.5/0.5 28.8/26.0

For AC CI, about 60% more CPs and about 180% more CEs were recorded in 2022
than in 2020. An interesting aspect emerges when the growth rates of DC and HPC CI are
compared. A large increase in DC CPs can be seen from 2020 to 2021, with about a 70% and
about 65% increase in DC CEs recorded. From 2021 to 2022, the number of DC CPs in the
dataset decreased by about 10%, while the number of DC CEs increased further by about
10%. A different picture in terms of growth rates arises for HPC CI. The relative growth
rates were high in both comparison periods. For example, in 2022, more connections were
recorded at HPC CPs than at DC CPs, with approximately 76,000 CEs. With the data
at hand, strong growth is particularly evident in HPC CI. Since there is a technological
proximity between HPC and DC CI and the growth rates of DC CI were stagnant, it is valid
to assume that the growth of HPC CI occurred at the expense of DC CI.

Consideration of the nominal power of each CP reveals a Power Range for the various
charging technologies. Although the range of nominal power is relatively wide, certain
power classes are standard. For example, over three-quarters of the surveyed AC, DC, and
HPC CPs had a nominal power output of 22, 50, and 300 kW, respectively.

Considering Connection Duration and Transmitted Energy per CE, differences in the
usage patterns of the different charging technologies become apparent. Typically, AC CEs
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had an average connection duration of about 5 h and transmitted an average of about
15 kWh. In comparison, DC and HPC CEs lasted only about 0.5 to just under 1 h on average
and transferred nearly twice as much energy per CE than AC CEs, i.e., 18 to 30 kWh.
Figures A4–A6 provide additional analyses in this context. A comparison of the nominal
and average power per charging technology is given in Figure 2. The black dots in the
violin plots show the median of the distribution. Here, the average power was calculated
by dividing the amount of transmitted energy by the connection duration. The comparison
shows that the average power was significantly lower than the nominal power for each
charging technology.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 2. Nominal and average charging power of AC, DC, and high-power charging events.

The median of the average charging power of AC CEs was about 3.6 kW, which is
more than 80% lower than the median nominal power of 22 kW. The deviation is about 40%
and 80% for DC and HPC CEs, respectively, with 31.2 and 54.6 kW in average power and
50 and 300 kW in nominal power. These significant differences between the possible nomi-
nal power of the CP and actual average charging power result from several factors. First, the
maximum possible power of PEVs is significantly lower than the possible nominal power of
CPs in the case of AC and HPC CEs [35]. Second, the battery management system reduces
vehicle charging power when the SOC level increases, to prevent overcharging of the
battery cells. Third, differences stemmed from usage behavior at CI. For example, AC CPs
tend to be occupied for longer than necessary for the actual CE [21,24]. Tables A6 and A7
additionally list the nominal and average power for different percentile values.

2.2. Classification of Pricing Models

Based on the price composition given in the dataset by the tariff_code and description,
the underlying pricing model for each CE was classified. In an additional step, the pricing
models categorized were logically checked to ensure consistency. Figure 3 shows the
classification of the charging events according to the price composition and the price level
of the billed CEs.
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Figure 3. Classification of the charging events according to pricing models.

The price composition indicates which attributes are employed with a specific pricing.
Accordingly, four different characteristics were identified in the dataset. In class A. Free,
there is no billing, and the CE is free of charge. In class B. Flatrate, the CE is billed at a flat-
rate, regardless of the connection duration to the CP and the amount of energy transferred.
In class C. Time, the billing is based on the connection duration, and in class D. Energy,
billing is based on the amount of energy transmitted. Class E. Mixed represents a mixed
form, in which at least two of the previous classes have been combined; for example, in
the form of an energy- and time-based pricing model. The price level indicates how many
levels the pricing model has. For example, time-based billing in class C. Time may contain
different prices for short and long connection durations and thus have two price levels. In
the analysis, a distinction could be made between classes and subclasses. For classes, CEs
were classified solely based on the general type of tariff. Classes included CEs with the
same price composition but different price levels. For subclasses, CEs were additionally
classified by price level. As a result, for each of the applicable classes, two subclasses were
formed (cp. Figure 4).

Figure 4 shows the share of formed classes and subclasses in the dataset. More than
65% of the CEs were billed using energy-based pricing models of class D. Energy. The high
share of energy-based pricing models resulted from the fact that most of the CEs took place
in Germany, as depicted in Figure A2. Legal regulations concerning the billing of public CPs
seen in the dataset are based on the EU Directive 2014/94/EU, on developing alternative
fuel infrastructure [38]. The directive was adopted on 22 October 2014 and must be
implemented into national law by all EU member states. Among other things, it stipulates
minimum requirements concerning the billing at public CI and the transparency thereof.
Based on this directive, national legislation in Germany articulates that costs at CI are to be
calculated predominantly by consumed energy in kWh, while mixed calculations are not
ruled out explicitly.The regulation applies to all public CPs installed after 1 April 2017, with
a transition period for older CPs [39,40]. National legislation in France is comparable, but
additionally allows for the application of purely time-based tariffs. The transitional period
for older CPs is given as well [41]. In the Appendix A, the distribution of classified pricing
models for different countries from 2020 to 2022 is shown in Figure A15. The analysis
showed that pricing models of class D. Energy are predominant in Germany. In comparison,
pricing models in other European countries are much more heterogeneous. Thus, this study
evaluated the effects of the different national interpretations of the European Directive.



World Electr. Veh. J. 2024, 15, 175 9 of 40

Figure 4. Distribution of the classified pricing models.

The distribution in Figure 4 shows that subclasses with a lower number of price levels
have a higher share in most classes. Only in class C. Time is the subclass C2. Time dominant.
This can be explained by the fact that in the case of time-based billing, a second price
component is usually included to limit or reduce the maximum billing amount for the
e-mobility user.

Figure 5 shows the distribution of classes formed from 2020 to 2022, broken down by
AC, DC, and HPC CEs. Over time, a decreasing proportion of cost-free CEs for AC and DC
CI can be seen. The results also show an increase in the share of class D. Energy in AC and
DC CEs. For example, the share of energy-based tariffs increased from ∼45% to ∼75% and
from ∼20% to over 60% for AC and DC CEs, respectively, between 2020 and 2022. A more
heterogeneous distribution of the classified pricing models can be seen for HPC CEs: In
2020, ∼55% of CEs were accounted for by class D. Energy and ∼34% by class B. Flatrate.
In 2022, the classes D. Energy, E. Mixed and C. Time represented the majority of CEs, with
over 90%.

Furthermore, it is striking that cost-free charging did not play a significant role in HPC
charging, compared to AC and DC charging. Not even 1% of HPC charging processes were
free of charge, which can be explained by the higher investment and operating expenses
for HPC CI [28,35]. In comparison, the proportion of cost-free CEs for AC and DC CI
was higher than for charging according to flat-rate price models. This difference may be
because AC and DC CI were built before HPC CI. The CSs, therefore, partly belonged to the
first generation of CI, in which the necessary hardware for custody transfer billing could not
be installed. Therefore, fee-based billing was not possible or not desired. The distribution
of classes in the individual years is influenced by the countries and their respective legal
requirements. For example, in the period under review from 2020 to 2022, the share of CEs
occurring in Germany rose from ∼60% to over 99%. Since energy-based pricing models
dominate in Germany due to national legislation, the dataset also shows a high share
of energy-based pricing models for all charging technologies. A detailed analysis of the
distributions by country, class, and period can be found in Figures A2 and A15.
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(a) AC charging events 2020 (b) AC charging events 2021 (c) AC charging events 2022

(d) DC charging events 2020 (e) DC charging events 2021 (f) DC charging events 2022

(g) High power charging events 2020 (h) High power charging events 2021 (i) High power charging events 2022

Figure 5. Distribution of the classified pricing models per charging technology and period of time.

2.3. Charging or Idling

This study’s main objective is to determine if different usage behaviors of public CI
are exhibited when different pricing models are employed. In addition to the connection
duration and the amount of energy transferred, the proportion of charging and idle time
is an essential performance indicator for evaluating CI efficiency. Idle time describes the
proportion of the connection duration for which the PEV is connected to the CP but the
actual energy transfer has already been completed. From an efficiency perspective, the
proportion of idle time should be minimized to increase the availability of public CI and,
thus, the amount of energy that can be transmitted.

Since the dataset does not contain direct information about the charging and idle time-
share, these shares were estimated by applying the methodology presented in [24]. Here, dif-
ferent charging areas were defined based on the charging technology. The charging ranges
were defined based on the constant current constant voltage CCCV method [18,42,43].
Table A5 lists the parameters employed to create the charging areas. The methodology’s
basic idea is that each CE can be described by the parameters duration of the connection and
amount of energy transferred. Creating charging areas helps to determine whether the CE is
inside or outside the charging areas. If the CE is inside, the CE has no idle time. If the CE is
outside the charging area, the charging and idle time can be quantified with the help of the
horizontal intersection points of the charging areas.
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3. Results
3.1. Usage Behavior

The applied classification of CEs by pricing models allowed investigating differences
in usage behavior with respect to the present pricing models, i.e., differences in charging
and idling time by tariff. When interpreting the analysis results, the dataset’s limitations
need to be taken into account: (1) It is not feasible to carry out causal analyses between
price models and usage behavior as information is missing; e.g., if tariff choice is based on
expected charging behavior or if charging behavior is adapted based on tariff choice. (2) The
dataset only contains the subset of CEs at individual locations, which were processed by
the EMSP, rather than the total of all CEs at the location. As the authors did not have
access to data from CPOs that would allow them to compare charging behavior at different
locations (or even for different price models), it was not feasible to generalize the findings
in their totality.

The connection duration was the critical parameter for determining the time utilization
of the CPs. Figure 6 shows the distribution of connection durations per pricing model,
separated by charging technology. No distinction is made between individual price levels
or subclasses. The distributions show that there are large differences between connection
durations of AC CEs per pricing model. For example, the median connection duration
per CE for B. Flatrate is 4.9 h, more than twice as high as for C. Time with 2.2 h. The
highest connection durations are exhibited by AC CEs with pricing models of the classes
D. Energy, A. Free, and B. Flatrate with a median of 3.3 h, 3.6 h, and 4.9 h per CE. Although
the absolute differences in connection duration are smaller for DC and HPC CEs than
for AC CEs, differences in usage behavior can still be observed. An apparent difference
under the presence of time-based pricing models of the class C. Time is observed: with
time-based pricing in place, connection times were shorter on average. Table A8 lists
different percentile values of connection durations per class and charging technology.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 6. Connection duration per pricing model class of AC, DC, and high-power charging events.
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Figure 7 shows the average connection duration by connection start time. For AC CEs,
the plots show that for classes C. Time and E. Mixed, the connection duration for CEs were
lower, regardless of connection start time. For CEs starting between 8 a.m. and 6 p.m.,
average connection durations were about 2.7 h and 2.9 h for classes C. Time and E. Mixed,
which is about 35% to 50% shorter compared to the other classes. For CEs starting between
6 p.m. and midnight, average connection durations were 30% to 38% lower for these classes.
As seen in Figure A5, the connection duration of DC and HPC CEs shows less differences
with respect to start times compared to AC CEs, the distributions of the classes are also less
characteristic in this case.

In addition to the connection duration, the transmitted energy quantities are another
critical parameter, since supplying the PEVs with energy is the core task of CPs. In Figure 8,
the distribution of energy quantities for individual classes and charging technologies is
plotted. In contrast to the connection duration, differences for the individual classes can
be seen in all charging technologies. For example, the median value for AC CEs of class B.
Flatrate was 27.7 kWh, almost three times higher than for AC CEs of classes D. Energy and
E. Mixed with 10.4 and 10.3 kWh, respectively. In the case of DC and HPC CEs, the results
are comparable. Again, class B. Flatrate shows the highest amounts of energy transferred
with a median of 35.8 kWh for DC and 47.7 kWh for HPC CEs. Interestingly, DC CEs with
pricing models of class C. Time with a median value of 13.9 kWh had the lowest energy
amounts. In the case of HPC CEs, pricing models of classes A. Free, E. Mixed and D. Energy
with median values of 10.7, 22.7 and 23.4 kWh, respectively, had the lowest transmitted
energy amounts per CE. With pricing models of class D. Energy, prices depend directly on
the consumed amount of kWh, hence lower amounts of energy transferred can be expected
on average. However, this difference is to be regarded as critical from a provider’s point
of view, because it favors low energy utilization and, in conjunction with long connection
durations per CE, inefficient use of the CI. Table A9 shows different percentile values of the
transmitted energy amounts per class and charging technology.

(a) AC A. Free (b) AC B. Flatrate (c) AC C. Time (d) AC D. Energy (e) AC E. Mixed

(f) DC A. Free (g) DC B. Flatrate (h) DC C. Time (i) DC D. Energy (j) DC E. Mixed

(k) HPC A. Free (l) HPC B. Flatrate (m) HPC C. Time (n) HPC D. Energy (o) HPC E. Mixed

Figure 7. Average connection duration per class of AC, DC, and high-power charging events subject
to the start time.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 8. Transmitted energy per pricing model class of AC, DC, and high-power charging events.

For the distributions depicted in Figures 6 and 8 a Kruskal–Wallis one-way analysis of
variance was carried out in order to test for each infrastructure type if the distributions of
connection duration and transmitted energy per pricing model stemmed from the same
distribution [44]. The result of the test showed that the individual distributions of the price
models do not originate from the same population. As the Kruskal–Wallis ANOVA only
shows the existence of differences, but not between which samples these differences exist,
a Mann–Whitney-U test was carried out to test for pairs of distributions of connection
duration per pricing model (or transmitted energy, respectively), and if they stemmed from
the same population [45]. The results showed that all distributions, with the exception of
the energy distribution of HPC CEs of the classes D. Energy and E. Mixed (p = 0.53) are
statistically significantly different. The results for the individual distributions are shown in
Tables A15–A17 in the Appendix A.

Figures 9 and 10 show the distribution of the connection duration and the amount
of energy transferred for individual location types. The median values for the individual
price models were determined for this purpose. According to Table A4, the four location
types are highway, urban, intermediate, and rural. A maximum distance of 1000 m was
selected as the classification feature for the highway location type.

Figure 9 shows the median values of the connection duration. For all location types,
CEs with the price model B. Flatrate had the longest connection duration. AC CEs of the
B. Flatrate class at highways and urban charging locations had the longest connection
duration, with a median of 5.6 and 5.8 h. In comparison, the connection time for AC CEs
with the classes C. Time and E. Mixed at highways and intermediate charging locations was
not even half as long, with a median value of about 2 h. The absolute differences were
smaller in the case of DC and HPC CEs. Here, DC CEs of class B. Flatrate at intermediate
and rural charging locations had a median of 1 h, and HPC CEs with class C. Time and
A. Free on highways had a median of 0.3 and 0.1 h, respectively.

Figure 10 shows the median values of the transferred energy quantities. Here too, CEs
of class B. Flatrate had the highest values at all location types. HPC CEs of class B. Flatrate
at urban charging locations had the highest energy quantities, with a median of 52 kWh. In
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comparison, HPC CEs of the same class at intermediate charging locations had a median
value of 43 kWh, which was around 20% lower. In addition to free DC and HPC CEs of the
class A. Free, AC CEs of the class E. Mixed at highways and intermediate charging locations
had the lowest amount of energy, with a median of 10 kWh.

(a) Highway (b) Urban

(c) Intermediate (d) Rural

Figure 9. Median connection duration for location types and per pricing model class of AC, DC, and
high-power charging events.

(a) Highway (b) Urban

(c) Intermediate (d) Rural

Figure 10. Median transmitted energy for location types and per pricing model class of AC, DC, and
high-power charging events.
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A more detailed description of the distributions for the individual location types can
be found in Figures A7–A10 for the connection duration and in Figures A11–A14 for the
energy quantities in Appendix A.

3.2. Charging Behavior

The following section separately investigates the charging behavior for the classified
pricing models in more detail. Figure 11 examines the average power of the CEs. It
should be noted that the y-axes have been scaled differently by charging technology. The
evaluations showed higher values for all charging technologies for the classes C. Time and
B. Flatrate and lower values for classes D. Energy and E. Mixed. This is interesting, since the
average power indicates the proportion of effective charging and idle time. Low average
power values can indicate a high proportion of idle time. Therefore, the evaluation results
should also be related to the nominal power of CSs as shown in Figure 2 or in Table A6.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 11. Average charging power per class of AC, DC, and high-power charging events.

In the case of AC CEs, pricing models C. Time and B. Flatrate featured the highest
average charging power, with a median of 7 and 5 kW. In comparison, all other classes
had median values between 3 to 4 kW, where about 95% of the AC CPs had a nominal
power of 22 kW. In particular, in the case of pricing models with energy-based pricing
models of class D. Energy and mixed pricing models of E. Mixed, this nominal power
appeared to be oversized. Thus, the nominal powers of the CPs with 22 kW were more
than five times higher than the average powers of these classes with about 4 kW. This is
considered important, since over 80% of the AC CEs applied pricing models of classes
D. Energy and E. Mixed.

In the case of DC CEs, the class B. Flatrate featured the highest average charging
power per CE, with a median of 36 kW. The median values of the other classes were about
30 kW and thus about 15% lower than B. Flatrate CEs. The differences between nominal
and average power were less pronounced for DC CEs than for AC CEs. For example, the
median values were only about 30% to 40% below the prevailing nominal power of 50 kW.
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This comparatively low nominal power means that the charging power was often defined
by the nominal power of the DC CPs, and the differences between the pricing models were
therefore less pronounced.

For HPC CEs, the evaluation shows that with pricing models of the classes C. Time
and B. Flatrate, with median values of 93 and 68 kW, the highest power values could be
observed. In comparison, the median values of the other classes, 32 to 50 kW, were 25%
to 65% lower than the time-based and flatrate-based pricing models. A large deviation is
seen when the average power values are compared to the nominal power values, as with
AC CEs. Suppose a nominal power of 300 kW is used as a reference value for the nominal
power. In that case, the median values of the average powers are 70% to 90% below the
possible nominal power. Thus, the median value of pricing models of class D. Energy with
∼50 kW is in the range of DC CPs. In comparison, the average charging power of pricing
models of class C. Time was almost twice as high. Table A10 lists different percentile values
per class and charging technology.

In Figure 12, the prices per CE are compared. These prices represent revenues from
an EMSP perspective or costs from an e-mobility user’s perspective. The prices of CEs of
class A. Free are always 0 in this evaluation, since charging is cost-free. Due to the nature of
class B. Flatrate, the CEs in this evaluation tended to show a narrower spread of prices. In
addition, in this analysis, the class E. Mixed showed the highest prices. The median values
here were up to 170% above those of other classes.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 12. Price per charging event and per class of AC, DC, and high-power charging events.

In order to check if a statistically significant linear relation exists between tariffs and
other factors like connection duration, transferred energy, or average power, a correlation
analysis was performed. As the information on tariffs is present in the form of dichotomous
variables, a point-biserial correlation was employed. Detailed results including p-values
are presented in Table A14 [46]. All of the correlations were statistically highly significant
(p < 0.01) but exhibited very low correlations, with strong variation between parameters.
For example, the highest correlation, with a value of 0.36, occurred between the average
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charging power of HPC CEs and time-based pricing models of class C. Time. Hence, from
the correlation analyses, only minimal impacts—if any—could be derived. Consequently,
further analyses, including additional factors, were required.

As an additional analysis, a density-based spatial clustering of applications with noise
(DBSCAN) was performed. This clustering method made it possible to examine the entire
dataset with all features used in the study, recognize several clusters, and evaluate the
clusters’ quality. In addition to the classified five price models, three charging technologies;
four location types; and the features connection time, idle time, charging time, amount
of energy transferred, price, and average charging power were used. In total, the clus-
tering procedure included 18 features as input parameters. The parameter epsilon for
the maximum distance between two samples was chosen so that one was considered to
be in the neighborhood of the other, and the min samples for the minimum number of
points required to form a dense region were determined iteratively by combining different
variants. With an epsilon value of 1.40 and a min sample of 20 points, the clustering
procedure resulted in 60 clusters and the silhouette coefficient was maximized with a value
of 0.86. The 60 clusters corresponded to the variations of the five classified price mod-
els, three charging technologies, and four location types. The high silhouette coefficient
showed that classifying price models, charging technologies, and location types made
sense. Consequently, the derived clusters represented an analysis of connection time, idle
time, charging time, amount of energy transferred, price, and average charging power per
combination of price model, charging technology, and location type and correspond to the
analyses in Section 3.1.

3.3. Charging or Idling

This section examines the usage patterns of CI in terms of charging and idle times. The
charging time describes the period in which the CP transfers energy and the idle time is
when the actual charging process has been completed, but the PEV still occupies the CP. The
methodology presented in Section 2.3 for estimating the respective temporal proportions
was carried through two scenarios. The work at hand employed the average between the
two intersection points as an approximation method.

Figure A16 quantifies the charging and idle time separately for AC, DC, and HPC CI.
The bar chart in Figure A16a illustrates the relative proportion of charging and idle time, in
order to allow comparison with results from other studies. As expected, AC CI shows the
highest proportion of idle time at 47%. In other studies, the proportion of idle time was
quantified as 45% to 85% [20,21,24,35].

In comparison, the proportion of idle time is much lower for DC and HPC CEs, at
25% and 4%, respectively. In previous studies, the share of idle time in DC and HPC CEs
was often not explicitly quantified for these charging technologies, and a mixed value
of AC, DC, and HPC charging technologies was given, or the values for idle time were
approximate values that did not directly stem from raw data. For example, the share of
idle time for DC and HPC CEs was simulatively determined to be ∼10% each [35].

Figure 13 quantifies the share of charging and idle time for the classified price models.
As idle time is a relevant parameter for determining the efficiency of public CI, the share
of idle time for the individual pricing models is considered and classified below. For the
AC CEs in Figure 13a, the price models of the classes A. Free and D. Energy had the highest
share of idle time at around 50% each. In comparison, AC CEs of the classes C. Time and E.
Mixed classes had the lowest share of idle time at 35 and 30%. The share of idle time for DC
CEs was lower for all price models. It is interesting to note that CEs of the class C. Time had
the highest share of idle time of the DC CEs, at 35%. This result is surprising at first glance,
as the short connection durations of price models of the class C. Time according to Figure 6
for DC CEs indicate efficient use and low idle time. However, it should be noted that this
is the relative share and not the absolute value. If the absolute values for the idle time for
DC CEs of the class in Table A13 are considered, it can be seen that price models of class
C. Time had low absolute values compared to the price models of the other classes. The
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comparatively high relative share of idle time for DC CEs of class C. Time in Figure 13b is
thus relativized by the low absolute values of this class. If the shares of unused connection
time for HPC CEs are considered in Figure 13c, it can be seen that only HPC CEs of class A.
Free with 16% had a relevant proportion of idle time. The share of idle time for the price
models of the other classes was in the low single-digit range at 2 to 5%. However, also in
this case, the relative values must be considered in conjunction with the absolute values
of idle time in Table A13. In the case of HPC CEs, all price models of all classes showed
comparatively low absolute values for idle time.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 13. Share of charging and idle time per class of AC, DC, and high-power charging events.

Figure 14 quantifies the charging time in hours for the individual classes. The distribu-
tion of charging time is an essential indicator for the design of pricing models. For example,
in mixed pricing models, a time-based component can be introduced to separately bill
connection durations above typical charging times, thus minimizing idle time. According
to the results, such separate pricing is reasonable from 2 h for AC CEs and 0.5 h for DC and
HPC CEs. Table A12 quantifies the charging time separately for the individual classes.

Figure 15 shows the connection duration of the CEs as function of the start time of the
connection for the individual classes. The values in the diagram reflect the absolute values
in Figure 7. However, the connection duration is additionally divided into charging and
idle time. For AC CEs, the average charging time is 2.8 h. The length of the charging time
is essentially independent of the start time of the connection. Contrary, the length of the
idle time differs notably by the start time of the connection. For example, AC CEs of the
class D. Energy that started between 8 a.m. and 6 p.m. have an average idle time of 2 h,
which is only about half the idle time of 4.3 h of CEs that started between 6 p.m. and 8 a.m.
Since the connection duration of DC and HPC CEs exhibit less differences with respect to
the start time compared to AC CEs, the proportion of charging and idle time is also less
characteristic for these charging technologies.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure 14. Charging time per class of AC, DC, and high power charging events.

(a) AC A. Free (b) AC B. Flatrate (c) AC C. Time (d) AC D. Energy (e) AC E. Mixed

(f) DC A. Free (g) DC B. Flatrate (h) DC C. Time (i) DC D. Energy (j) DC E. Mixed

(k) HPC A. Free (l) HPC B. Flatrate (m) HPC C. Time (n) HPC D. Energy (o) HPC E. Mixed

Figure 15. Average charging and idle time per class of AC, DC, and high-power charging events
depending on the connection start time.

The study results show the differences in usage behavior when pricing models are
considered. The usage behavior was examined based on the performance indicators
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connection duration, amount of energy transferred, charging power, revenues, and charging
and idle time. The results are ranked in Table 6. The table is an overview of how the values
of the classified price models change with different key performance indicators. The class
D. Energy represented the reference class for the evaluation, since it was the class with the
most CEs. The arrows show whether the respective class had a higher, lower, or comparable
value compared to energy-based CEs.

Table 6. Direction of effects of pricing models compared to Class D. Energy pricing models.

KPIs A. Free B. Flatrate C. Time E. Mixed

Connection Duration ↑ ↑ ↓ ↓
Transmitted Energy ↑ ↑ ↑ →
Avg. Charging Power ↑ ↑ ↑ →
Revenues ↓ ↓ ↓ ↑
Idle Time ↑ ↑ ↓ ↓

Legend: ↑ Higher,→ equal, and ↓ lower values compared to charging events with Class D. energy.

4. Discussion

In the previous sections, differences in charging behavior were investigated with
respect to tariff schemes, CI types, and other aspects. This section serves to discuss what
these differences mean for different viewpoints on CI usage efficiency.These viewpoints
are discussed separately, here. However, when planning the roll-out and utilization of CI,
viewpoints on usage efficiency can be combined using a trade-off. In this section, three dif-
ferent viewpoints on efficiency and their goals are described as an example: (1) maximizing
the throughput at CIs, (2) optimal interaction between demand for and supply of energy,
and (3) revenue maximization. The first viewpoint on efficiency discussed is increasing
the throughput at CI. This approach pursues the goal of using an existing public CI in a
way whereby the largest possible number of PEVs can be supplied with energy. The main
goals here are to minimize the connection time per CE and to simultaneously increase
the energy quantity transferred. Due to their higher charging power, DC and HPC CIs
have much shorter connection durations and can simultaneously transmit higher energy
quantities than AC CIs. Considering the 50% percentile value for pricing models of class
D. Energy (see Table A8), it can be seen that AC CEs with 3.25 h have a connection duration
that is longer by a factor of 5 to 7 than DC and HPC CEs with 0.64 and 0.47 h, respectively.
Therefore, in order to reduce the connection time per connection and, at the same time,
increase the number of possible connections per CI, the construction of DC and HPC CIs
seems to be reasonable. An interesting aspect becomes apparent when the pricing models
within DC or HPC CI are considered. By using pricing models of the class C. Time, the
connection duration can be reduced to 0.50 and 0.36 h, respectively, which represents a
further reduction of about 30%. At the same time, the evaluation in Table A9 shows that
high energy quantities of about 34 kWh per CE can be transmitted when certain pricing
models are implemented for HPC CEs. Consequently, building CIs with high charging
power and using pricing models of class C. Time can be considered a promising approach
to increase throughput at public CI.

The second viewpoint on efficiency considered is the avoidance of peaks in power
demand. The main objective here is to mitigate demand, in order to avoid network break-
downs and reduce the need for grid extensions. This mitigation can be achieved by two
approaches: shifting CEs to low-demand periods or stretching the active charging time
over a longer period of time. One approach to measuring temporal flexibility is to observe
the presence of idle time. A comparison of charging technologies shows that AC CEs have
a high share of idle time. When the 50% percentile value for energy-based pricing models is
considered (see Table A10), it can be seen that AC CEs have an average power of about 3 kW.
In comparison, the average power of DC and HPC CEs is about 30 and 50 kW, respectively,
which is a factor of 10 to 17. At the same time, the 50% percentile value in Table A13
shows that energy-based AC CEs have about 0.8 h of idle time per CE. Comparing the
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pricing models, the classes B. Flatrate and A. Free with about 1 h of idle time per CE show
a higher value by about 20%. Figure 15 shows that idle time is especially high between
6 p.m. and 8 a.m., providing significant potential to mitigate peak power during these
periods by stretching CEs. In a slightly different approach, the idle time could also be
used for so-called “vehicle-to-grid” approaches [47]. In summary, building AC CI appears
promising for reducing peak power demand. In particular, pricing models of the classes
B. Flatrate and A. Free offer the possibility of using the vehicle batteries for additional system
services and thus to develop further revenue streams. In terms of shifting power demand
over time, DC and HPC CI show less potential. However, it is conceivable that DC and
HPC CEs, in conjunction with coupled storage systems, could create flexibility here.

The third viewpoint on efficiency is revenue maximization. The objective here is to
increase the revenues for CPOs or EMSPs and thus ensure the amortization of public CI
and, for example, enable the roll-out of public CI without subsidies. In addition to the
revenue per CE, the number of feasible CEs per CI is also important. With regard to the
revenues per CE, it is evident that higher revenues can be realized through DC or HPC
CI. Considering the 50% percentile value in Table A11, it becomes evident that for DC and
HPC CEs with about 7 and 10 Euro per CE, respectively, about twice as much revenue
per CE can be realized as in AC CEs with about 4 Euro per CE. If the price models are
compared, it can be seen that the revenues can be additionally increased by price models of
class E. Mixed. In comparison, time-based pricing models of class C. Time show consistently
lower revenues. An interesting point here is that it is conceivable that time-based pricing
models can generate higher total revenues despite lower revenues per CE, since time-based
pricing models enable a higher throughput of CEs. However, since the dataset used in this
study does not include all CEs per CI, no conclusive assessment can be made regarding the
profitability of different approaches for public CI. The economics of different approaches
to CI and pricing models can thus be the subject of future research, which may be based
on simulations or real-world experiments. Future studies should also consider the higher
capital and operating costs for DC and HPC CI [28,35].

5. Conclusions

This study was the first to investigate how public CI usage differs under the presence
of diverse pricing models. For this purpose, a comprehensive EMSP dataset of approx.
3 million CEs from 2020 to 2022 from various European countries was used. Compared to
previous studies, the EMSP dataset includes information on the charging tariff in addition
to general information about the CEs. Depending on the price composition, the CEs were
classified into the five price models A. Free, B. Flatrate, C. Time, D. Energy, and E. Mixed and
evaluated based on the performance indicators connection duration, transferred energy
volume, average charging power, achievable revenue, and the charging and idle time pro-
portion for AC DC and HPC CI. The study results indicated that the performance indicators
differed for the classified pricing models. In addition to the quantitative comparison of
the performance indicators, a Kruskal–Wallis one-way analysis and a pairwise comparison
using the Mann–Whitney-U test proved that the data distributions of the price models
determined were statistically significantly different.

However, it should be noted that no causal relationship between the pricing models
and user behavior can be drawn from the present studies, as this is not possible due to the
nature of the dataset. As in previous studies, it can be determined based on the available
billing data and statistical methods that usage behavior differed significantly for individual
data distributions. However, it is impossible to derive a direct causal relationship on this
basis alone, as information about the user or the selection procedure for the pricing system
is missing. However, as the authors do not have the motives behind the users’ choice of
tariff, no causality can be inferred here.

At this point, further limitations of the present study are discussed. Since the dataset
used is only an excerpt from the overall use of the individual CSs, this study does not aim
to make statements about the economic efficiency, overall load profile, or usage behavior of
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individual CSs. Another limitation in the data analysis was the high proportion of CEs from
Germany (70%) and the high proportion of energy-based pricing models of class E. Energy
(66%). In this context, the available EMSP dataset was compared with the CPO dataset of
Stadtwerke München (SWM), the city’s largest provider of public CI, using Munich as an
example. The comparison of the data distributions in Figure A1 in the Appendix A shows
that the EMSP dataset and the CPO dataset had similar data distributions. It should be
noted here that 99% of the intersection of the CEs were price models of class D. Energy.
Since only the necessary data for the city of Munich, and thus for a selected application area,
were available for such a comparison, future work is required based on similar datasets, to
ensure the transferability of the results to other application areas and price models other
than class D. Energy.

Nonetheless, some implications for the different pricing models can be derived when
comparing to pricing model D. Energy as reference: pricing models A. Free and B. Flatrate
exhibited CEs with higher connection durations due to longer idle times. While it is not
favored by CP operators, such behavior with both pricing models could be a lever to foster
“Vehicle-to-Grid” approaches, as well as mitigating peak power, especially overnight. With
pricing model C. Time, lower idle times were present and therefore shorter connection
durations with its CEs, as well as higher avgerage charging power with lower revenues per
CE. This behavior allows more vehicles to be charged per CP, due to the availability gained,
offsetting the reduction in revenues per CE, but detering charging overnight. Finally,
E. Mixed pricing models, as seen in the dataset, seem to blend the benefits of time-based
and energy-based pricing models. While idle times, and therefore connection durations,
are lower compared to energy-based models, revenues are higher due to the fact that low-
energy charging behavior is priced via a time-based component. With this pricing model,
just like with time-based models, vehicle throughput is larger. Further on, this type of
pricing model could enable the operator to better monetize the different charging behaviors
and therefore to increase revenue per CE. This study shows differences in charging behavior
for different pricing models, which could be relevant parameters for public CI. The results
of this study enable a more in-depth understanding of pricing mechanisms in connection
with public CI.

Based on the existing study results and limitations, three possible starting points for
future studies are described below. (1) In future studies, datasets could be combined with
qualitative surveys of users to gain further insights. In this way, a link could be established
between users’ preferences for charging PEVs and datasets that do not contain detailed
information about the user or the reasons for their decision. Based on such studies, it
could be determined under which specific framework conditions certain pricing models
are preferred or whether the selection of pricing models depends on individual charging
technologies or charging locations. Future developments, such as technological progress
and the interaction between private and public charging infrastructure, should also be
considered. For example, it remains to be seen how increasing battery capacities and higher
charging power of PEVs could affect public CI demand and usage behavior [48]. Further-
more, the change in the availability of CI at private or semi-public locations such as park
and ride facilities or CPs at workplaces could have an impact on usage behavior at public
CI. (2) Due to the dataset used, the effects of the various pricing models on the energy grid
could not be investigated. Future studies could pick up here and investigate the relation-
ships between pricing models, the required public CI in possible scaling strategies, and the
repercussions for the energy grid. The price models investigated consider comparatively
simple variables such as the connection duration or the amount of energy transferred. By
considering additional variables such as the current utilization of the local energy grid or
the share of renewable energy, pricing models could be used to optimize the utilization of
the energy grid through monetary incentives [49,50]. (3) Another aspect of future research
lies in testing different pricing models. Here, experimental trials on a limited temporal and
spatial scale and accompanying research in model areas could provide information on the
population’s acceptance of the pricing models and the control effect.
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Appendix A

(a) Connection duration of AC charging events (b) Connection duration of DC charging events

(c) Transmitted energy of AC charging events (d) Transmitted energy of DC charging events

Figure A1. Comparison EMSP- and CPO-dataset of Munich regarding connection duration and
transmitted energy of AC and DC charging events.
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(a) Charging events 2020 (b) Charging events 2021

(c) Charging events 2022

Figure A2. Number of charging events per country and period of time in the dataset.

Table A1. KPIs of AC charging events from the real-world dataset per country.

Country Number of CPs Number of CEs Power Range [kW] Avg./Median Con.
Duration [h/CE]

Avg./Median Energy
[kWh/CE]

Germany 20,000 2 m 3–43 4.9/3.1 14.8/10.5
France 5900 240,600 3–43 4.2/2.2 18.8/15.2

Table A2. KPIs of DC charging events from the real-world dataset per country.

Country Number of CPs Number of CEs Power Range [kW] Avg./Median Con.
Duration [h/CE]

Avg./Median Energy
[kWh/CE]

Germany 2600 89,000 22–140 0.9/0.6 22.5/19.1
France 600 20,700 22–50 0.8/0.5 16.1/12.4

Table A3. KPIs of high-power charging events from the real-world dataset per country.

Country Number of CPs Number of CEs Power Range [kW] Avg./Median Con.
Duration [h/CE]

Avg./Median Energy
[kWh/CE]

Germany 4200 100,000 150–360 0.5/0.5 28.3/25.2
France 200 500 175–350 0.5/0.5 34.8/34.7

Table A4. Share of charging locations according to the classes highway, predominantly urban,
intermediate, and predominantly rural.

Charging
Technology

Distance to
Highway

[m]

Highway
[%] Urban [%] Intermediate

[%] Rural [%]

AC 500 5.1 43.4 35.3 16.2
DC 500 27.7 22.4 28.2 21.7

HPC 500 41.9 22.6 26.8 8.7

AC 1000 9.9 40.4 34.0 15.7
DC 1000 36.6 19.0 24.2 20.3

HPC 1000 53.6 18.5 21.4 6.6
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Table A4. Cont.

Charging
Technology

Distance to
Highway

[m]

Highway
[%] Urban [%] Intermediate

[%] Rural [%]

AC 2000 21.5 32.9 30.7 14.9
DC 2000 45.9 14.5 21.6 18.0

HPC 2000 61.7 14.5 18.0 5.8

Table A5. Parameter for modeling of the charging areas.

Charging
Technology

Charging Area Max. Battery
Capacity

Min. Battery
Capacity

AC 3 kW (16 A 1 Phase) 20 kWh 5 kWh
AC 4 kW (20 A 1 Phase) 40 kWh 20 kWh
AC 7 kW (16 A 2 Phases) 80 kWh 40 kWh
AC 11 kW (16 A 3 Phases) 150 kWh 40 kWh
AC 16 kW (24 A 3 Phases) 150 kWh 40 kWh
AC 22 kW (32 A 3 Phases) 150 kWh 40 kWh

DC 50 kW 150 kWh 40 kWh
DC 80 kW 150 kWh 40 kWh
DC 100 kW 150 kWh 40 kWh
DC 120 kW 150 kWh 40 kWh
DC 140 kW 150 kWh 40 kWh

HPC 150 kW 100 kWh 60 kWh
HPC 180 kW 100 kWh 60 kWh
HPC 200 kW 120 kWh 70 kWh
HPC 250 kW 120 kWh 80 kWh
HPC 270 kW 120 kWh 80 kWh
HPC 300 kW 150 kWh 80 kWh
HPC 350 kW 150 kWh 80 kWh

(a) Highways

Figure A3. Cont.
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(b) Urban and Rural typology

Figure A3. European highways and urban and rural typology.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A4. Connection duration of AC, DC, and high-power charging events.
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(a) AC Charging Events (b) DC charging events

(c) High-power charging events

Figure A5. Average connection duration of AC, DC, and high-power charging events depending on
the connection start time.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A6. Transmitted energy of AC, DC and high-power charging events.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A7. Connection duration for location type highway per pricing model class of AC, DC, and
high-power charging events.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A8. Connection duration for location type urban per pricing model class of AC, DC, and
high-power charging events.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A9. Connection duration for location type intermediate per pricing model class of AC, DC,
and high-power charging events.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A10. Connection duration for location type rural per pricing model class of AC, DC, and high
power charging events.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A11. Transmitted energy for location type highway per pricing model class of AC, DC, and
high-power charging events.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A12. Transmitted energy for location type urban per pricing model class of AC, DC, and
high-power charging events.
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(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A13. Transmitted energy for location type intermediate per pricing model class of AC, DC,
and high-power charging events.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A14. Transmitted energy for location type rural per pricing model class of AC, DC, and
high-power charging events.
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Table A6. Nominal charging power for AC, DC and high-power charging events from the real-
world dataset.

Charging
Technology

Percentil 25%
[kW]

Percentil 50%
[kW]

Percentil 75%
[kW]

Percentil 90%
[kW]

Percentil 95%
[kW]

AC 22 22 22 22 22
DC 50 50 50 53 75

HPC 150 300 300 350 350

Table A7. Average charging power for AC, DC, and high-power charging events from the real-
world dataset.

Charging
Technology

Percentil 25%
[kW]

Percentil 50%
[kW]

Percentil 75%
[kW]

Percentil 90%
[kW]

Percentil 95%
[kW]

AC 2.1 3.6 7.3 11.0 15.0
DC 19.8 31.2 42.2 48.2 61.3

HPC 36.0 54.6 81.1 110.3 126.0

(a) Classes Germany 2020 (b) Classes France 2020

(c) Classes other countries 2020 (d) Classes Germany 2021

(e) Classes France 2021 (f) Classes other countries 2021

Figure A15. Cont.
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(g) Classes Germany 2022 (h) Classes Other Countries 2022

Figure A15. Distribution of the classified pricing models per country and period of time in the dataset.

Table A8. Connection duration per pricing model class for AC, DC, and high-power charging events.

Charging
Technology Class Percentil 25%

[h]
Percentil 50%

[h]
Percentil 75%

[h]
Percentil 90%

[h]
Percentil 95%

[h]

AC A. Free 1.70 3.63 8.09 13.55 17.13
AC B. Flatrate 2.70 4.90 9.92 14.80 17.93
AC C. Time 1.10 2.20 4.47 10.52 12.48
AC D. Energy 1.58 3.25 6.77 13.26 16.12
AC E. Mixed 1.26 2.35 3.75 7.55 11.72

DC A. Free 0.33 0.58 0.91 1.25 1.51
DC B. Flatrate 0.71 1.09 1.45 1.82 2.50
DC C. Time 0.30 0.50 0.89 1.44 1.98
DC D. Energy 0.36 0.64 1.08 1.68 2.37
DC E. Mixed 0.36 0.60 1.01 1.48 1.82

HPC A. Free 0.04 0.34 0.60 0.83 1.03
HPC B. Flatrate 0.50 0.69 0.88 1.09 1.27
HPC C. Time 0.25 0.36 0.51 0.65 0.76
HPC D. Energy 0.29 0.47 0.69 0.96 1.16
HPC E. Mixed 0.31 0.49 0.73 0.98 1.15

Table A9. Transmitted energy per class for AC, DC, and high-power charging events.

Charging
Technology Class Percentil 25%

[kWh]
Percentil 50%

[kWh]
Percentil 75%

[kWh]
Percentil 90%

[kWh]
Percentil 95%

[kWh]

AC A. Free 6.38 11.04 21.96 36.83 46.67
AC B. Flatrate 12.75 27.70 44.31 59.54 66.72
AC C. Time 8.59 17.37 30.35 41.93 49.62
AC D. Energy 6.24 10.42 17.95 33.41 42.20
AC E. Mixed 5.9 10.26 16.84 31.36 39.88

DC A. Free 7.56 16.39 26.42 39.66 48.96
DC B. Flatrate 22.07 35.78 51.11 62.96 68.77
DC C. Time 7.45 13.86 23.97 36.36 45.50
DC D. Energy 9.26 17.69 29.02 42.64 51.49
DC E. Mixed 9.38 17.60 28.05 39.76 47.95

HPC A. Free 1.16 10.71 22.65 37.90 49.12
HPC B. Flatrate 31.82 47.74 60.72 69.40 73.88
HPC C. Time 21.40 34.26 46.50 55.55 60.34
HPC D. Energy 13.77 23.38 36.21 49.26 56.92
HPC E. Mixed 13.27 22.68 30.54 50.43 57.67
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Table A10. Average charging power per class for AC, DC, and high-power charging events.

Charging
Technology Class Percentil 25%

[kW]
Percentil 50%

[kW]
Percentil 75%

[kW]
Percentil 90%

[kW]
Percentil 95%

[kW]

AC A. Free 1.74 3.42 6.90 10.59 12.55
AC B. Flatrate 3.00 5.39 9.48 11.19 15.14
AC C. Time 3.35 7.09 12.89 17.65 19.98
AC D. Energy 1.86 3.46 6.96 10.72 11.96
AC E. Mixed 2.81 3.92 8.33 11.13 15.74

DC A. Free 20.22 29.53 38.94 45.91 47.65
DC B. Flatrate 26.59 36.33 44.37 46.83 48.97
DC C. Time 19.25 28.53 34.90 40.52 43.50
DC D. Energy 18.13 29.63 41.21 46.27 48.65
DC E. Mixed 19.00 29.76 41.30 46.23 48.53

HPC A. Free 19.90 32.34 52.78 79.60 87.89
HPC B. Flatrate 48.83 68.23 88.62 112.88 125.79
HPC C. Time 66.95 93.10 115.02 133.12 142.67
HPC D. Energy 34.47 49.60 71.20 98.54 116.74
HPC E. Mixed 30.58 45.70 69.02 94.57 110.13

Table A11. Price per CE and per class for AC, DC, and HPC CEs.

Charging
Technology Class Percentil 25%

[Euro/CE]
Percentil 50%

[Euro/CE]
Percentil 75%

[Euro/CE]
Percentil 90%

[Euro/CE]
Percentil 95%

[Euro/CE]

AC A. Free 0 0 0 0 0
AC B. Flatrate 3.00 3.50 4.38 6.00 6.82
AC C. Time 1.50 2.73 4.95 8.43 11.94
AC D. Energy 2.34 3.98 6.88 12.97 16.91
AC E. Mixed 2.24 4.28 8.31 15.34 20.80

DC A. Free 0 0 0 0 0
DC B. Flatrate 7.00 9.00 9.50 11.00 11.50
DC C. Time 2.27 3.27 5.21 8.30 11.31
DC D. Energy 3.76 7.37 12.74 19.70 24.53
DC E. Mixed 4.54 8.68 14.26 21.02 26.01

HPC A. Free 0 0 0 0 0
HPC B. Flatrate 9.00 9.99 11.00 15.00 15.00
HPC C. Time 5.22 7.80 10.92 14.04 16.77
HPC D. Energy 5.70 9.84 15.62 22.15 26.98
HPC E. Mixed 6.99 12.27 19.77 28.00 33.24

Table A12. Charging time per charging event and per class for AC, DC, and high-power
charging events.

Charging
Technology Class Percentil 25%

[h/CE]
Percentil 50%

[h/CE]
Percentil 75%

[h/CE]
Percentil 90%

[h/CE]
Percentil 95%

[h/CE]

AC A. Free 1.50 2.53 3.81 5.10 5.85
AC B. Flatrate 2.45 3.91 5.31 6.48 7.23
AC C. Time 1.08 2.09 3.61 5.10 5.87
AC D. Energy 1.46 2.44 3.52 4.71 5.49
AC E. Mixed 1.23 2.16 3.18 4.14 4.89

DC A. Free 0.33 0.59 0.90 1.22 1.41
DC B. Flatrate 0.70 1.06 1.38 1.56 1.79
DC C. Time 0.30 0.50 0.85 1.28 1.50
DC D. Energy 0.36 0.63 1.02 1.36 1.58
DC E. Mixed 0.36 0.60 0.99 1.37 1.59



World Electr. Veh. J. 2024, 15, 175 35 of 40

Table A12. Cont.

Charging
Technology Class Percentil 25%

[h/CE]
Percentil 50%

[h/CE]
Percentil 75%

[h/CE]
Percentil 90%

[h/CE]
Percentil 95%

[h/CE]

HPC A. Free 0.04 0.34 0.60 0.78 0.92
HPC B. Flatrate 0.50 0.68 0.88 1.08 1.21
HPC C. Time 0.25 0.36 0.51 0.65 0.76
HPC D. Energy 0.29 0.47 0.68 0.91 1.07
HPC E. Mixed 0.31 0.49 0.72 0.96 1.11

Table A13. Idle time per charging event and per class for AC, DC, and high-power charging events.

Charging
Technology Class Percentil 25%

[h/CE]
Percentil 50%

[h/CE]
Percentil 75%

[h/CE]
Percentil 90%

[h/CE]
Percentil 95%

[h/CE]

AC A. Free 0.20 1.09 4.29 8.45 11.27
AC B. Flatrate 0.26 0.99 4.61 8.33 10.70
AC C. Time 0.01 0.11 0.86 5.42 6.61
AC D. Energy 0.12 0.81 3.25 8.55 10.64
AC E. Mixed 0.03 0.19 0.57 3.40 6.83

DC A. Free 0 0 0.01 0.04 0.10
DC B. Flatrate 0 0.03 0.07 0.26 0.72
DC C. Time 0 0 0.03 0.16 0.48
DC D. Energy 0 0.01 0.06 0.32 0.79
DC E. Mixed 0 0 0.02 0.12 0.23

HPC A. Free 0 0 0.01 0.06 0.11
HPC B. Flatrate 0 0 0.01 0.02 0.05
HPC C. Time 0 0 0 0 0
HPC D. Energy 0 0 0.01 0.05 0.09
HPC E. Mixed 0 0 0 0.02 0.05

Table A14. Correlation analysis per class for AC, DC, and high-power charging events.

Var. 1 Var. 2 AC
Correlation AC p-Value DC

Correlation DC p-Value HPC
Correlation HPC p-Value

A. Free Duration 0.0451 0 −0.0505 1.4 × 10−65 −0.0148 1.4 × 10−6

B. Flatrate Duration 0.0588 0 0.0595 2.3 × 10−90 0.1044 8.0 × 10−252

C. Time Duration −0.0546 0 0.0053 7.0 × 10−2 −0.1229 0
D. Energy Duration 0.0774 0 0.0288 1.5 × 10−22 0.0204 3.7 × 10−11

E. Mixed Duration −0.1207 0 −0.0432 1.5 × 10−48 0.0237 1.5 × 10−14

A. Free Energy 0.0153 1.3 × 10−120 −0.0443 5.5 × 10−51 −0.0536 1.6 × 10−67

B. Flatrate Energy 0.1715 0 0.2735 0 0.2555 0
C. Time Energy 0.1096 0 −0.1025 3.5 × 10−265 0.1003 1.9 × 10−232

D. Energy Energy −0.0922 0 −0.0258 2.2 × 10−18 −0.1403 0
E. Mixed Energy −0.0479 0 −0.0242 2.0 × 10−16 −0.0595 8.5 × 10−83

A. Free Avg. Power −0.0334 0 −0.0042 1.5 × 10−1 −0.0474 3.1 × 10−53

B. Flatrate Avg. Power 0.0359 0 0.0984 3.0 × 10−244 0.0683 8.9 × 10−109

C. Time Avg. Power 0.2095 0 −0.0711 2.1 × 10−128 0.3619 0
D. Energy Avg. Power −0.1550 0 −0.0151 3.0 × 10−7 −0.1824 0
E. Mixed Avg. Power 0.0554 0 0.0219 1.0 × 10−13 −0.1280 0

A. Free Charge Time 0.0314 0 −0.0530 4.0 × 10−72 −0.0343 9.7 × 10−29

B. Flatrate Charge Time 0.1299 0 0.1896 0 0.1628 0
C. Time Charge Time −0.0145 1.2 × 10−108 −0.0814 1.1 × 10−167 −0.1816 0

D. Energy Charge Time −0.0009 1.6 × 10−1 −0.0020 4.8 × 10−1 0.0110 3.3 × 10−4

E. Mixed Charge Time −0.0682 0 −0.0093 1.5 × 10−3 0.0554 4.0 × 10−72
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Table A14. Cont.

Var. 1 Var. 2 AC
Correlation AC p-Value DC

Correlation DC p-Value HPC
Correlation HPC p-Value

A. Free Idle Time 0.0396 0 −0.0389 1.0 × 10−39 0.0098 1.4 × 10−3

B. Flatrate Idle Time 0.0218 5.9 × 10−242 0.0097 1.0 × 10−3 −0.0003 9.0 × 10−1

C. Time Idle Time −0.0558 0 0.0289 1.2 × 10−22 −0.0084 6.1 × 10−3

D. Energy Idle Time 0.0864 0 0.0315 1.5 × 10−26 0.0182 3.6 × 10−9

E. Mixed Idle Time −0.1114 0 −0.0436 2.1 × 10−49 −0.0163 1.2 × 10−7

Table A15. Mann–Whitney-U analysis per class for AC charging events.

Class 1 Class 2 Duration s-Value Duration p-Value Energy s-Value Energy p-Value

A. Free B. Flatrate 5.10 × 109 0 3.40 × 109 0
A. Free C. Time 2.16 × 1010 0 1.43 × 1010 0
A. Free D. Energy 1.67 × 1011 0 1.66 × 1011 0
A. Free E. Mixed 4.52 × 1010 0 3.88 × 1010 0

B. Flatrate A. Free 7.24 × 109 0 8.94 × 109 0
B. Flatrate C. Time 8.27 × 109 0 7.58 × 109 0
B. Flatrate D. Energy 6.52 × 1010 0 7.89 × 1010 0
B. Flatrate E. Mixed 1.74 × 1010 0 1.82 × 1010 0

C. Time A. Free 1.36 × 1010 0 2.09 × 1010 0
C. Time B. Flatrate 3.51 × 109 0 4.20 × 109 0
C. Time D. Energy 1.24 × 1011 0 1.87 × 1011 0
C. Time E. Mixed 3.42 × 1010 9.07 × 10−7 4.34 × 1010 0

D. Energy A. Free 1.46 × 1011 0 1.46 × 1011 0
D. Energy B. Flatrate 3.95 × 1010 0 2.58 × 1010 0
D. Energy C. Time 1.74 × 1011 0 1.11 × 1011 0
D. Energy E. Mixed 3.62 × 1011 0 3.09 × 1011 5.81 × 10−135

E. Mixed A. Free 2.60 × 1010 0 3.24 × 1010 0
E. Mixed B. Flatrate 6.38 × 109 0 5.58 × 109 0
E. Mixed C. Time 3.36 × 1010 9.07 × 10−7 2.44 × 1010 0
E. Mixed D. Energy 2.41 × 1011 0 2.94 × 1011 5.81 × 10−135

Table A16. Mann–Whitney-U analysis per class for DC charging events.

Class 1 Class 2 Duration s-Value Duration p-Value Energy s-Value Energy p-Value

A. Free B. Flatrate 3.60 × 107 0 3.38 × 107 0
A. Free C. Time 1.20 × 108 7.90 × 10−7 1.24 × 108 9.58 × 10−23

A. Free D. Energy 3.45 × 108 1.54 × 10−59 3.57 × 108 3.63 × 10−26

A. Free E. Mixed 1.48 × 108 1.25 × 10−15 1.48 × 108 2.06 × 10−15

B. Flatrate A. Free 9.69 × 107 0 9.91 × 107 0
B. Flatrate C. Time 1.35 × 108 0 1.45 × 108 0
B. Flatrate D. Energy 4.06 × 108 0 4.40 × 108 0
B. Flatrate E. Mixed 1.76 × 108 0 1.85 × 108 0

C. Time A. Free 1.13 × 108 7.90 × 10−7 1.09 × 108 9.58 × 10−23

C. Time B. Flatrate 5.20 × 107 0 4.24 × 107 0
C. Time D. Energy 4.73 × 108 2.04 × 10−119 4.66 × 108 1.05 × 10−146

C. Time E. Mixed 2.02 × 108 8.30 × 10−45 1.93 × 108 3.94 × 10−100

D. Energy A. Free 4.14 × 108 1.54 × 10−59 4.02 × 108 3.63 × 10−26

D. Energy B. Flatrate 2.02 × 108 0 1.68 × 108 0
D. Energy C. Time 5.94 × 108 2.04 × 10−119 6.01 × 108 1.05 × 10−146

D. Energy E. Mixed 7.46 × 108 6.57 × 10−22 7.24 × 108 1.05 × 10−2
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Table A16. Cont.

Class 1 Class 2 Duration s-Value Duration p-Value Energy s-Value Energy p-Value

E. Mixed A. Free 1.64 × 108 1.25 × 10−15 1.64 × 108 2.06 × 10−15

E. Mixed B. Flatrate 7.49 × 107 0 6.61 × 107 0
E. Mixed C. Time 2.37 × 108 8.30 × 10−45 2.46 × 108 3.94 × 10−100

E. Mixed D. Energy 6.85 × 108 6.57 × 10−22 7.07 × 108 1.05 × 10−2

Table A17. Mann–Whitney-U analysis per class for high-power charging events.

Class 1 Class 2 Duration s-Value Duration p-Value Energy s-Value Energy p-Value

A. Free B. Flatrate 9.32 × 105 3.25 × 10−94 4.80 × 105 3.82 × 10−195

A. Free C. Time 4.37 × 106 4.14 × 10−2 2.03 × 106 1.14 × 10−113

A. Free D. Energy 1.37 × 107 3.31 × 10−27 1.09 × 107 2.07 × 10−65

A. Free E. Mixed 4.71 × 106 4.83 × 10−32 3.87 × 106 4.09 × 10−64

B. Flatrate A. Free 2.95 × 106 3.25 × 10−94 3.41 × 106 3.82 × 10−195

B. Flatrate C. Time 9.09 × 107 0 7.70 × 107 0
B. Flatrate D. Energy 3.03 × 108 0 3.51 × 108 0
B. Flatrate E. Mixed 1.05 × 108 0 1.24 × 108 0

C. Time A. Free 4.84 × 106 4.14 × 10−2 7.18 × 106 1.14 × 10−113

C. Time B. Flatrate 2.12 × 107 0 3.51 × 107 0
C. Time D. Energy 3.88 × 108 0 6.61 × 108 0
C. Time E. Mixed 1.31 × 108 0 2.34 × 108 0

D. Energy A. Free 2.35 × 107 3.31 × 10−27 2.64 × 107 2.07 × 10−65

D. Energy B. Flatrate 1.50 × 108 0 1.02 × 108 0
D. Energy C. Time 6.86 × 108 0 4.13 × 108 0
D. Energy E. Mixed 7.46 × 108 8.19 × 10−15 7.70 × 108 0.53

E. Mixed A. Free 8.55 × 106 4.83 × 10−32 9.38 × 106 4.09 × 10−64

E. Mixed B. Flatrate 5.61 × 107 0 3.71 × 107 0
E. Mixed C. Time 2.51 × 108 0 1.48 × 108 0
E. Mixed D. Energy 7.99 × 108 8.19 × 10−15 7.75 × 108 0.53

(a) Share of charging and idle time
Figure A16. Cont.
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(b) Charging Time

Figure A16. Charging and idle time of AC, DC and high-power charging events.

(a) AC charging events (b) DC charging events

(c) High-power charging events

Figure A17. Average charging and idle time of AC, DC, and high-power charging events depending
on the connection start time.
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