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Abstract: The accurate identification of permanent magnet synchronous motor (PMSM) parameters
is the foundation for high-performance driving in predictive control systems. The traditional PMSM
multi-parameter identification method suffers from insufficient rank of the identification equation
and is prone to getting stuck in local optimal solutions. This article combines the bacterial foraging
optimization algorithm (BFOA) to establish a built-in PMSM predictive control parameter compensa-
tion model. Firstly, we analyzed the reasons why the distortion of PMSM motor parameters affects
the actual speed and calculated the deviation of d-axis and q-axis currents caused by the distortion.
Secondly, parameter compensation was applied to the prediction model, and BFOA was combined to
optimize the compensation parameters. This algorithm does not use the traditional voltage equation
as the fitness function but instead uses a brand-new set of four equations for parameter iteration
optimization. The optimized compensation parameters can reduce current deviation and improve
the robustness of the PMSM predictive control system. The proposed model can cover four kinds
of motor distortion parameters, including stator resistance, D-axis inductance, Q-axis inductance,
and permanent magnet flux linkage. Finally, the traditional PMSM predictive control model is
compared with the predictive control model combined with BFOA. The simulation results show that
the dynamic and static performance of the compensated system is improved when single or multiple
parameters are distorted.

Keywords: PMSM; robust control; predictive control; parameter compensation; BFOA

1. Introduction

In response to the call of the National Development and Reform Commission’s “14th
Five-Year Plan for Modern Energy System”, vigorously developing new energy technolo-
gies has become the only way for China to move from a major automobile country to a
strong automobile country [1]. As the main actuator of new energy vehicles, the perfor-
mance of the drive motor determines their core performance [2]. In order to meet the
power requirements for starting, accelerating, driving, decelerating, and braking a car, it is
often required that the vehicle motor have a wide range of speed regulation performance
and high dynamic performance. In addition, the motor should have high resistance to
temperature and humidity, low noise during operation, and be able to work for a long time
under harsh environmental conditions. PMSM is often used as a driving motor for electric
vehicles due to its advantages such as lightweight, small size, high-power density, and
strong reliability [3–5].

Due to PMSM being a complex, nonlinear, strongly coupled, and multivariable system,
its control is difficult and costly. Among numerous PMSM control systems, Finite Control
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Set Model Predictive Current Control (FCS-MPCC) stands out due to its low model require-
ments, good control quality, and convenient online calculation [6–8]. However, FCS-MPCC
still has obvious drawbacks in practical applications: the physical structure of PMSM
has tooth slot effect, edge effect, and saturation effect, and there will be temperature rise
parameter changes during operation. The prediction results depend on the system model
parameters, and parameter mismatches can lead to a decrease in control performance [9].
Therefore, in order to further enhance the development and application of PMSM in the
field of electric vehicles, research on the parameter robustness of PMSM predictive control
systems has become a current hot topic.

There are two types of research on robustness issues. One method is online parameter
recognition, which is based on real-time recognition of parameter changes, substituting the
true values of parameters into the control system to improve control accuracy [10,11]. At
present, commonly used online parameter identification methods include the least squares
method [12], extended Kalman filter [13], and model reference adaptive method [14,15]. The
objective function of the least squares method is simple, with a minimum objective function
value of zero, and the computational workload is moderate. However, in the optimization
process under non-stationary conditions, the tracking ability of the objective function is poor
and more sensitive to external disturbances. In addition, due to the need to simplify the
model and linearize the parameters, this method may lead to a decrease in identification
accuracy. An extended Kalman filter is an extension of the Kalman filter in nonlinear
system applications that can provide state estimation in the sense of minimum variance
for nonlinear systems in noisy environments. However, it is necessary to process the
parameters to be identified into state variables, which requires complex matrix and vector
operations and makes it difficult to design algorithms for multi-parameter measurement.
The basic idea of the model reference adaptive algorithm is to use the motor body as
the reference model and the equation system containing the parameters to be identified
as the adjustable model. Under the same excitation input, two models have the same
physical output. Identify parameters when the error approaches zero by combining the
output error between two models and an adaptive law designed based on Lyapunov
theory or Popov theory. This algorithm has a simple structure and easy convergence of
results, but it is difficult to use for multi-parameter identification/measurement of missing
ranks. In fact, in the multi-parameter identification of permanent magnet synchronous
motors, these traditional identification methods generally have the problem of insufficient
rank. The number of unknown parameters to be identified exceeds the number of control
system equations, resulting in multiple sets of identification results with significant errors.
Therefore, Zhou et al. [16] solved the multi-parameter discrimination problem under
rank deficiency by constructing a second-order steady-state equation. Yu et al. [17] used
the voltage equation on the shaft to construct an equal rank equation to estimate the
entire motor parameters in both steady-state and transient states. Zhang et al. [18] and
Feng et al. [19] both proposed a method of injecting a d-axis negative sequence current in
a short period of time, which effectively solves the problem of insufficient sorting of the
mathematical model of permanent magnet synchronous motors and can quickly achieve
simultaneous identification of multiple parameters. However, whether constructing equal
rank equations using different states of the motor or solving rank problems by injecting
current into the d-axis, both increase the operational complexity of parameter identification
and limit its application in the industrial field. If a set of equal rank equations that can
be identified without additional operations can be found, it will greatly simplify the
identification process.

Another method to improve system robustness is biomimetic intelligent optimization
algorithms. This method uses regularly measured data and correctly defined objective
functions, providing an ideal automation solution for parameter estimation in permanent
magnet synchronous motor systems. Especially the Particle Swarm Optimization (PSO)
algorithm, which is a naturally inspired algorithm with advantages such as simple imple-
mentation and parallel search in the solution space, has strong capabilities in handling
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multivariate parameter optimization problems. This algorithm has been widely used in
the parameter estimation of motors [20–22]. For example, in [21], a coevolutionary PSO
combined with an artificial immune system (AIS) was developed to improve the estimation
performance of PMSM multiple parameters using the designed objective function. In order
to accelerate the search process of the group, some parallel improved PSO algorithms have
been proposed for parameter estimation and temperature monitoring of PMSM; ref. [22]
proposed a dynamic PSO with a learning strategy and designed a novel motion correction
equation with variable exploration vectors to effectively update particles, enabling the
population to cover a large area of search with a high probability. This PSO is effective in
estimating the stator resistance and rotor flux of permanent magnet synchronous motors,
or d-axis inductance and q-axis inductance, but it cannot satisfactorily estimate all machine
parameters simultaneously, because when dealing with time-varying multi-parameter
optimization problems, PSO is prone to getting stuck in local minima. In addition, the
existing parameter estimation of permanent magnet synchronous motors based on particle
swarm optimization algorithms is mainly focused on surface-mounted permanent magnet
synchronous motors, and there is little research on built-in permanent magnet synchronous
motors. Due to the fact that the quadrature axis inductance of the built-in permanent mag-
net synchronous motor is greater than the direct axis inductance, its mathematical model is
more complex compared to the surface-mounted synchronous motor. However, the built-in
rotor structure can fully utilize the reluctance torque generated by the asymmetry of the
rotor magnetic circuit, improve the power density of the motor, and improve the dynamic
performance of the motor compared to the surface-mounted rotor structure. Therefore, it is
necessary to conduct research on intelligent algorithm parameter identification for built-in
permanent magnet synchronous motors.

In order to achieve the design and safe operation of a high-performance predictive
control system for permanent magnet synchronous motors, comprehensive modeling work
is always necessary, which accurately identifies the motor’s resistance, d-axis inductance,
q-axis inductance, and magnetic flux. In view of the above situation, this article innovates
from three aspects: principle, method, and object, and proposes a parameter compensation
method for the PMSM predictive control system based on the Bacteria Feeding Optimization
Algorithm (BFOA). In terms of principle, in order to solve the problem of missing rank
in parameter identification equations, this paper proposes four new fitness functions for
parameter identification without the need to construct additional transient or steady-state
equations and without injecting current into the d-axis. At the method level, in order
to solve the problem of PSO easily falling into local minima, BFOA is used for intelligent
search. BFOA is an intelligent optimization algorithm proposed to solve problems such as
complexity, nonlinearity, and constraints in large-scale optimization events. Compared to PSO,
the decentralized stage of BFOA gives it super strong global search ability [23–25], avoiding
the problem of getting stuck in local minima during the search process. At the level of the
target audience, this article focuses on the research on surface-mounted permanent magnet
synchronous motors. The specific steps can be divided into: firstly, using the formula to
derive and analyze, and proposing four identification equations to reduce the predicted
current deviation; secondly, using the BFOA algorithm to iteratively optimize parameters
under the full rank identification equation; and finally, the optimized parameters will be
compensated in the control system.

The structure of the article is as follows: Section 1 briefly introduces the working
principle of the FCS-MPCC system; Section 2 analyzes the deviation of predicting current
under parameter distortion and derives a new identification equation to reduce the de-
viation; Section 3 introduces the process of implementing parameter identification using
BFOA; and Section 4 builds comparative simulation experiments to verify the feasibility
and effectiveness of the proposed method. Section 5 summarizes the article and provides
prospects for future research directions.
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2. FCS-MPCC Theory and Model

In 1983, predictive control was first extended and applied to motor drive systems
by Professor Holtz, who proposed the method of Model Predictive Control (MPC) [26].
FCS-MPCC is developed from the classic MPC, which analyzes the current system state
values, and the system state model selects the optimal predictive value after traversing
and selecting finite control variables. It is widely used due to its advantages, such as its
wide adaptability.

2.1. PMSM Model

The voltage of the PMSM three-phase winding is composed of stator resistance voltage
and flux-induced voltage. The voltage equation in the three-phase stationary coordinate
system is as follows:

ua = Rsia +
dψa

dt
(1)

ub = Rsib +
dψb
dt

(2)

uc = Rsic +
dψc

dt
(3)

By applying the Clark and Park transformations to the above three equations, the
voltage equation in the d-q rotating coordinate system can be obtained:

ud = Rsid +
dψd
dt
−ωeψq (4)

uq = Rsiq +
dψq

dt
+ ωeψd (5)

The magnetic linkage equation of PMSM in the d-q rotating coordinate system is
as follows:

ψd = Ldid + ψf (6)

ψq = Lqiq (7)

By introducing Equations (6) and (7) into Equations (4) and (5), the voltage equation
can be obtained as follows:

ud = Rsid + Ld
did
dt
− Lqωeiq (8)

uq = Rsiq + Lq
diq
dt

+ Ldωeid + ωeψf (9)

2.2. FCS-MPCC Theory

Write in Equations (8) and (9):

did
dt

=
id(k + 1)− id(k)

T
(10)

diq
dt

=
iq(k + 1)− iq(k)

T
(11)
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By introducing Equations (10) and (11) into Equations (8) and (9), the FCS-MPCC
model can be derived:

id(k + 1) =
(

1− TRs

Ld

)
id(k) +

T
Ld

ud(k) +
LqTωe(k)

Ld
iq(k) (12)

iq(k + 1) =
(

1− TRs

Lq

)
iq(k) +

T
Lq

uq(k)−
LdTωe(k)

Lq
id(k)−

Tωe(k)ψf
Lq

(13)

In the three-phase bridge inverter circuit that provides voltage to the motor, as shown
in Figure 1. Different switch states can result in different three-phase stator voltages,
as follows:

uabc = Sw(:, i)× udc −
udc
2

(14)
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By transforming the coordinates of the three-phase voltages under different switching
states, the d- and q-axis voltages under different switching states can be obtained, which are
then incorporated into the predictive control model Equations (12) and (13). The obtained
d-and q-axis predictive currents are then incorporated into the cost function:

J =
[(

id(k + 1)− ire f
d

)2
+
(

iq(k + 1)− ire f
q

)2
]

(15)

The switch state at which the cost function is minimized is determined by the
control system.

3. Analysis and Compensation of Parameter Distortion

When the PMSM predictive control system is actually running, motor parameters
often undergo distortion due to changes in temperature, load, and external disturbances.
The specific parameters of the motor include stator resistance Rs, d-axis inductance Ld,
q-axis inductance Lq, and permanent magnet flux ψf. These distorted parameters can
cause deviations in the predicted current, which in turn affects the speed performance of
the motor.

3.1. Predicted Current Deviation

The motor prediction model is as follows:

ipd(k + 1) = id(k) +
T

Ldm

[
ud(k)− Rmid(k) + Lqmωe(k)iq(k)

]
(16)
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ipq(k + 1) = iq(k) +
T

Lqm

[
uq(k)− Rmiq(k)− Ldmωe(k)id(k)− ψfmωe(k)

]
(17)

The actual model with parameter mismatch is as follows:

iad(k + 1) = id(k) +
T

Lda

[
ud(k)− Raid(k) + Lqaωe(k)iq(k)

]
(18)

iaq(k + 1) = iq(k) +
T

Lqa

[
uq(k)− Raiq(k)− Ldaωe(k)id(k)− ψfaωe(k)

]
(19)

and
Lda = Ldm + ∆Ld (20)

Lqa = Lqm + ∆Lq (21)

Ra = Rm + ∆R (22)

ψfa = ψfm + ∆ψ (23)

The deviation of d-axis and q-axis current caused by parameter distortion is as follows:

ipd(k + 1)− iad(k + 1) = T
Ldm(Ldm+∆Ld)

{[
ud(k)− Rmid(k) + Lqmωe(k)iq(k)

]
∆Ld−[

Ldmωe(k)iq(k)
]
∆Lq + [Ldmid(k)]∆R}

(24)

ipq(k + 1)− iaq(k + 1) = T
Lqm(Lqm+∆Lq)

{[
uq(k)− Rmiq(k) − Ldmωe(k)id(k)−ψfmωe(k)]∆Lq+[

Lqmωe(k)id(k)
]
∆Ld +

[
Lqmiq(k)

]
∆R +

[
Lqmωe(k)

]
∆ψ
} (25)

The existence of a predicted current bias causes a shift in the switching state of the
inverter circuit selection. In order to improve system robustness, it is particularly important
to weaken the magnitude of the current bias.

3.2. Parameter Compensation

To reduce the predicted current deviation, the prediction model is compensated:

ipdc(k + 1) = id(k) +
T

Ldm + ∆L′d
[ud(k)−

(
Rm + ∆R′

)
id(k) +

(
Lqm + ∆L′q

)
ωe(k)iq(k)

]
(26)

ipqc(k + 1) = iq(k) + T
Lqm+∆L′q

[
uq(k)− (Rm + ∆R′)iq(k)−

(
Ldm + ∆L′d

)
ωe(k)id(k)−

(ψfm + ∆ψ′)ωe(k)]
(27)

At this point, the predicted current deviation after compensation is as follows:

ipdc(k + 1)− iad(k + 1) = dev1
d + dev2

d (28)

The superscripts 1 and 2 indicate the deviation component labels and have no
practical significance.

dev1
d = T

(Ldm+∆L′d)(Ldm+∆Ld)
{[ud(k)− (Rm + ∆R′)id(k) +

(
Lqm + ∆L′q

)
ωe(k)iq(k)

]
∆Ld−[(

Ldm + ∆L′d
)
ωe(k)iq(k)

]
∆Lq +

[(
Ldm + ∆L′d

)
id(k)

]
∆R
} (29)

dev2
d = T

(Ldm+∆L′d)(Ldm+∆Ld)
{[−ud(k)+ Rmid(k)− Lqmωe(k)iq(k)

]
∆L′d+[

Ldmωe(k)iq(k)
]
∆L′q − [Ldmid(k)]∆R′

} (30)
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Similarly, the predicted current deviation of the compensated q-axis is as follows:

ipqc(k + 1)− iaq(k + 1) = dev1
q + dev2

q (31)

dev1
q = T

(Lqm+∆L′q)(Lqm+∆Lq)

{[
uq(k)− (Rm + ∆R′)iq(k)−

(
Ldm + ∆L′d

)
ωe(k)id(k)−

(ψfm + ∆ψ′)ωe(k)]∆Lq +
[(

Lqm + ∆L′q
)

ωe(k)id(k)
]
∆Ld +

[(
Lqm + ∆L′q

)
iq(k)

]
∆R+[(

Lqm + ∆L′q
)

ωe(k)
]
∆ψ
} (32)

dev2
q = T

(Lqm+∆L′q)(Lqm+∆Lq)

{[
−uq(k)+ Rmiq(k) + Ldmωe(k)id(k) + ψfmωe(k)

]
∆L′q−[

Lqmωe(k)id(k)
]
∆L′d −

[
Lqmiq(k)

]
∆R′ −

[
Lqmωe(k)

]
∆ψ′

} (33)

Compare Equations (28) and (24), and compare Equations (31) and (25). In order to
reduce the predicted current deviation, the corresponding compensation values ∆R′, ∆L′d,
∆L′q, and ∆ψ′ for each parameter of the motor should be taken as positive, and values
should follow the following rules:

T
Ldm(Ldm+∆L′d)

{[
ud(k)− Rmid(k) + Lqmωe(k)iq(k)

]
∆L′d −

[
Ldmωe(k)iq(k)

]
∆L′q+

[Ldmid(k)]∆R′} ≈ 0
(34)

T
Lqm(Lqm+∆L′q)

{[
uq(k)− Rmiq(k)− Ldmωe(k)id(k)− ψfmωe(k)]∆L′q +

[
Lqmωe(k)id(k)

]
∆L′d+[

Lqmiq(k)
]
∆R′ +

[
Lqmωe(k)

]
∆ψ′

}
≈ 0

(35)

ud(k)−
(

Rm + ∆R′
)
id(k) +

(
Lqm + ∆L′q

)
ωe(k)iq(k) ≈ 0 (36)

uq(k)−
(

Rm + ∆R′
)
iq(k)−

(
Ldm + ∆L′d

)
ωe(k)id(k)−

(
ψfm + ∆ψ′

)
ωe(k) ≈ 0 (37)

When ∆R′, ∆L′d, ∆L′q, ∆ψ′ satisfy Equations (34) and (35), the values of dev2
d, dev2

q
will tend to be 0. Due to the presence of compensating inductance ∆L′d, ∆L′q in the
denominator and satisfying Equations (36) and (37), it is possible to reduce the predicted
current deviation after compensation. The optimal compensation effect is as follows:

ipdc(k + 1)− iad(k + 1) =
T

(Ldm + ∆Ld)

{
−
[
ωe(k)iq(k)

]
∆Lq + id(k)∆R

}
(38)

ipqc(k + 1)− iaq(k + 1) =
T(

Lqm + ∆Lq
){[ωe(k)id(k)]∆Ld + iq(k)∆R + ωe(k)∆ψ} (39)

Simplify Equations (24) and (25) as shown in Equations (40) and (41). Comparing the
two predicted current deviations before and after compensation, although the existence of
current deviation cannot be eliminated after compensation, it makes it possible to reduce
the deviation.

ipd(k + 1)− iad(k + 1) = T
Ldm(Ldm+∆Ld)

[
ud(k)− Rmid(k) + Lqmωe(k)iq(k)

]
∆Ld+

T
(Ldm+∆Ld)

{
−
[
ωe(k)iq(k)

]
∆Lq + id(k)∆R

} (40)

ipq(k + 1)− iaq(k + 1) = T
Lqm(Lqm+∆Lq)

[
uq(k)− Rmiq(k) − Ldmωe(k)id(k)−

ψfmωe(k)]∆Lq +
T

(Lqm+∆Lq)
{[ωe(k)id(k)]∆Ld+ iq(k)∆R + ωe(k)∆ψ} (41)

4. BFOA Principle and Application

In order to generate compensation parameters, the globality, and optimality of BFOA
can be utilized to iteratively generate ∆R′, ∆L′d, ∆L′q, ∆ψ′ that meets the conditions.
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4.1. Principle of BFOA

BFOA is a swarm intelligence search algorithm proposed by Professor K.M. Passion
in 2002 to solve problems such as complexity, nonlinearity, and constraints in large-scale
optimization events [27,28]. Its biomimetic principle comes from the foraging process
of Escherichia coli, which can be divided into three stages: chemotaxis, reproduction,
and dispersal [29]. Different from the principle of the Particle Swarm Optimization (PSO)
algorithm: a group of particles maintains motion, interacts in a constrained parameter space,
and updates their velocity and position based on their own and neighboring information to
find the global optimal value. BFOA does not require optimizing the velocity and gradient
information of the object, and the dispersion stage can create random new individuals,
which is of great value for jumping out of local optimal solutions [30].

In the process of bacterial foraging, in order to efficiently search for food and expand
the population, it is necessary to distinguish the environment. In areas with food scarcity or
toxicity, bacteria will frequently flip to redefine their foraging direction, while in areas with
dense food, they will continue to swim in the current direction. The process of integrating
the two behaviors of swimming and flipping is called the chemotaxis stage. In order to
maintain the population size, bacteria will survive and eliminate the fittest based on the
individual’s foraging ability in the population. Eliminate individuals in disadvantaged
foraging positions, replicate those in food-dense areas, and optimize bacterial populations
through replication steps. In addition, in order to cope with various sudden disasters in the
natural environment, bacteria with weaker survival ability in the population will die due
to sudden environmental changes or food scarcity, while bacteria with stronger survival
ability will undergo population migration. This process of individual migration is called
the dispersion stage. Throughout the entire process of bacterial foraging, the quality of the
environment always affects the specific survival steps of the bacteria. The fitness function
J is used to represent the quality of the bacterial location.

Assuming the initial population of bacteria is N, the location of a single bacterium
in the population is the optimal solution for the corresponding real-world problem. The
location information of a single bacterium, including an M-dimensional vector, can be
expressed as follows:

Pi =
[
Pi

1 Pi
2 . . . Pi

M
]

(42)

i = 1, 2 . . . N, The position information of bacteria after the j-th chemotactic step, k-th
replication step, and l-th dispersion step can be represented by Pi(j, k, l).

Pi(j, k, l) =
[
Pi

1 Pi
2 . . . Pi

M
]

(43)

At this point, the goodness corresponding to the position can be represented by
Ji(j, k, l).

1. After the chemotactic action of bacteria i, the position update can be expressed as
follows:

Pi(j + 1, k, l) = Pi(j, k, l) + C(i)φ(i) (44)

2. Pi(j + 1, k, l) represents the position information after the j-th chemotaxis step, the
k-th replication step, and the l-th dispersion step; C(i) is the unit of step length during
bacterial swimming, and C(i) is greater than 0; φ(i) is the random direction selected
for rolling, and specifically:

φ(i) =

√
∆(i)

∆T(i)∆(i)
(45)

3. ∆(i) is a randomly generated vector, and ∆(i) ∈ [−1, 1].
4. In the reproductive stage of bacteria, the fitness function Ji(j, k, l) is sorted based on the

individual’s position, and half of the individuals with good fitness are self-replicated,
while the remaining half are eliminated. At this point, the bacterial population
contains individuals with twice as good fitness.
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5. The dispersal action of bacteria can be simulated using the migration probability
Ped. Once a bacterial individual meets the probability of migration, a new bacterial
individual is randomly generated at any location in space while the individual disap-
pears. New and old bacterial individuals have different positions, namely different
fitness, which enables some individuals in the population to jump out of their original
positions and swim and flip, with stronger global search ability.

In addition, the number of swimming steps Ns, chemotaxis Nc, reproduction Nre, and
dispersion times Ned can be manually set according to the actual problem situation.

4.2. BFOA Generation Compensation Parameters

Applying BFOA to the generation of compensation parameter ∆R′, ∆L′d, ∆L′q, ∆ψ′,
the position information of a single bacterium i contains a 4-dimensional vector and can be
represented as:

Pi =
[
∆R′ i ∆L′id ∆L′iq ∆ψ′ i

]
(46)

∆R′ i represents the i-th stator resistance compensation generated, and ∆L′id , ∆L′iq , ∆ψ′ i

are the same. To ensure that the compensation parameters meet Equations (35)–(38) and
effectively improve the robustness of the control system, the fitness function of bacteria
should be set as follows:

J1 = T
Ldm(Ldm+∆L′d)

{[
ud(k)− Rmid(k) + Lqmωe(k)iq(k)

]
∆L′d −

[
Ldmωe(k)iq(k)

]
∆L′q+

[Ldmid(k)]∆R′}
(47)

J2 = T
Lqm(Lqm+∆L′q)

{[
uq(k)− Rmiq(k)− Ldmωe(k)id(k)− ψfmωe(k)]∆L′q+[

Lqmωe(k)id(k)
]
∆L′d +

[
Lqmiq(k)

]
∆R′ +

[
Lqmωe(k)

]
∆ψ′

} (48)

J3 = ud(k)−
(

Rm + ∆R′
)
id(k) +

(
Lqm + ∆L′q

)
ωe(k)iq(k) (49)

J4 = uq(k)−
(

Rm + ∆R′
)
iq(k)−

(
Ldm + ∆L′d

)
ωe(k)id(k)−

(
ψfm + ∆ψ′

)
ωe(k) (50)

When the fitness functions J1, J2, J3, J4 of the corresponding position of a certain
bacterium i both tend to 0, it indicates that the bacterium is located in a food-dense location,
that is, ∆R

′i ∆L
′i
d ∆L

′i
q ∆ψ′ i are close to the optimal compensation parameters. When

the fitness functions J1, J2, J3, J4 tend to infinity or not all tend to 0, then the compensation
parameters still need to be iteratively optimized. The specific algorithm flowchart for BFOA
parameter compensation is shown in Figure 2. In addition, in order to further enhance
readers’ understanding of the BFOA algorithm, Appendix A provides MATLAB code
examples for optimizing PID parameters using BFOA.
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5. Simulation and Verification

In order to verify the correctness and effectiveness of the proposed PMSM predictive
control parameter compensation model, a simulation comparison was conducted between
the traditional PMSM predictive control model and the predictive control model combined
with BFOA using the MATLAB Simulink platform.

The block diagram of the traditional predictive control system is shown in Figure 3.
The system adopts a dual closed-loop control structure, with the outer loop being the
speed loop, the inner loop being the current loop, and the inverter is a midpoint-clamped
three-level inverter. The outer ring performs PI control based on speed feedback to obtain
the reference current value of the motor’s q-axis. The inner loop prediction model obtains
the predicted current values of the d and q axes based on the motor calibration parameters.
The cost function determines the inverter switch state based on the difference between
the predicted current and the reference current, thereby achieving tracking for a given
speed. When the actual parameters of the motor deviate from the calibration parameters
in complex experimental environments, such as high temperatures, BFOA will output
parameter compensation based on multiple fitness functions. When the compensation is
applied to the prediction model, the cost function will redetermine the inverter switch state
to achieve disturbance regulation. The BFOA predictive control system diagram is shown
in Figure 4.
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Build a comparative simulation experiment according to the block diagram, and
the PMSM parameters in the experiment are shown in Table 1. Under the experimental
conditions of a given speed of 1000 r/min and a load of 1.27 Nm, five sets of parameter
distortion control experiments were set up:

• Rs = 2Rsm;
• Ld = 2Ldm;
• Lq = 2Lqm;
• ψf = 0.7ψfm;
• Rs = 1.5Rsm, Ld = 1.5Ldm, Lq = 1.5Lqm, ψf = 0.7ψfm;

Change the calibration parameters in the simulation motor to simulate parameter distor-
tion. The first four sets of experiments will change individual parameters to simulate
distortion, and the last set of experiments will cause distortion of all four sets of parameters
simultaneously.

Table 1. PMSM simulation parameters.

Parameter Value

Stator resistance R/Ω 0.0485

D-axis inductance Ld/H 0.000395

Q-axis inductance Lq/H 0.000395

Permanent magnet flux chain ψf/Wb 0.1194

Rotational inertia J/kg ·m2 0.0027

DC voltage source Udc/V 220

Load torque Tr/Nm 1.27

Given speed r/min 1000

Population size N 5000

Swimming steps Ns 25

Chemotaxis frequency Nc 50

Reproduction frequency Nre 2

Migration probability Ped 0.25

Dispersion frequency Ned 2

The response simulation diagrams for five sets of experiments are shown in Figures 5–9,
where Figure 5 follows the order of speed response diagram, torque response diagram,
d-axis current tracking diagram, and q-axis current tracking diagram from left to right
and from top to bottom. The speed response diagram and torque response diagram both
include three situations: parameter not distorted, distortion not compensated, and BFOA
parameter compensation after distortion. The current tracking chart is divided into two
situations: parameter distortion not compensated and parameter distortion compensated,
and each chart includes three current tracking situations: reference current, predicted
current, and actual current. The situation in Figures 7–9 is consistent with Figure 5.
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Analysis of simulation results shows that stator resistance distortion can cause steady-
state deviation in speed, and the predicted current on the q-axis deviates from the actual
current. The distortion of the d-axis inductance will cause pulsation of the speed, obvious
pulsation of the d-axis current, and a deviation between the predicted current and the
actual current on the q-axis. Distortion of the q-axis inductance can cause an overshoot
of the speed, distortion of the q-axis current, and deviation in the actual current tracking
predicted current. The distortion of the permanent magnet flux linkage parameter will
affect the speed response speed, and there will be a steady-state deviation in the speed,
resulting in a deviation between the predicted current of the q-axis and the actual current.

After using BFOA for parameter compensation, all five experiments showed compen-
sation effects. Firstly, the motor speed improved in stability, accuracy, and other aspects,
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while the overshoot amplitude decreased. Secondly, the fluctuation amplitude of the q-axis
current was reduced, making the predicted current more accurate in tracking the actual
current, eliminating static bias, and the fluctuation amplitude of the d-axis current was
reduced, making it smoother and more stable. The dynamic and static performance of the
control system has improved. However, compensation cannot eliminate the influence of
parameter distortion, as the newly proposed cost function cannot be completely zero. How
to further improve the compensation effect still needs to be studied.

Utilize multiple fitness functions to constrain compensation parameters and achieve
real-time compensation.

6. Conclusions

In this article, a parameter compensation scheme for PMSM predictive control based
on BFOA is proposed to improve the robustness of the system. The new identification equa-
tion effectively solves the problem of insufficient rank in traditional online identification
methods without the need to construct additional voltage equations or inject current into
the d-axis, greatly simplifying the identification operation process. Meanwhile, the BFOA
algorithm is different from other algorithms in that its strong global search ability avoids
the problem of getting stuck in local optima during the search process, which ultimately
affects the identification results. In addition, the research focuses on built-in PMSM, filling
the gap in the lack of intelligent algorithm parameter identification for built-in PMSM.

Build comparative experiments on the Simulink simulation platform and distort
the motor parameters in both the PMSM traditional predictive control system and the
control system with parameter compensation. The experimental results show that the
overshoot amplitude of the compensated system motor speed is reduced, and the stability
and accuracy are improved. The amplitude of the q-axis current fluctuation is reduced,
and the tracking performance is improved. It has a compensating effect on single and
multi-parameter distortions. The safe operation of the high-performance predictive control
system for permanent magnet synchronous motors has been achieved.

However, compensation cannot completely eliminate the impact of distortion on
performance, and the effect of compensating for resistance distortion is limited. How to
further improve the compensation effect still needs to be studied. In addition, the research
on compensation performance in high-, medium-, and low-speed fields is the main focus
of my further research.
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Nomenclature
Parameter Value
ua, ub, uc Stator three-phase voltages
ia, ib, ic Stator three-phase currents
ψa, ψb, ψc Three-phase winding flux linkage
Rs Stator resistance
ud, uq Direct axis and quadrature axis voltage
id, iq Direct axis and quadrature axis current
ψd, ψq Direct axis and quadrature axis flux linkage
T Sampling time

∗ Sw(:, i)
Eight states of three sets of switches for inverters,
including (000,001,010,011,100,101,110,111), i=1,2,3,4,5,6,7,8

udc Inverter DC voltage source
id(k), iq(k) Present value of Direct axis and quadrature axis current
id(k + 1), iq(k + 1) Future value of Direct axis and quadrature axis current
J Cost function/Fitness function
ire f
d , ire f

q Reference value of Direct axis and quadrature axis current
ipd(k + 1), ipq(k + 1) Theoretical value of predicted current for d and q axis
Rm, Ldm, Lqm, ψfm Model values without distortion of motor parameters
iad(k + 1), iaq(k + 1) Actual value of predicted current for d and q axis
Ra, Lda, Lqa, ψfa Actual values with distortion of motor parameters
∆R, ∆Ld, ∆Lq, ∆ψ Distortion value of corresponding parameters
ipdc(k + 1), ipqc(k + 1) Predicted current values of d and q axes after compensation
∆R′, ∆L′d, ∆L′q, ∆ψ′ Compensation values of corresponding parameters
dev1

d, dev2
d D-axis predicted the current deviation component

dev1
q, dev2

q Q-axis predicted the current deviation component
∗ Pi Location information of bacteria i
∗ C(i) Unit of step length during bacterial swimming
∗ ∆(i) Randomly generated direction vector
Ns Number of swimming steps
Nc Chemotaxis frequency
Nre Reproduction frequency
Ned Number of dispersion times
J(j, k, l) The corresponding goodness of the position information
* The bold font in the table represents the matrix.

Appendix A

MATLAB code examples for optimizing PID parameters using BFOA.

Nc = 50; % Chemotaxis frequency
Ns = 4; % Swimming frequency
Nre = 4; % Copy count
Ned = 2; % Disperse (migrate) times
sizepop = 20; % Population size
Sr = sizepop/2; % Number of copies (splits)
nvar = 3; % 3 unknown quantities
Ped = nvar/12; % Probability of bacterial dispersal (migration)
popmin = [0,0,0]; % x min
popmax = [30,30,30]; % x max
Cmin = [−2,−2,−2]; % Minimum step size
Cmax = [2,2,2]; % Maximum step size
C(:,:) = 0.001*ones(sizepop,nvar); % After selecting the flipping direction, the step size of a
single bacteria moving forward
%% The cost function, which is our objective function
fun = @(x)PID_Fun_1(x);
%% Initialize population
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for I = 1:sizepop
pop(i,:) = popmin + (popmax-popmin).*rand(1,nvar); % Initialize individual
fitness(i) = fun( pop(i,:) ); % Initialize fitness value
C(i,:) = Cmin + (Cmax-Cmin).*rand(1,nvar); % Initialization step size

end
%% Record a set of optimal values
[bestfitness,bestindex] = min(fitness); % Take the minimum fitness value
zbest = pop(bestindex,:); % Global best bacterial individual
fitnesszbest = bestfitness; % Global optimal fitness value
%% Iterative optimization
for i = 1:Ned % Disperse (migrate) times

for k = 1:Nre % Copy count
for m = 1:Nc % Chemotaxis frequency

for j = 1:sizepop % population
% Flip
delta = 2*rand(1,nvar)-0.5;
pop(j,:) = pop(j,:) + C(j,:).*delta./(sqrt( delta*delta’ ));

% Value range constraint
pop(j,:) = 1b_ub(pop(j,:), popmin, popmax);

% Update the current fitness value
fitness(j) = fun(pop(j,:));

% Fitness update
% Comparison between bacterial individuals
if fitness(j) < fitnesszbest

fitnesszbest = fitness(j);
zbest = pop(j,:);

end
end

end
% Copy operation
[maxF,index] = sort(fitness,‘descend’); % Sort in descending order
for Nre2 = index:Sr % Update half of the population with higher fitness values

pop(Nre2,:) = popmin + (popmax-popmin).*rand(1,nvar);
fitness(Nre2) = fun(pop(Nre2,:));
C(Nre2,:) = Cmin + (Cmax-Cmin).*rand(1,nvar); % Update step size
% Comparison between bacterial individuals
if fitness(Nre2) < fitnesszbest

fitnesszbest = fitness(Nre2);
zbest = pop(Nre2,:);

end
end

end
% Disperse (migrate) operation
for j = 1:sizepop

if Ped > rand
pop(j,:) = popmin + (popmax-popmin).*rand(1,nvar);
fitness(j) = fun(pop(j,:));
% Comparison between bacterial individuals
if fitness(j) < fitnesszbest

fitnesszbest = fitness(j);
zbest = pop(j,:);

end
end

end
end

function BsJ = PID_Fun_1(Kpidi)
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ts = 0.001;
sys = tf([1.0],[1 1],‘ioDelay’,0.2);
dsys = c2d(sys,ts,‘z’);
[num,den] = tfdata(dsys,‘v’);
u_1 = 0.0;
y_1 = 0.0;
x = [0,0,0]’;
B = 0;
error_1 = 0;
s = 0;
P = 1000;
for k = 1:1:P

timef(k) = k*ts;
r(k) = 1;
u(k) = Kpidi(1)*x(1) + Kpidi(2)*x(3) + Kpidi(3)*x(2);

if u(k)> = 10
u(k) = 10;

end
if u(k)< = −10

u(k) = −10;
end

yout(k) = -den(2)*y_1 + num(2)*u_1;
error(k) = r(k)-yout(k);
%-------------------Return of PID parameters----------------
u_1 = u(k);
y_1 = yout(k);
x(1) = error(k); % Calculating P
x(2) = (error(k)-error_1)/ts; % Calculating D
x(3) = x(3) + error(k)*ts; % Calculating I
error_1 = error(k);
if s==0

if yout(k) > 0.95 && yout(k) < 1.05
tu = timef(k);
s = 1;

end
end

end
for i = 1:1:P

Ji(i) = 0.999*abs(error(i)) + 0.01*u(i)ˆ2*0.1;
B = B+Ji(i);
if i > 1

erry(i) = yout(i)-yout(i-1);
if erry(i) < 0

B = B + 100*abs(erry(i));
end

end
end
BsJ = sum(abs(error));
end
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