
Citation: Nguyen, T.-H.; Le, V.-H.;

Do, H.-S.; Te, T.-H.; Phan, V.-N.

TQU-SLAM Benchmark Dataset for

Comparative Study to Build Visual

Odometry Based on Extracted

Features from Feature Descriptors and

Deep Learning. Future Internet 2024,

16, 174. https://doi.org/10.3390/

fi16050174

Academic Editors: Yonggang Lu and

Ivan Serina

Received: 24 April 2024

Revised: 7 May 2024

Accepted: 15 May 2024

Published: 17 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

TQU-SLAM Benchmark Dataset for Comparative Study to Build
Visual Odometry Based on Extracted Features from Feature
Descriptors and Deep Learning
Thi-Hao Nguyen 1, Van-Hung Le 2,∗ , Huu-Son Do 2, Trung-Hieu Te 2 and Van-Nam Phan 2

1 Faculty of Engineering Technology, Hung Vuong University, Viet Tri City 35100, Vietnam; haont@hvu.edu.vn
2 Faculty of Basic Science, Tan Trao University, Tuyen Quang City 22000, Vietnam;

2154800045@tqu.edu.vn (H.-S.D.); 2154800018@tqu.edu.vn (T.-H.T.); 2154800036@tqu.edu.vn (V.-N.P.)
* Correspondence: van-hung.le@mica.edu.vn; Tel.: +84-973-512-275

Abstract: The problem of data enrichment to train visual SLAM and VO construction models using
deep learning (DL) is an urgent problem today in computer vision. DL requires a large amount of
data to train a model, and more data with many different contextual and conditional conditions will
create a more accurate visual SLAM and VO construction model. In this paper, we introduce the
TQU-SLAM benchmark dataset, which includes 160,631 RGB-D frame pairs. It was collected from
the corridors of three interconnected buildings comprising a length of about 230 m. The ground-
truth data of the TQU-SLAM benchmark dataset were prepared manually, including 6-DOF camera
poses, 3D point cloud data, intrinsic parameters, and the transformation matrix between the camera
coordinate system and the real world. We also tested the TQU-SLAM benchmark dataset using
the PySLAM framework with traditional features such as SHI_TOMASI, SIFT, SURF, ORB, ORB2,
AKAZE, KAZE, and BRISK and features extracted from DL such as VGG, DPVO, and TartanVO.
The camera pose estimation results are evaluated, and we show that the ORB2 features have the
best results (Errd = 5.74 mm), while the ratio of the number of frames with detected keypoints of the
SHI_TOMASI feature is the best (rd = 98.97%). At the same time, we also present and analyze the
challenges of the TQU-SLAM benchmark dataset for building visual SLAM and VO systems.

Keywords: TQU-SLAM benchmark dataset; visual odometry; RGB-D images; 3D trajectory; feature
descriptors; deep learning; feature-based extraction

1. Introduction

Visual odometry (VO) is applied in many fields, such as [1] autonomous vehicles,
unmanned aerial vehicles, underwater robots, space exploration robots, agriculture robots,
medical robots, and AR/VR. Therefore, VO has been of research interest for many years.
Based on the research of Neyestani et al. [2], Agostinho et al. [3], and Wang et al. [1], the
problem of estimating VO using a vision-based method with monocular camera data is
solved using two methods: knowledge-based and learning-based methods. Learning-based
methods are based on traditional machine learning and DL. Knowledge-based methods
include appearance-based methods, feature-based methods, and hybrid methods. Image-
based VO is the process of determining the position and orientation of a robot or entity
by analyzing a set of images obtained from its environment. As in the Neyestani et al. [2]
study, the framework to build a VO system includes five steps, with input data being
images, feature detection, feature tracking, motion estimation, triangulation, and trajectory
estimation, as shown in Figure 1. The output of the VO framework is 6-DOF including
3D pose, which is the position of the camera in the scene; the remaining 3D information
comprises the direction of camera movement.
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Figure 1. VO framework to build camera motion trajectory from image sequence.

Based on feature-based methods, the feature-detection step comprises the process of
feature extraction, such as SIFT [4], SURF [5], ORB [6], and BRISK [7] features, etc. Detected
features are tracked on consecutive frames to find the corresponding points on the frames
using techniques such as optical flow [8]. This is followed by a motion-estimation step that
typically uses epipolar geometry constraints to incorporate feature-to-feature matching
(2D to 2D). From there, motion parameters are calculated, and projection from 3D to 2D is
performed to minimize 3D tracked landmarks against the current image frame, and 3D to
3D is incorporated to increase the accuracy of the estimated pose. To perform camera pose
optimization, research often uses algorithms such as Bundle adjustment, Kalman Filter,
and EKF Graph optimization [1]. For DL-based methods, the steps of feature detection,
feature matching, and pose estimation are performed using DL [1].

Currently, most VO estimation methods are evaluated on the KITTI dataset [9–11],
TUM RGB-D SLAM dataset [12], NYUDepth dataset [13], and ICL-NUIM dataset [14].
However, DL methods always need a very large amount of data to train a VO estimation
model. With this approach, the more data that are trained, and trained in more contexts,
the more accurate the VO estimation results will be. In this paper, we propose a standard
dataset called the TQU-SLAM benchmark dataset to evaluate VO estimation methods. Our
dataset was collected using an Intel RealSense D435 in an environment comprising the
second floor of three interconnected buildings: Building A, Building B, and Building C.
This dataset includes 160,631 RGB-D frame pairs. The data were collected over a particular
length (FO-D is 230.63 m, OP-D is 228.13 m) and were collected four times and eight times.

To see the challenges in the TQU-SLAM benchmark dataset, we tested the proposed
dataset using PySLAM [15], with traditional features extracted at the feature-extraction
step by feature descriptors, such as ORB [16], ORB2 [17], SIFT [4], SURF [5], BRISK [7],
AKAZE [18], and KAZE [18], or features extracted from a DL model such as VGG [19],
DPVO [20], and TartanVO [21]. In this paper, we perform VO construction on the entire
TQU-SLAM benchmark dataset.

Our paper has the following main contributions:

• We introduce the TQU-SLAM benchmark dataset for evaluating VO models, algorithms,
and methods. The ground truth of the TQU-SLAM benchmark dataset is constructed by
hand, including the camera coordinates in the real-world coordinate system, 3D point
cloud data, intrinsic parameters, and the transformation matrix between the camera
coordinate system and the real world.

• We experiment with the TQU-SLAM benchmark dataset for estimating VO based on
PySLAM [15,22] with the features extracted such as ORB [16], ORB2 [17], SIFT [4],
SURF [5], BRISK [7], AKAZE [18], and KAZE [18], or features extracted from a DL
model such as VGG [19], DPVO [20], and TartanVO [21].

• The results are analyzed and compared with the TQU-SLAM benchmark dataset with
many types of traditional features and features extracted from DL models.

The structure of our paper is organized as follows: Related studies are presented in
Section 2. Section 3 introduces the TQU-SLAM benchmark dataset and the process of building
ground-truth data of the camera’s moving trajectory. Section 4 presents the testing of the
TQU-SLAM benchmark dataset with traditional features and features extracted from DL. The
experiments, results, and challenges of VO estimation of the TQU-SLAM benchmark dataset
are shown in Section 5. Finally, conclusions and future research are presented in Section 6.

2. Related Works

The VO process was also presented in great detail in the survey studies of Agostinho
et al. [3], Neyestani et al. [2], and He et al. [23]. In this section, we present two problem
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areas: VO methods, VO models, and VO algorithms; and datasets to evaluate VO models
and VO techniques.

About the research on VO methods, Agostinho et al. [3] built a taxonomy that in-
cludes two approaches to building VO: knowledge-based methods and learning-based
methods. Knowledge-based methods include the following techniques, as illustrated in
Figure 2: appearance-based techniques, feature-based techniques, and hybrid techniques.
Learning-based methods include traditional machine learning techniques and deep learn-
ing techniques.

Figure 2. The tree of the methods to build VO from images obtained from a camera.

In research on knowledge-based methods, Davison et al. [24] proposed an algorithm
called MonoSLAM to construct real-time 3D motion trajectories from data acquired from
a camera. MonoSLAM can perform localization and mapping at a speed of 30 Hz on a
computer with normal configuration. In particular, the structure-from-motion algorithm is
used so that MonoSLAM can work on longer frame sequences. Klein et al. [25] proposed the
PTAM technique to perform camera poses in an unexplored scene. The PTAM technique is
used to perform two tasks, tracking the camera’s position and performing environmental
mapping, with two parallel streams; of these, the mapping task is performed based on
keyframes using the bundle adjustment technique. New points are initialized using an
epipolar search. Ganai et al. [26] proposed a DTAM system that can perform real-time
tracking and reconstruction of camera positions with high parallelization capabilities. This
system does not use feature extraction but rather uses the density of pixels, identifying a
patchwork surface with built-in keyframes by estimating depth. Izadi et al. [27] proposed
the KinectFusion system, which allows building 3D pose Kinect cameras/depth cameras,
with many tasks performed in parallel using GPU: 3D reconstruction using CAD models,
the creation of models that are geometrically precise based on built point cloud data, and
the creation of 3D models using mesh representation. Kerl et al. [28] proposed the DVO
and LSD-SLAM system to build a visual SLAM system based on dense RGB-D images.
The authors are used to extend the geometry method to include a geometric error term
and perform frame-to-frame matching. The pose graph has a new keyframe inserted
when one is detected. At the same time, an entropy-based technique is used to detect
loop closure for eliminating drift. Forster et al. [29] proposed an SVO system to build a
fast, accurate VO from a camera’s data. This method performs semi-directly and thus
can reduce feature extraction and enhance matching techniques for motion estimation. To
estimate camera pose and scene structure, SVO is divided into two classes: feature-based
methods that use epipolar geometry to estimate camera motion and image structure, and
methods that use invariant feature descriptors to estimate the scene from the combination
of consecutive frames. The second type are direct methods, where intensity values are
used to directly estimate the structure and movement of the camera. Bloesch et al. [30,31]
proposed ROVIO to track and estimate camera positions using pixel-intensity errors of
image patches. Then, the extended Kalman filter algorithm is used to monitor multilevel
patch features. Whelan et al. [32,33] proposed a visual SLAM system called Elastic Fusion,
which can perform real-time tracking and estimation of camera positions using dense pixels.
Each moving part in each frame is registered to the motion model of the frame sequence.
Engel et al. [34] proposed a DSO system to track and estimate the camera’s position in the
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scene. DSO uses a direct and sparse approach to estimate VO from a monocular camera.
The general model is optimized for model parameters such as camera poses, camera
intrinsics, and geometry parameters. Mur et al. [16] proposed ORB-SLAM, Mur et al. [17]
proposed ORB-SLAM2, and Campos et al. [35] proposed ORB-SLAM3. Details of these
three techniques are presented below. Schneider et al. [36] proposed Maplab as an open
framework to build a visual–inertial SLAM. It includes two main components: an online
part and an offline part. VIO and localization front end, ROVIOLI’s online part, is used
to obtain data from the sensor. Maplab-console’s offline section is used in a batch offline
method with various algorithms.

In research on learning-based methods, Huang et al. [37] proposed an online initial-
ization method and a calibration method to optimize a visual–inertial odometry from
data obtained from a monocular camera. This method performs state initialization and
correction using the space–time constraints of the bootstrapping system. The aligned poses
are used to initialize a set of spatial and temporal parameters. Zhou et al. [38] proposed
the DPLVO method as an improvement of DSO to directly estimate VO using points and
lines. The general optimization problem is performed on 3D lines, points, and poses using
a sliding window. At the same time, long-term setup is performed on detected keyframes.
Ban et al. [39] proposed a method to estimate VO using end-to-end deep learning based
on depth and optical flow. The proposed method learns the ground-truth pose states and
estimates camera pose with 6-DOF on a space of one-frame-by-one-frame.Lin et al. [40]
proposed an unsupervised DL method to estimate 6-DOF VO from a monocular camera.
The depth is estimated from DispNet, and a residual-based method is used to perform pose
refinement. In particular, the processes of estimating rotation, translation, and scale of the
pose are performed separately. Gadipudi et al. [41] proposed WPO-Net to estimate 6-DOF
VO from a monocular camera. WPO-Net is a supervised learning-based method and is
based on a feature encoder and pose regressor with a convolutional neural network from
multiple consecutive two-grayscale-image stacks. Kim et al. [42] proposed SimVODIS to
perform three main tasks: VO estimation and object detection and instance segmentation.
SimVODIS is a deep network that operates on a stream and exploits shared feature maps
with two branches: semantic mapping and data-driven VO. Almalioglu et al. [43] proposed
SelfVIO as an adversarial training and self-adaptive visual–inertial sensor fusion method to
estimate VO from monocular RGB image sequences. The 6-DOF camera pose is estimated
using GANs based on the objective loss function of warping view sequences.

We surveyed some of the datasets for evaluating VO methods, shown below.
KITTI dataset: The KITTI dataset [9–11] is the most popular dataset for evaluating

visual SLAM and VO models and algorithms. This dataset includes two versions: the
KITTI 2012 dataset [10] and the KITTI 2015 dataset [11]. The data from Geiger et al. [9]
are used to evaluate the VO, object-detection, and object-tracking models. The KITTI 2012
dataset was collected from two high-resolution camera systems, a Velodyne HDL-64E laser
scanner (grayscale and color), and a state-of-the-art OXTS RT 3003 localization system
(a combination of devices such as GPS, GLONASS, security IMU, and RTK correction
signals). The KITTI 2012 dataset is also divided into datasets serving different problems.
The dataset used to evaluate optical flow estimation models includes 194 image pairs for
training and 195 image pairs for testing; the images have a resolution of 1240 × 376 pixels,
and the ground-truth data are built based on 50% density. The dataset used to evaluate
3D visual odometry/SLAM models consists of 22 stereo sequences collected from a length
of 39.2 km of driving. This dataset provides benchmarks and evaluation measures for
VO and Visual SLAM such as motion trajectory and driving speed. The dataset used to
evaluate object detection and 3D orientation estimation methods comprises ground-truth
data including accurate 3D bounding boxes for object classes such as cars, vans, trucks,
pedestrians, cyclists, and trams. Original data of 3D objects in point cloud data were
manually labeled to evaluate algorithms for 3D orientation estimation and 3D tracking.
Geiger et al. [10] provided a raw dataset for evaluating stereo, optical flow, and object
detection models. The data collection system was built based on the following sources:
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camera images, laser scans, high-precision GPS measurements, and IMU accelerations.
The data collection context is very diverse; the data collection system captures real-world
traffic situations and ranges from highways through rural areas to inner-city scenes with
many static objects and dynamic objects. The raw dataset includes color and gray-scale
image data, saved as 8-bit “.png” files. The second type of data are OXTS (GPS/IMU),
with each frame having 30 different values that are stored as text files, including the
following information: the geographic coordinates including altitude, global orientation,
velocities, accelerations, angular rates, accuracies, and satellite information. The third type
of data comes from Velodyne scans; these data are stored as floating point binaries. This
dataset also provides ground-truth data including 3D bounding box trackless annotation
that represents Velodyne coordinates and labels of object classes, including “Car”, “Van”,
“Truck”, “Pedestrian”, “Person (sitting)”, “Cyclist”, “Tram”, and “Misc”. Menze et al. [11]
published the KITTI 2015 dataset for evaluating optical flow algorithms. The annotation
data provided are the annotation data of 3D objects in the scene, where the construction
of the original data is based on the process of recovering the static elements of the scene
and inserting them as moving objects using the 3D CAD model into the scene with Google
3D Warehouse.

NYUDepth dataset [13]: This dataset consists of 1449 RGB-D images collected from MS
Kinect from multiple buildings in three US cities, with 464 different indoor scenes belonging
to 26 scene classes. The dataset contains 35,064 distinct objects spread across 894 different
classes. For each of the 1449 images, supporting captions were added manually.

Make3D dataset [44]: This dataset includes 534 images and depth maps; the resolution
of the images is 2272 × 1704, and the size of the depth maps is 55 × 305. Training data
include 400 images, and testing data include 134 images collected from a 3D scanner. In
addition, 588 photos were also collected from the internet. Algorithm evaluation data
are based on a person, not part of the project, which collected data of the environment in
images larger than 800 × 600 of scenes at a campus, garden, park, house, building, college,
university, church, castle, court, square, lake, temple, and scene.

Cityscapes dataset [45]: To evaluate object detection and classification models, espe-
cially when using DL models with outdoor environments, Ramos et al. [45] published the
Cityscapes dataset. The data were collected from stereo cameras using 1/3 in CMOS 2 MP
sensors (OnSemi AR0331) in 50 different cities. The original data consist of 5000 manually
annotated images from 27 cities for a dense pixel-level. In addition, there are 20,000 raw
pixel-level annotated images for evaluating object detection using object boundaries.

TUM RGB-D SLAM dataset [12]: The authors collected the TUM RGB-D SLAM dataset
using an MS Xbox Kinect sensor; the collected data consist of RGB-D frame sequences.
The environment for data collection included two different indoor scenes: the first is
a typical office environment called “fr1” with a size of 6 × 6 m2, and second is a large
industrial hall called “fr2” with a size of 10 × 12m2. The ground-truth trajectory from the
motion capture system was provided by eight high-speed tracking cameras. This dataset
includes 39 frame sequences and is divided into four groups: “Calibration”, “Testing and
Debugging” (fr1/xyz, fr1/rpy, fr2/xyz, fr2/rpy), “Handheld SLAM” (fr1/360, fr1/floor,
fr1/desk, fr1/desk2, fr1/room, fr2/360 hemisphere, fr2/360 kidnap, fr2/desk, fr2/desk
with person, fr2/large no loop, fr2/large with loop), and “Robot SLAM” (fr2/pioneer 360,
fr2/pioneer slam, fr2/pioneer slam2, fr2/pioneer slam3). Color and depth image data are
640 × 480 pixels in size and were captured at a rate of 30 Hz.

ICL-NUIM dataset [14]: This is a dataset consisting of RGB-D sequences used to
evaluate VO, 3D reconstruction, and SLAM algorithms; the data were collected from a
living room and an office room. For each scene, the authors collected four frame sequences:
living room (kt0, kt1, kt2, kt3) and office room (kt0, kt1, kt2, kt3). The number of frames in
each sequence is different. Original camera trajectories (POVRay) and synthetic trajectories
data are obtained from ground-truth depth maps and color images. In this dataset, there
are two main types of noise: noise from color images and noise from depth images when
collecting data with an MS Kinect.
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3. TQU-SLAM Benchmark Dataset
3.1. Data Collection

We set up the experiment in second-floor hallways of Building A, Building B, and
Building C of Tan Trao University (TQU) in Vietnam, as illustrated in Figure 3. We called
the “TQU-SLAM benchmark dataset”. Classrooms open onto these hallways. The data
were collected from the environment using a Intel RealSense D435 camera (https://www.
intelrealsense.com/depth-camera-d435/, accessed on 6 May 2024), illustrated in Figure 4.
The camera was mounted on a vehicle, shown in Figure 5. The angle between the camera’s
view and the ground was 45 degrees. For the total distance traveled by the vehicle at one
time, the FO-D was 230.63 m and the OP-D was 228.13 m; the width was 2 m, and for every
0.5 m, we assigned a numbered marker with dimensions of 10 × 10 cm on each marked
corner. The total number of markers we used was 332.

Figure 3. Illustration of the hallway environment of Building A, Building B, and Building C of Tan
Trao University in Vietnam for data collection. In the environment, we highlight 15 keypoints. The
direction of movement according to the blue arrow is in the forward direction, and the direction of
movement according to the red arrow is in the opposite direction.

Figure 4. Illustration of an Intel RealSense D435 camera with an infrared projector, a color (RGB)
camera, and two cameras to collect stereo depth (D) images.

https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
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Figure 5. Illustration of a vehicle equipped with a camera and computer when collecting data.

The moving speed to collect data was 0.2 m/s. The data we collected were color
images and depth images with a resolution of 640 × 480 pixels. We always drove the
car in the middle of the hallway. The data acquisition speed was 15 fps. We performed
data collection four times in two days, each one hour apart. The first day, we collected
data twice (1st, 2nd), and the second day, we collected the remaining two times (3rd, 4th).
We collected data in the afternoon from 2:00 p.m. to 3:00 p.m. Each time, the direction
of movement according to the blue arrow was in the forward direction (FO-D), and the
direction of movement according to the red arrow was in the opposite direction (OP-D).
All data of the TQU-SLAM benchmark dataset are shown in link (https://drive.google.c
om/drive/folders/16Dx_nORUvUHFg2BU9mm8aBYMvtAzE9m7, accessed on 6 May
2024). The data we collected are shown in Table 1.

Table 1. The number of frames of four data acquisition times for the TQU-SLAM benchmark dataset.

Data Acquisition Times Direction Number of RGB-D Frames

1st
FO-D 21,333

OP-D 22,948

2nd
FO-D 19,992

OP-D 21,116

3rd
FO-D 17,995

OP-D 20,814

4th
FO-D 17,885

OP-D 18,548

3.2. Preparing Ground-Truth Trajectory for VO

To prepare the ground-truth data for evaluating the results of VO estimation, we built
the ground-truth data of the motion trajectory as follows. We predefined a coordinate
system in a real-world space as shown in Figure 3, where the X axis is red, the Y axis is
green, and the Z axis is blue.

We used a self-developed tool in the Python programming language to mark four
points on the color image, as shown in Figure 6. Then we took the corresponding four
marker points on the depth image, because each frame was obtained as a pair of RGB
images and depth images.

https://drive.google.com/drive/folders/16Dx_nORUvUHFg2BU9mm8aBYMvtAzE9m7
https://drive.google.com/drive/folders/16Dx_nORUvUHFg2BU9mm8aBYMvtAzE9m7
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Figure 6. Illustration of marker application and the marker results collected on a color image.

To convert the four marked points of the marker on the RGB image and the four
corresponding points on the depth image to 3D point cloud data, we used the camera’s
intrinsic parameters, shown in Equation (1): f x 0 cx

0 f y cy
0 0 1

 =

525.0 0 319.5
0 525.0 239.5
0 0 1

 (1)

where f x, f y, cx, and cy are the intrinsic parameters of the camera. For each marker point
with coordinates (xd, yd) and depth value da on the depth image, the result is converted to
point M with coordinates (xm, ym, zm) using Equation (2):

xm =
(xd − cx)× da

f x

ym =
(yd − cy)× da

f y

zm =da

(2)

As shown in Figure 6, the four points of the marker point cloud data are according
to the camera coordinate system, with the original coordinate system being the center of
the camera. Therefore, to find these four points in the real-world coordinate system, it is
necessary to find the rotation and translation matrix (transformation matrix) to transform
four points from the camera coordinate system to the real-world coordinate system.

For a point with coordinates M(x, y, z) in the camera coordinate system, M′(x′, y′, z′)
are the coordinates of point M in the real-world coordinate system, which we find after per-
forming a transformation from the camera coordinate system to the real-world coordinate
system using Equation (3):


x′

y′

z′

1

 =


Ro11 Ro12 Ro13 Tr1
Ro21 Ro22 Ro23 Tr2
Ro31 Ro32 Ro33 Tr3

0 0 0 1

 ∗


x
y
z
1

 (3)

where Ro11, Ro12, Ro13, Ro21, Ro22, Ro23, Ro31, Ro32, Ro33 are the components of the rotation
matrix from the camera coordinate system to the real-world coordinate system. Tr1, Tr2,
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and Tr3 are the components of the translation matrix from the camera coordinate system
to the real-world coordinate system. The transformation result of point M′ is shown in
Equation (4): 

x′ = Ro11x +Ro12y +Ro13z + Tr1
y′ = Ro21x +Ro22y +Ro23z + Tr2
z′ = Ro31x +Ro32y +Ro33z + Tr3

 (4)

From the coordinates of the four points of point cloud data in the camera’s coordinate
system, we define their coordinates in the matrix as Equation (5):


1 z1 y1 x1
1 z2 y2 x2
1 z3 y3 x3
1 z4 y4 x4

 (5)

The transformation matrix according to the x, y, z axes is presented by θ1, θ2, θ3 in
Equation (6):

θ1 =


Tr1

Ro13
Ro12
Ro11

θ2 =


Tr2

Ro23
Ro22
Ro21

θ3 =


Tr3

Ro33
Ro32
Ro31

 (6)

The results of the transformation are shown in the vector X
′
, Y

′
, Z

′
in Equation (7):

X′ =


x′1
x′2
x′3
x′4

Y′ =


y′1
y′2
y′3
y′4

Z′ =


z′1
z′2
z′3
z′4

 (7)

where (x
′
1, y

′
1, z

′
1), (x

′
2, y

′
2, z

′
2), (x

′
3, y

′
3, z

′
3), (x

′
4, y

′
4, z

′
4) are the coordinates of four points of

point cloud data in the real-world coordinate system. From this, we have a linear equation,
presented as Equation (8).

X
′

=A × θ1

Y
′

=A × θ2

Z
′

=A × θ3

(8)

To estimate θ1, θ2, θ3, we use the least squares method [46], as in Equation (9):

θ1 =(AT A)−1 ATX
′

θ2 =(AT A)−1 ATY
′

θ3 =(AT A)−1 ATZ
′

(9)

Finally, the conversion matrix between the camera coordinate system and the real-
world coordinate system is of the form (θ1; θ2; θ3). The coordinates of the center of the
marker (xc, yc, zc) in the real-world coordinate system are calculated as Equation (10):
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xc =
x
′
1 + x

′
2 + x

′
3 + x

′
4

4

yc =
y
′
1 + y

′
2 + y

′
3 + y

′
4

4

zc =
z
′
1 + z

′
2 + z

′
3 + z

′
4

4

(10)

The ground-truth data results of the motion trajectory in the real-world coordinate
system are shown in Figure 7.

Figure 7. Illustration of the real-world coordinate system we defined and the camera’s motion
trajectory. The ground truth of the camera’s motion trajectory is the black points.

4. Comparative Study of Building VO Based on Feature-Based Methods

As shown in Figure 1, the framework for constructing VO based on knowledge-based
methods from the collected images of a monocular camera includes five steps. We present
some recently published VO estimation techniques.

4.1. PySLAM

The PySLAM framework was proposed by Luigi [15,22]. It includes an open-source
library developed for the PySLAM framework. The PySLAM framework allows the
embedding of many types of features, including both traditional features automatically
extracted from feature descriptors and DL features extracted from DL models. The source
code of the PySLAM framework we used is shown in the link (https://github.com/l
uigifreda/pyslam, accessed on 6 May 2024). From there, it is possible to check and
select good features for the process of building models to estimate a camera’s motion
trajectory, helping to build pathfinding systems for robots and blind people. At the same
time, PySLAM framework was developed in the C++ and Python programming languages.
Just like the knowledge-based methods presented in Figure 1, the PySLAM framework
also performs 6-DOF VO estimation with several steps. The feature-extraction step, or
keypoint detection, comprises the process of detecting features/keypoints between two
consecutive frames. The features can be edges, corners, or blobs. Typically, the features are
detected and extracted according to a feature descriptor such as SHI_TOMASI, SIFT, SURF,
ORB, ORB2, AKAZE, KAZE [18], or BRISK. At the same time, feature extraction through
DL networks is also performed, for features such as VGG [19] and D2-Net [47]. Figure 8
shows the match between the corresponding ORB features in two consecutive frames of
the TQU-SLAM benchmark dataset. The set of ORB features in two consecutive frames

https://github.com/luigifreda/pyslam
https://github.com/luigifreda/pyslam
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is small; the features can only be detected from the image area of the marker and railing
in the moving journey. This also shows that the TQU-SLAM benchmark dataset contains
many challenges for feature descriptors.

Figure 8. Illustration of ORB feature matching of two consecutive frames from the TQU-SLAM
benchmark dataset.

In the motion-estimation step, features are extracted from the monitored frame se-
quence, from which the camera motion is estimated through the transformation matrix in
Equation (11):

Ti,i−1

[
Roi,i−1 ti,i−1

0 1

]
(11)

where Roi,i−1 is the rotation matrix between two consecutive frames i and i − 1, and ti,i−1
is the translation vector between two consecutive frames i and i − 1.

The spatial correlation matrix between frames i and i − 1 is calculated based on
Equation (12):

E = α

 0 −tz ty
tz 0 −tx
−ty tx 0

Ro (12)

where t is a translation matrix in the x, y, z direction. The motion trajectory in 3D space is
also calculated. A scale factor α is the shift factor between two consecutive frames.

The calculation of the essential matrix is performed in the epipolar plane system using
“epipolar constraints”. To solve this problem, one can use the five-point algorithm, or 5-point
RANSAC [22,48]. The RANSAC algorithm used here is to estimate the correspondence
between two sets of keypoints. The points converted from the input set within a certain
limit are called inliers. The algorithm iterates about K times [49] and outputs the largest
number of inliers. K is calculated according to Equation (13):

K =
log(1 − p)

log(1 − ws)
(13)

where p is the probability of finding a descriptors keypoints, s = 2 is the minimum number
of samples needed to estimate a line model, and w is the likelihood ratio of the points being
inliers.

In the local-optimization step, camera pose estimation and motion trajectory errors
are accumulated from camera pose estimation and transformation. Currently, there are two
methods commonly applied to optimize a camera’s movement trajectory in an environment.
In the first method, the entire motion trajectory and camera pose are rechecked to minimize
errors. The second method is to use the Kalman algorithm or particle filter to calibrate
the map during data collection and edit the estimated camera pose when detecting new
keypoints.
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4.2. DPVO (Deep Patch Visual Odometry)

DPVO was proposed by Teed et al. [20]. DPVO is a deep learning framework that
combines a CNN and a recurrent neural network (RNN). The architecture of DPVO is
illustrated in Figure 9. With the input image data being an RGB image, DPVO performs
per-pixel feature extraction using ResNet and uses it to calculate similarities between
images in the frame sequence. Next, two residual networks are used: the first network is
used to extract matching features, and the second network is used to extract contextual
features. The first layer of each network performs convolution with a size of 7 × 7, the next
two residual blocks have a size of 32 × 32, and the next two residual blocks have a size of
64 × 64. Finally, the output of the feature vector is 1/4 the size of the input image. Next,
a two-level feature pyramid is constructed with sizes 1/4 and 1/8, respectively, with the
resolution of the input image based on a 4 × 4 filter with average pooling to the matching
features to estimate the amount of optical flow.

Figure 9. Illustration of DPVO architecture.

Then, p × p patches are obtained from the feature map with random positions in
the image space (pixel space) using the bilinear sampling technique. The patches map is
created by linking patches, and it has the same size as the feature map with regard to pixels.
Furthermore, DPVO uses a patch graph to represent the relationship between patches
and video frames. The projections of patches on the frames are the patches’ movement
trajectories. At the same time, DPVO also proposes an update operator that is a recurrent
network that iteratively fine-tunes the depth of each patch and the camera pose of each
frame in the video. DPVO is rated to be 3x faster than DROID-SLAM [50]. In DPVO, the
model is trained from several datasets such as the TartanAir [51], TUM RGB-D SLAM [12],
EuRoC [52], and ICL-NUIM [14] datasets.

4.3. TartanVO

TartanVO was proposed by Wang et al. [21]. This network has an architecture con-
sisting of two stages: the first is a matching network to match the features between two
consecutive frames (i − 1, i), thereby estimating the optical flow. Second, the pose network
is used to predict the camera pose based on the estimated optical flow. The architecture of
TartanVO is shown in Figure 10.
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Figure 10. Illustration of TartanVO architecture [21].

In the TartanVO model, the authors built a pretrained model trained on large datasets:
the EuRoC [52], KITTI [9–11], Cityscapes [45], and TartanAir [51] datasets. From these,
they enriched the contexts and environmental conditions in which the model was trained.
To increase the model’s generalization ability, TartanVO proposes two up-to-scale loss
functions. The first is the cosine similarity loss to calculate the cosine angle between the
estimated translation and the displacement label. The second is the normalized distance
loss to calculate the distance between the estimated translation vector and translation label.

5. Experimental Results
5.1. Evaluation Measures

To evaluate the results of the VO algorithm based on feature-based methods, we use
several evaluation metrics as follows:

• The absolute trajectory error (ATE) [12] is the distance error between the ground-truth
ÂTi and the estimated motion ATi trajectory, aligned with an optimal SE(3) pose T.
ATE is calculated according to Equation (14):

ATE = min
T∈SE(3)

√√√√ 1
Igt| ∑

i∈Igt

||TATi − ÂTi||2 (14)

where trel is the average translations RMSE drift (%) on a length of 100–800 m. rrel is
the average rotational RMSE drift (◦/100 m) on a length of 100–800 m.

• We calculate trajectory error (Errd), being the distance error between the ground-truth ÂTi
and the estimated motion ATi trajectory. Errd is calculated according to Equation (15):

Errd =
1
N

√
||ATi − ÂTi||2 (15)

where N is the frame number of the frame sequence used to estimate the camera’s
motion trajectory.

• In addition, we also calculate the ratio of the number of frames with detected keypoints
(rd(%)).

5.2. Evaluation Parameters

In this paper, we use the PySLAM framework [22], with all the features integrated
into this framework. PySLAM’s development source code is in Python v3.9 language and
programmed on Ubuntu 20.04. For the DPVO build source code, we used the code at the
link (https://github.com/princeton-vl/DPVO, accessed on 6 May 2024). For the TartanVO
build source code, we used the code at the link (https://github.com/castacks/tartanvo,
accessed on 6 May 2024). At the same time, there is support from several open-source
libraries such as Numpy (1.18.2), OpenCV (4.5.1), PyTorch (≥1.4.0), and Tensorflow-gpu
(1.14.0). The PySLAM framework was implemented on computers with the following
configuration: CPU i5 12,400 f, 16 G DDr4, GPU RTX 3060 12 GB. In this paper, with the
DPVO and TartanVO networks, we performed three experiments (L1, L2, L3) with each
subset of the TQU-SLAM benchmark dataset for estimating the camera motion trajectory.
The results are shown in the next section.

https://github.com/princeton-vl/DPVO
https://github.com/castacks/tartanvo
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5.3. Results and Discussions

The results of estimating VO/camera pose/camera trajectory using the TQU-SLAM
benchmark dataset when using SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE [18],
BRISK, and VGG to extract features are shown in Table 2. The average distance error of the
ORB2 feature is the lowest (Errd = 5.74 mm).

Table 2. The results of estimating VO on the TQU-SLAM benchmark dataset when using the extracted
features: SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE, BRISK, and VGG.

Dataset/Methods Features

Distance Error (Errd (mm)) of the TQU-SLAM Benchmark Dataset

1st 2nd 3rd 4th

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D

PySLAM

SHI_TOMASI 6.019 2.903 5.938 6.836 14.42 10.978 8.224 3.050

SIFT 38.93 13.02 37.63 13.58 23.55 1.63 32.02 2.11

SURF 39.26 13.59 38.07 13.57 27.73 38.81 38.98 14.29

ORB 1.42 14.67 32.48 12.19 25.93 13.29 0.75 2.07

ORB2 8.42 10.14 7.54 9.16 8.54 2.94 8.47 3.10

AKAZE 40.34 6.72 37.75 12.67 30.60 6.78 37.15 2.11

KAZE 38.32 15.55 31.30 12.45 15.89 30.87 41.66 17.22

BRISK 1.62 14.38 28.87 13.56 12.43 1.67 9.54 2.16

VGG 11.67 11.66 11.66 11.67 0.65 11.66 0.75 2.11

The ratio of detected and extracted frames characterized for 6-DOF camera pose
estimation is shown in Table 3. The average ratio of detected frames with the SHI_TOMASI
feature is the highest (rd = 98.97%).

Table 3. The ratio of frames with detected features/keypoints in the TQU-SLAM benchmark dataset
when using the following extracted features: SHI_TOMASI, SIFT, SURF, ORB, ORB2, AKAZE, KAZE,
BRISK, and VGG.

Dataset/Methods Features
Aspect Ratio Fails to Detect Keypoints of the TQU-SLAM Benchmark Dataset (rd(%))

1st 2nd 3rd 4th

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D

PySLAM

SHI_TOMASI 99.17 99.02 99.72 99.85 98.97 98.97 97.96 98.09

SIFT 99.69 79.57 97.18 76.65 44.50 42.58 86.63 51.80

SURF 99.67 97.84 95.51 94.66 95.76 98.95 96.76 97.66

ORB 2.84 34.84 45.39 49.78 7.02 38.48 1.53 3.04

ORB2 98.97 99.23 98.48 99.28 95.64 97.95 94.87 97.02

AKAZE 88.66 9.71 76.42 34.20 67.65 8.94 54.61 3.08

KAZE 90.36 25.51 75.83 46.15 89.29 9.04 76.36 19.20

BRISK 1.82 16.26 6.25 9.32 39.81 28.98 12.18 3.10

VGG 6.88 45.02 36.90 40.26 45.92 39.39 1.35 17.86

Figure 11 shows the results of estimating the VO of FO-D of the TQU-SLAM benchmark
dataset when using the SHI_TOMASI features extracted from RGB images. Figure 11 also
shows that SHI_TOMASI features are extracted better and more in the first FO-D compared
to data at other times.
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Figure 11. Illustration of the results of estimating VO of TQU-SLAM benchmark dataset when using
the SHI_TOMASI features. The results are presented on FO-D data. The black points belong to the
ground-truth trajectory, and the red points are the estimated camera position.

Figure 12 shows the results of estimating points on the moving trajectory on the 1st-
FO-D of the TQU-SLAM benchmark dataset when using the features extracted from VGG.

Figure 12. Illustration of the results of estimating VO of the first FO-D of the TQU-SLAM benchmark
dataset when using the features extracted by VGG. The black points belong to the ground-truth
trajectory, and the red points are the estimated camera position.
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The results in Figure 12 also show that the features extracted are limited when using
VGG; there are many frames whose features cannot be extracted. Therefore, the camera’s
position cannot be estimated. Figure 13 shows the difficult feature extraction in frame pairs
when using VGG for feature extraction.

Figure 13. Illustration of the feature matching extracted from the VGG of frame pair of 1st FO-D of
the TQU-SLAM benchmark dataset. The lines connecting two features on two consecutive frames
represent two corresponding locations on two consecutive frames detected by the feature descriptor.

The results of the camera motion trajectory estimation error (Errd) based on the DPVO
and TartanVO networks on the TQU-SLAM benchmark dataset are shown in Table 4.
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Table 4. The results of the camera motion trajectory estimation error (Errd) are based on the DPVO
and TartanVO networks on the TQU-SLAM benchmark dataset.

Dataset/
Measure/
Methods/

Experimental

Distance Error (Errd (m)) of
the TQU-SLAM Benchmark Dataset

1st 2nd 3rd 4th

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D

DPVO

L1 10.87 12.85 14.58 12.72 13.49 14.61 13.49 12.73

L2 16.31 14.94 12.89 12.88 15.96 15.06 14.13 12.21

L3 14.24 13.72 12.63 13.71 15.11 14.25 13.51 12.01

Average 13.81 13.84 13.37 13.10 14.85 14.64 13.71 12.32

TartanVO

L1 15.82 14.16 15.21 13.26 13.82 13.12 16.57 17.70

L2 15.82 14.16 15.21 13.26 13.82 13.12 16.57 17.7

L3 15.82 16.16 15.21 13.26 13.82 13.13 16.57 17.7

Average 15.82 14.16 15.21 13.26 13.82 13.12 16.57 17.70

The results of the camera motion trajectory estimation error (ATE) based on the DPVO
and TartanVO networks on the TQU-SLAM benchmark dataset are shown in Table 5.

Table 5. The results of the camera motion trajectory estimation error (ATE) based on the DPVO and
TartanVO networks on the TQU-SLAM benchmark dataset.

Dataset/
Measure/
Methods/

Experimental

Distance Error (ATE (m)) of
the TQU-SLAM Benchmark Dataset

1st 2nd 3rd 4th

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D

DPVO

L1 13.42 14.68 16.70 14.69 15.62 16.46 15.78 15.81

L2 18.14 17.20 15.83 15.25 18.08 17.15 15.52 14.51

L3 16.72 15.35 15.44 15.65 17.41 16.48 15.87 15.25

Average 16.09 15.74 15.99 15.20 17.04 16.70 15.72 15.19

TartanVO

L1 19.24 17.14 17.79 15.39 15.60 15.31 19.30 19.92

L2 19.24 17.14 17.79 15.39 15.60 15.31 19.30 19.92

L3 19.24 17.14 17.79 15.39 15.60 15.32 19.29 19.92

Average 19.24 17.14 17.79 15.39 15.60 15.31 19.30 19.92

The ratio of the number of detected and extracted frames characterized to estimate the
VO of the DPVO is shown in Table 6. This rate is low, only 49.68%, while the characteristic
extraction rate of the TartanVO is 100%.

Table 6. The ratio of frames with detected features/keypoints on the TQU-SLAM benchmark dataset
when using the DPVO model to extract the features.

Dataset/
Measure/
Methods/

Experimental

Aspect Ratio Fails to Detect Keypoints
of the TQU-SLAM Benchmark Dataset (rd(%))

1st 2nd 3rd 4th

FO-D OP-D FO-D OP-D FO-D OP-D FO-D OP-D

DPVO Average 49.85 49.44 50.00 50.00 50.00 50.00 50.90 47.23

As shown in Table 4, the average estimation error (Errd) of DPVO is 13.7 m, and the
(Errd) of TartanVO is 14.96 m. Table 5 also shows that the average estimation error (ATE)
of DPVO is 15.96 m, and the (ATE) of TartanVO is 17.46 m. These results show that DPVO
is better than TartanVO in the estimation error, but the estimated realized frame rate of
DPVO is only 49.68%.
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Figure 14 shows the results of estimating the camera’s motion trajectory based on the
DPVO model when experimenting with L1 of the TQU-SLAM benchmark dataset.

Figure 14. Illustration of the results of estimating the camera’s moving trajectory on the TQU-SLAM
benchmark dataset when using the DPVO model. The ground-truth motion trajectory is the black
line, and the estimated trajectory of the DPVO model is the blue line.

Figure 15 shows the results of estimating the camera’s motion trajectory based on the
TartanVO model when experimenting with L1 of the TQU-SLAM benchmark dataset.

Figure 15. Illustration of the results of estimating the camera’s moving trajectory on the TQU-SLAM
benchmark dataset when using the TartanVO model. The ground-truth motion trajectory is the black
line, and the estimated trajectory of the TartanVO model is the blue line.

5.4. Challenges

As shown in Figures 11–13 and Table 3, the TQU-SLAM benchmark dataset contains
some challenges for VO construction as follows. Firstly, regarding lighting conditions,
the obtained RGB images have very weak lighting conditions, and the light intensity
is uneven. There are road sections with adequate lighting, but there are road sections
where we had to use additional light from mobile phone lights to assist, as shown in
Figure 13. Therefore, the keypoints between two consecutive frames are not detected.
Second, the collected environment is highly homogeneous. The image data obtained by
the Intel RealSense D435 are mainly floor data and a small part are wall and railing data.
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Therefore, the data do not have great discrimination between frames; in the scene, there
are few objects in the environment. Although we posted markers on the floor, the number
of keypoints detected in the two frames is not high. This leads to a failure to estimate
the 6-DOF camera poses across multiple frames. Although, the DPVO and TartanVO
networks were pretrained on many large datasets such as the EuRoC [52], KITTI [9–11],
Cityscapes [45], and TartanAir [51] datasets, when performing feature extraction on the
TQU-SLAM benchmark dataset, there is a large number of frames that cannot be detected
and whose features cannot be extracted (more than 50% of DPVO). The results are shown
in Tables 4–6. Figures 14 and 15 illustrate that the misestimation results of DPVO and
TartanVO are very large. This proves that the problem of data enrichment to train the VO
estimation model still contains many challenges that need to be implemented.

6. Conclusions and Future Works

VO systems are widely applied in pathfinding robots, autonomous vehicles operating
in industry, etc. DL has had impressive results in building visual SLAM and VO systems.
However, DL requires a large amount of data to train the model. In this paper, we intro-
duced the TQU-SLAM benchmark dataset, collected from an RGB-D image sensor (Intel
RealSense D435) moving in the corridors of three buildings of a particular length (FO-D is
230.63 m, OP-D is 228.13 m). The ground-truth data of the TQU-SLAM benchmark dataset
include 6-DOF camera poses/camera trajectory and a 3D point cloud. It was also tested
to estimate VO using some traditional features and features extracted from DL, such as
VGG based on the PySLAM framework. Among them, the ORB2 features have the best
results (Errd = 5.74 mm), and the ratio of the number of frames with detected keypoints
of the SHI_TOMASI feature is the best (rd = 98.97%). Shortly, we will renormalize the
TQU-SLAM benchmark dataset and prepare many types of ground-truth data for evaluat-
ing visual SLAM and VO models. We will build a pretrained model on the TQU-SLAM
benchmark dataset and perform comparative research on DL models for visual SLAM and
VO systems.
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