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Abstract: The Grammatical Evolution technique has been successfully applied to a wide range
of problems in various scientific fields. However, in many cases, techniques that make use of
Grammatical Evolution become trapped in local minima of the objective problem and fail to reach
the optimal solution. One simple method to tackle such situations is the usage of hybrid techniques,
where local minimization algorithms are used in conjunction with the main algorithm. However,
Grammatical Evolution is an integer optimization problem and, as a consequence, techniques should
be formulated that are applicable to it as well. In the current work, a modified version of the
Simulated Annealing algorithm is used as a local optimization procedure in Grammatical Evolution.
This approach was tested on the Constructed Neural Networks and a remarkable improvement of
the experimental results was shown, both in classification data and in data fitting cases.

Keywords: grammatical evolution; optimization techniques; neural networks; evolutionary techniques;
stochastic methods

1. Introduction

Genetic Algorithms belong to the field of evolutionary techniques [1] and were origi-
nally formulated by John Hollands and his team [2]. Genetic Algorithms are initiated by
generating a series of random candidate solutions to an optimization problem. These candi-
date solutions are called chromosomes, and they iteratively undergo a series of operations
that have their foundation in physical processes, such as selection, crossover, and muta-
tion [3–5]. Grammatical Evolution [6] is considered a special case of Genetic Algorithms,
where the chromosomes are series of integer numbers. Chromosomes in the Grammatical
Evolution process are rules for generating a Backus–Naur form (BNF) grammar [7] and can
be used to create functional programs in any programming language.

Grammatical Evolution has been applied on a wide series of real-world applications,
such as function approximation [8,9], credit classification [10], network security and pre-
vention of attacks [11], monitoring of water quality [12], modeling glycemia in humans [13],
automatic design of Ant algorithms [14], temperature prediction in data centers [15], solving
trigonometric equations [16], composing music [17], neural network construction [18,19],
producing numeric constants [20], video games [21,22], energy demand estimation [23],
combinatorial optimization [24], cryptography [25], evolving of decision trees [26], auto-
matic design of analog electronic circuits [27], etc.

The method of Grammatical Evolution has been extended by various researchers
during recent years and some examples of these extensions are Structured Grammat-
ical Evolution [28,29], which applies a one-to-one mapping between the chromosomes
and the non-terminal symbols of the grammar; the πGrammatical Evolution method [30],
an application of the Particle Swarm Optimization(PSO) [31] to produce programs with
Grammatical Evolution denoted as Grammatical Swarm [32,33]; the Probabilistic Gram-
matical Evolution [34], which introduced a new mapping mechanism for the Grammatical
Evolution method, incorporation of parallel programming techniques [35,36], usage of
Christiansen grammars [37], etc.
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Also, a variety of software has been developed for Grammatical Evolution, such as the
GEVA v2.0 [38] that proposes a GUI application for Grammatical Evolution, the gramEvol
v2.1-4 software [39] that provides a package in the R programming language, the GeLab
v2.0 [40] that implements a Matlab toolbox for Grammatical Evolution, the GenClass
v1.0 [41] software used to produce classification programs, the QFc v1.10 software [42] for
feature construction, etc.

Although the method of Grammatical Evolution has proven to be extremely efficient,
it can often become trapped in the local minimum of the objective problem and its perfor-
mance may not be as expected. A common method to get out of such situations is the use
of local optimization techniques, which have been applied many times in combination with
Genetic Algorithms [43,44]. In the case of Grammatical Evolution and due to the integral
representation of the candidate solutions, local optimization techniques are not directly
applicable, such as, for example, the BFGS method [45] and hence more suitable methods
should be adopted. In this paper, an attempt is made to improve upon the excellent results
shown by Grammatical Evolution in the past on a variety of problems by applying local
optimization techniques, periodically applied to randomly selected chromosomes of Gram-
matical Evolution. The current work utilizes a modified version of the Simulated Annealing
method [46] as a local search procedure. The method of Simulated Annealing has been
utilized in various cases, such as image processing [47], protein structure optimization [48],
resource allocation [49], convex optimization [50], deep learning [51], etc. To verify the
possibility of the proposed methodology to improve the results of Grammatical Evolu-
tion, the neural networks construction technique was chosen. This method was initially
provided in [52] and it can estimate the topology and the weights of neural networks
using the Grammatical Evolution procedure. This method was chosen to test the present
methodology because of its many applications. However, the technique proposed in this
paper will be able to be applied in the future in other cases of using Grammatical Evolution.
To evaluate the performance of the modified technique it was evaluated on a extended
series of classification and regression problems found in the relevant literature and the
results seem to be promising.

In the same direction, many researchers have published papers in neural network
initialization or construction, such as the usage of decision trees to initialize the weights
of a neural network [53], initialization of the weights using Cauchy’s inequality [54], and
the application of discriminant learning [55]. Also, the issue of constructing the structure
of artificial neural networks has been discussed in various papers, such as incorporation
of genetic algorithms [56], construction and pruning of the weights [57], application of
cellular automata [58], etc.

This paper has the following sections: in Section 2 the Grammatical Evolution pro-
cedure is discussed and the proposed modification is described. Section 3 presents the
datasets used in the experiments as well as the results from the conducted experiments,
and finally Section 4 provides some conclusions and guidelines for future work.

2. The Proposed Method

This section starts with a brief description of the Grammatical Evolution process and
the grammar used, then the modified Simulated Annealing method is presented, and finally
the artificial neural network construction algorithm will be presented.

2.1. The Grammatical Evolution Method

The chromosomes of Grammatical Evolution stand for production rules of the given
BNF grammar. BNF grammars are usually defined as a tuple G = (N, T, S, P), where:

• N is the set of non-terminal symbols.
• T is the set of terminal symbols.
• S represents that start symbol of the grammar with S ∈ N.
• P is the production rules of the grammar. Usually these rules are in the form A → a or

A → aB, A, B ∈ N, a ∈ T.



Future Internet 2024, 16, 172 3 of 20

The BNF grammar is extended by using enumeration in the the production rules. The gram-
mar shown in Figure 1 is used to construct artificial neural networks expressed in the form:

N
(−→x ,−→w

)
=

H

∑
i=1

w(d+2)i−(d+1)σ

(
d

∑
j=1

xjw(d+2)i−(d+1)+j + w(d+2)i

)
(1)

where the parameter H represents the number of processing units (hidden nodes ) for
the neural network and the value d represents the of the vector −→x . Also, the vector −→w
represents the vector of parameters for the neural network. The function sig(x) represents
the sigmoid function σ(x) defined as:

σ(x) =
1

1 + exp(−x)
(2)

The notation <> is used for the non-terminal symbols of the grammar. The sequence
numbers of the production rules are inside the parentheses of the extended grammar.
The constant d stands for the dimension of the provided dataset. The production of valid
expressions initiates from the symbol S and using a series of steps, creates a program
by replacing non-terminal symbols with the right hand of the selected production rule.
Grammatical Evolution selects production rules using the following scheme:

• Obtain the next element V from the provided chromosome.
• The production rule is selected according to the scheme

Rule = V mod NR (3)

where NR is the total number of production rules for the current non-terminal symbol.

Figure 1. The used grammar in neural network construction.
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2.2. The Modified Simulated Annealing Algorithm

The current work utilizes a modified version of the Simulated Annealing algorithm
as a local search procedure. Simulated Annealing was chosen as a local search method,
since it offers the possibility of representing the considered solutions in an integer form,
which is critical for the Grammatical Evolution representation of chromosomes. In addition,
this method has been distinguished for its easy adaptation to a multitude of problems but
also for its ability to find the total minimum of functions through the point acceptance
mechanism at high temperatures. In the present work, the Simulated Annealing will initiate
from the current representation of a chromosome and gradually try to find other nearby
representations that might lead to lower values of the fitness value. The main steps of this
procedure are shown in Algorithm 1.

Algorithm 1 The modified version of the Simulated Annealing algorithm
procedure siman(x0)

1. Set k = 0, T0 > 0, ϵ > 0, rT > 0, rT < 1..
2. Set Neps > 0, a positive integer indicated the number of samples drawn in every

iteration.
3. Set g and R, positive integer values.
4. Set xb = x0, fb = f (xb).
5. For i = 1 . . . Neps

(a) Set y = xk
(b) For j = 1 . . . g

i. Set p = rand(1, size(x0)). The variable p indicates a randomly selected
position in y.

ii. Set yp = yp + rand(−R, R)

(c) EndFor
(d) If f (y) ≤ f (xk) then xk+1 = y

(e) Else Set xk+1 = y with probability min
{

1, exp
(
− f (y)− f (xk)

Tk

)}
(f) If f (y) < fb then xb = y, fb = f (y).

6. EndFor
7. Set Tk+1 = TkrT
8. Set k = k + 1.
9. If Tk ≤ ϵ terminate
10. Goto step 5.
11. Return xb

end siman

The method accepts the chromosome x0 as a starting point and, in each iteration, ran-
domly generates chromosomes around it. The parameter g controls the number of changes
that will be made to the chromosome and the parameter R controls the radius of these
changes. The parameter T represents the temperature of the algorithm. The temperature
starts at extremely high values and progressively decreases linearly. In the early stages and
at high temperatures, the algorithm may accept points that may have higher values of the
fitness function, but as the temperature decreases, this probability also decreases. The used
Simulated Annealing variant is also shown graphically as a flow chart in Figure 2.
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Figure 2. Flowchart of the used Simulated Annealing variant.

2.3. The Neural Network Construction Algorithm

The main steps of the algorithm used to construct artificial neural networks with
Grammatical Evolution are listed below:

1. Initialization step:

(a) Set Ng as the maximum number of generations allowed.
(b) Set Nc as the number of chromosomes.
(c) Set ps as the selection rate and pm as the mutation rate.
(d) Define as Li the number of generations that should elapse before applying the

local optimization technique.
(e) Define as Lc the number of chromosomes involved in the local search proce-

dure.
(f) Initialize the chromosomes. Each chromosome is considered as a series of

randomly initialized integers.
(g) Set iter=0.
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2. Genetic step:

(a) For i = 1, . . . , Ng do

i. Create for every chromosome a neural network Ci using the Grammat-
ical Evolution procedure of Section 2.1 and the associated grammar
given in Figure 1.

ii. Calculate the fitness fi on the train set of the objective problem as:

fi =
M

∑
j=1

(
Ci
(−→x j

)
− tj

)2 (4)

where the set
(−→xj , tj

)
, j = 1, ...M is train dataset, with ti being the

actual output for the point −→xi .
iii. Perform the selection procedure. Initially, the chromosomes are sorted

according to their fitness values. The best (1 − ps)× Nc chromosomes
are transferred to the next generation. The remaining chromosomes
will be replaced by offspring created during the crossover procedure.

iv. Perform the crossover procedure. The crossover procedure produces
ps × Nc offspring. For every pair of produced offspring z̃ and w̃, there
are two offspring (z, w). The selection is performed using tourna-
ment selection. The new offspring are produced using the one-point
crossover procedure. An example of the one-point crossover procedure
is shown in Figure 3.

v. Perform the mutation procedure. For each element of every chromo-
some, a random number r ∈ [0, 1] is drawn. The corresponding element
is altered if r ≤ pm.

(b) EndFor

3. Local Search step:

(a) If iters mod Li = 0, Then

i. Create a set of randomly LC chosen chromosomes from the genetic
population. Denote this set as LS .

ii. For every Xk in LS apply the modified Simulated Annealing algorithm
given in Algorithm 1: Xk = siman(Xk)

4. set iter = iter + 1. If iter > Ng goto Evaluation step else goto Genetic step.
5. Evaluation step:

(a) Obtain the chromosome with the lowest fitness value and create the associated
neural network C∗.

(b) Evaluate the neural network C∗ in the test set of the underlying dataset and
report the results.

Figure 3. An example of the one-point crossover method, used in the Grammatical Evolution procedure.
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3. Results

The current work was evaluated by executing a series of experiments on some clas-
sification and regression datasets, which are commonly used in the relevant literature.
The obtained results were compared with other machine learning techniques. These
datasets can be downloaded freely from the following websites:

1. The UCI dataset repository, https://archive.ics.uci.edu/ml/index.php (accessed on
20 March 2024) [59];

2. The Keel repository, https://sci2s.ugr.es/keel/datasets.php (accessed on 20 March
2024) [60];

3. The Statlib URL http://lib.stat.cmu.edu/datasets/ (accessed on 20 March 2024).

3.1. Classification Datasets

The following series of classification datasets was used in the conducted experiments:

1. Appendictis a medical dataset, provided in [61].
2. Australian dataset [62], which is related to credit card transactions.
3. Balance dataset [63], a dataset related to psychological experiments.
4. Circular dataset, an artificial dataset that contains 1000 examples.
5. Cleveland dataset, a medical dataset used in a series of papers [64,65].
6. Dermatology dataset [66], which is a medical dataset about dermatological deceases.
7. Ecoli dataset, a dataset about protein localization sites [67].
8. Haberman dataset, related to breast cancer.
9. Heart dataset [68], a medical dataset about heart diseases.
10. Hayes roth dataset [69], which is a human subjects study.
11. HouseVotes dataset [70], related to votes collected from U.S. House of Representatives

Congressmen.
12. Ionosphere dataset, which was used in experiments related to the ionosphere [71,72].
13. Liverdisorder dataset [73], a medical dataset related to liver disorders.
14. Mammographic dataset [74], a medical dataset related to breast cancer.
15. Parkinsons dataset, a medical dataset related to Parkinson’s disease (PD) [75].
16. Pima dataset [76], a medical dataset related to the diabetes presence.
17. Popfailures dataset [77], a dataset related to climate measurements.
18. Regions2 dataset, medical dataset related to hepatitis C [78].
19. Saheart dataset [79]. This dataset is used to detect heart diseases.
20. Segment dataset [80], related to image processing.
21. Student dataset [81], related to data collected in Portuguese schools.
22. Transfusion dataset [82], this dataset was taken from the Blood Transfusion Service

Center in Hsin-Chu City in Taiwan.
23. Wdbc dataset [83], a medical dataset related cancer detection.
24. Wine dataset. This is a dataset used to detect the quality of a series of wines [84,85].
25. Eeg datasets, a dataset related to EEG measurements [86]. From this dataset the

following cases were used: Z_F_S, Z_O_N_F_S, ZO_NF_S, and ZONF_S.
26. Zoo dataset [87], related to animal classification.

3.2. Regression Datasets

The following regression datasets were used in the conducted experiments:

1. Abalone dataset [88], a dataset related to the prediction of age of abalones.
2. Airfoil dataset, a dataset proposed by NASA [89].
3. Baseball dataset, related with the income of baseball players.
4. Concrete dataset [90], which is a civil engineering dataset.
5. Dee dataset. This dataset has measures from the price of electricity.
6. HO dataset, downloaded from the STALIB repository.
7. Housing dataset, mentioned in [91].
8. Laser dataset. This is a dataset related to laser experiments

https://archive.ics.uci.edu/ml/index.php
https://sci2s.ugr.es/keel/datasets.php
http://lib.stat.cmu.edu/datasets/
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9. LW dataset, related to risk factors associated with low-weight babies.
10. MORTGAGE dataset, a dataset related to economic measurements from the USA.
11. PL dataset, provided from the STALIB repository.
12. SN dataset, provided from the STALIB repository.
13. Treasury dataset, a dataset related to economic measurements from the USA.
14. TZ dataset, provided from the STALIB repository.

3.3. Experimental Results

For the execution of the experiments, code written in ANSI C++ was used with the
help of the programming environment Optimus. The software is freely available from
https://github.com/itsoulos/OPTIMUS/ (accessed on 20 March 2024). The experiments
were conducted 30 times. In every execution different seed was used for the random
number generator and the function drand48() of the C programming language was used.
The validation of the results was performed using the technique of 10-fold cross validation.
The average classification error is reported for the case of classification datasets and the
average regression error for the case of regression datasets. These errors are measured on
the corresponding test set. The values for the experimental parameters are displayed in
Table 1. The experimental results for the classification datasets are outlined in Table 2 and
the results for the regression datasets are shown in Table 3. The following applies to the
tables with the experimental results:

1. The column DATASET denotes the used dataset.
2. The column ADAM denotes the application of the ADAM optimization method [92]

in an artificial neural network with H = 10 processing nodes.
3. The column NEAT stands for the usage of NEAT method (NeuroEvolution of Aug-

menting Topologies ) [93].
4. The column MLP stands for the experimental results of an artificial neural network

with H = 10 processing nodes. The neural network was trained using a Genetic
Algorithm and the BFGS local optimization method [94].

5. The column RBF represents the application of an RBF network with H = 10 processing
nodes in each dataset.

6. The column NNC denotes the usage of the original Neural Construction technique,
which was constructed with Grammatical Evolution.

7. The column NNC-S denotes the usage of the proposed local optimization procedure
in the Neural Construction technique.

8. The line AVERAGE denotes the average classification or regression error.

Table 1. The values for the parameters used in the conducted experiments.

Name Purpose Value

Nc Number of chromosomes 500

Ng Number of generations 200

ps Selection rate 0.10

pm Mutation rate 0.05

g Number of random changes 10

R Range of random changes 10

ϵ Small value used in comparisons 10−5

Neps Number of random samples 200

T Initial temperature 108

rT Rate of decrease in temperature 0.8

https://github.com/itsoulos/OPTIMUS/
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Table 2. Experimental results for the series of machine learning methods for the classification datasets.
The numbers in cells are the average classification errors as measured in the test set. The bold values
it is and indication if the suggested method outperforms the original NNC method.

Dataset ADAM NEAT GENETIC RBF NNC NNC-S

APPENDICITIS 16.50% 17.20% 18.10% 12.23% 14.40% 14.60%

AUSTRALIAN 35.65% 31.98% 32.21% 34.89% 14.46% 14.90%

BALANCE 7.87% 23.84% 8.97% 33.42% 22.13% 7.66%

CIRCULAR 3.94% 34.07% 5.99% 6.30% 14.26% 7.88%

CLEVELAND 67.55% 53.44% 51.60% 67.10% 49.93% 48.59%

DERMATOLOGY 26.14% 32.43% 30.58% 62.34% 24.80% 13.11%

ECOLI 64.43% 43.24% 49.38% 59.50% 48.82% 44.88%

HABERMAN 29.00% 24.04% 28.66% 25.10% 28.33% 28.73%

HAYES ROTH 59.70% 50.15% 56.18% 64.36% 37.23% 28.08%

HEART 38.53% 39.27% 28.34% 31.20% 15.78% 16.00%

HOUSEVOTES 7.48% 10.89% 6.62% 6.13% 3.52% 3.74%

IONOSPHERE 16.64% 19.67% 15.14% 16.22% 11.86% 10.03%

LIVERDISORDER 41.53% 30.67% 31.11% 30.84% 32.97% 32.82%

MAMMOGRAPHIC 46.25% 22.85% 19.88% 21.38% 18.22% 16.58%

PARKINSONS 24.06% 18.56% 18.05% 17.41% 13.21% 12.26%

PIMA 34.85% 34.51% 32.19% 25.78% 28.47% 25.26%

POPFAILURES 5.18% 7.05% 5.94% 7.04% 6.83% 5.52%

REGIONS2 29.85% 33.23% 29.39% 38.29% 25.87% 24.47%

SAHEART 34.04% 34.51% 34.86% 32.19% 30.80% 29.52%

SEGMENT 49.75% 66.72% 57.72% 59.68% 54.89% 39.38%

STUDENT 5.13% 12.50% 5.61% 7.52% 5.70% 4.52%

TRANSFUSION 25.68% 24.87% 25.84% 27.36% 25.30% 24.33%

WDBC 35.35% 12.88% 8.56% 7.27% 7.27% 5.59%

WINE 29.40% 25.43% 19.20% 31.41% 13.53% 11.47%

Z_F_S 47.81% 38.41% 10.73% 13.16% 15.30% 7.93%

Z_O_N_F_S 78.79% 79.08% 64.81% 60.40% 50.48% 40.42%

ZO_NF_S 47.43% 43.75% 8.41% 9.02% 15.22% 6.60%

ZONF_S 11.99% 5.44% 2.60% 4.03% 3.14% 2.36%

ZOO 14.13% 20.27% 16.67% 21.93% 9.10% 7.20%

AVERAGE 32.23% 30.72% 24.94% 28.74% 22.13% 18.43%
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Table 3. Experimental results as measured on the regression datasets. The numbers in cells denote
the average regression errors for the associated machine learning method, as measured on the test set.
The bold values it is and indication if the suggested method outperforms the original NNC method.

Dataset ADAM NEAT GENETIC RBF NNC NNC-S

ABALONE 4.30 9.88 7.17 7.37 5.11 4.95

AIRFOIL 0.005 0.067 0.003 0.27 0.003 0.003

BASEBALL 77.90 100.39 103.60 93.02 59.40 57.30

CONCRETE 0.078 0.081 0.0099 0.011 0.008 0.006

DEE 0.63 1.512 1.013 0.17 0.26 0.23

HO 0.035 0.167 2.78 0.03 0.016 0.012

HOUSING 80.20 56.49 43.26 57.68 25.56 18.82

LASER 0.03 0.084 0.59 0.024 0.026 0.015

LW 0.028 0.17 1.90 1.14 0.97 0.038

MORTGAGE 9.24 14.11 2.41 1.45 0.29 0.12

PL 0.117 0.097 0.28 0.083 0.046 0.033

SN 0.026 0.174 2.95 0.90 0.026 0.024

TREASURY 11.16 15.52 2.93 2.02 0.47 0.18

TZ 0.07 0.097 5.38 4.10 0.06 0.028

AVERAGE 13.12 14.20 12.45 12.02 6.60 5.84

The above techniques were used in the experiments as they are widespread in machine
learning, such as the Adam method [95,96] and because they have a similar complexity to
the present technique, such as Genetic Algorithms. As is evident, the proposed modification
improves the efficiency of the proposed method in the majority of used datasets. This
improvement on some datasets could be as much as an 80% percent error reduction on
the test set. In all cases, the simple neural network construction technique outperforms
other machine learning techniques and this is evident from the average result (the last
row in experimental tables). However, the proposed method significantly reduces the
classification error or the error in the data fitting sets in most of the cases where it was used.
In fact, in order to show in which cases there was a reduction in the error, bold marking is
used in the tables of results.

Figure 4 is a scatter plot that provides a detailed comparative analysis of classification
error percentages for six distinct machine learning and optimization algorithms: ADAM,
NEAT, GENETIC, RBF, NNC, and NNC-S. Each point on the plot represents the outcome
of an individual run of a model, thus showcasing the range of variation in the error rates
associated with these classification methods. The vertical dispersion of points for each
method reflects the spread of error rates, which is critical for evaluating the reliability
of each algorithm. The medians of these error rates are indicated by horizontal lines
intersecting the clusters of dots, offering a snapshot of each algorithm’s central tendency in
performance. The asterisk-based notation above the clusters denotes statistical significance
levels: one asterisk (*) signifies a p-value less than 0.05, two asterisks (**) denote p < 0.01,
three asterisks (***) represent p < 0.001, and four asterisks (****) indicate an extremely low
p-value of less than 0.0001, suggesting strong evidence against the null hypothesis. Of note
is the performance of the NNC-S method, which not only shows a significantly lower
median error rate when compared to the NNC method but also displays a notably tighter
cluster of data points. This implies that the NNC-S method not only tends to be more
accurate on average but also provides greater consistency in its error rates across different
runs, underscoring its robustness as a classification tool.
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Figure 4. Scatter plot illustrating the variability and median classification error rates for six machine
learning algorithms, with statistical significance denoted by asterisks. The asterisk-based notation
above the clusters denotes statistical significance levels. The NNC-S method demonstrates notably
lower error rates, as evidenced by the high statistical significance relative to other methods, which
may indicate its superior performance in classification tasks.

Building on the previous analysis of classification methods, Figure 5 extends the
evaluation to regression algorithms, providing a comparative study of regression error
rates for the same six methods: ADAM, NEAT, GENETIC, RBF, NNC, and NNC-S. Each
data point reflects the regression error from a specific trial, with the array of points for
each method revealing the range of performance outcomes. The median error rates are
again represented by horizontal lines across the clusters of dots, serving as a summary
statistic that facilitates a direct comparison of the method’s central performance trends.
The notation of statistical significance is consistent with the previous figure, where asterisks
convey the p-value levels, identifying statistically meaningful differences in performance
between the methods.

This plot reveals that the NNC-S method maintains its superior performance in the
context of regression tasks, demonstrating lower median regression errors compared to the
other methods. Significantly, it achieves a markedly lower median regression error than
its predecessor, NNC, as indicated by the blue dots and supported by the three asterisks
(***). This pattern of results underscores the broader applicability of the NNC-S method’s
local optimization enhancements, not only in classification accuracy but also in reducing
regression errors.

Additionally, the effectiveness and the robustness of the proposed method was evalu-
ated by performing additional experiments with different values for the critical parameter
g of the suggested Simulated Annealing variant. This parameter is used to control the
number of random changes performed on any given chromosome. The experimental results
in the classification datasets are shown in Table 4. Clearly, no significant variation in the
performance of the proposed technique occurs when this critical parameter is varied.
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Figure 5. Scatter plot of regression error rates for various regression methods, demonstrating the
distribution, median error rates, and statistical significance of differences in performance. The asterisk-
based notation above the clusters denotes statistical significance levels The NNC-S method, shows
statistically significant improvements in accuracy over the NNC method, underlining the efficacy of
local optimization enhancements in regression tasks. The y-axis is presented on a logarithmic scale to
clearly visualize the range of error magnitudes across methods.

Continuing from the previous analysis, Figure 6 presents the classification error rates
for variations of the NNC-S algorithm with differing values of the parameter g. The plot
aims to evaluate whether changes in the parameter g led to statistically significant differ-
ences in the algorithm’s classification performance. The horizontal bars on the plot indicate
the median classification error for each variation of the NNC-S method, providing a clear
comparison across the different parameter values. The statistical annotations (“ns” for not
significant, “**” for p < 0.01, and “***” for p < 0.001) are used to denote the statistical signifi-
cance of the differences between the groups. It appears that some variations, particularly
between NNC-S (g = 2) and NNC-S (g = 5), as well as between NNC-S (g = 10) and
NNC-S (g = 20), do not show significant differences in performance (denoted by “ns”).
In contrast, other comparisons do reveal significant differences, suggesting that certain
values of g can indeed impact the classification error rates of the NNC-S algorithm.

In addition, in the graph of Figure 7, a comparison is made for the average execution
time of each experiment for the classification datasets. The comparison was made between
the initial method (denoted as NNC in the graph) as well as the various cases of the
proposed technique by changing the parameter g to 5, 10, and 20. As expected, adding the
local minimization technique to the Grammatical Evolution method significantly increases
the execution time of the method; however, this increase remains almost constant for
different values of the critical parameter g. Moreover, by using parallel techniques that
appear in the relevant literature this increase in execution time could be reduced.
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Figure 6. This figure examines the impact of varying the parameter g on the NNC-S algorithm’s classi-
fication errors, revealing that while some parameter adjustments do not significantly affect performance,
others result in noticeable differences, as indicated by the statistical significance annotations.

Table 4. Experiments with the parameter g used in the modified Simulated Annealing method.

Datatset NNC-S (g = 2) NNC-S (g = 5) NNC-S (g = 10) NNC-S (g = 20)

APPENDICITIS 14.90% 15.00% 14.60% 14.50%

AUSTRALIAN 14.59% 14.85% 14.90% 15.04%

BALANCE 8.53% 7.68% 7.66% 7.56%

CIRCULAR 10.49% 8.81% 7.88% 7.50%

CLEVELAND 48.41% 48.31% 48.59% 48.10%

DERMATOLOGY 15.09% 13.80% 13.11% 13.29%

ECOLI 45.30% 45.12% 44.88% 44.36%

HABERMAN 27.80% 27.97% 28.73% 27.83%

HAYES ROTH 29.85% 28.85% 28.08% 29.15%

HEART 16.11% 15.04% 16.00% 14.78%

HOUSEVOTES 3.70% 4.22% 3.74% 3.70%

IONOSPHERE 10.54% 10.09% 10.03% 10.00%

LIVERDISORDER 31.41% 33.15% 32.82% 33.29%

MAMMOGRAPHIC 17.16% 17.25% 16.58% 16.99%
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Table 4. Cont.

Datatset NNC-S (g = 2) NNC-S (g = 5) NNC-S (g = 10) NNC-S (g = 20)

PARKINSONS 12.32% 12.89% 12.26% 12.11%

PIMA 26.12% 25.96% 25.26% 25.92%

POPFAILURES 5.58% 6.00% 5.52% 5.68%

REGIONS2 24.71% 24.05% 24.47% 24.66%

SAHEART 30.04% 29.67% 29.52% 29.07%

SEGMENT 46.94% 42.37% 39.38% 41.19%

STUDENT 4.60% 4.73% 4.52% 4.48%

TRANSFUSION 24.28% 24.34% 24.33% 24.03%

WDBC 6.23% 6.22% 5.59% 5.68%

WINE 12.59% 11.30% 11.47% 9.24%

Z_F_S 9.57% 9.60% 7.93% 8.10%

Z_O_N_F_S 46.04% 43.36% 40.42% 41.54%

ZO_NF_S 9.69% 8.54% 6.60% 6.44%

ZONF_S 2.58% 2.28% 2.36% 2.36%

ZOO 6.90% 7.00% 7.20% 7.70%

AVERAGE 19.38% 18.91% 18.43% 18.42%

Furthermore, another experiment was executed by varying the parameter R of the
proposed Simulated Annealing variant. This parameter controls the range of changes
performed in any given chromosome. The results for this experiment are shown in Table 5.
This time the method appeared quite robust in its performance, without large variations in
the error as measured in the test set.

Table 5. Experiments with the parameter R of the modified Simulated Annealing algorithm. The pa-
rameter g was set to 10.

Dataset NNC-S (R = 2) NNC-S (R = 5) NNC-S (R = 10) NNC-S (R = 20)

APPENDICITIS 14.40% 14.90% 14.60% 15.20%

AUSTRALIAN 14.77% 14.78% 14.90% 14.70%

BALANCE 7.66% 7.74% 7.66% 7.66%

CIRCULAR 8.39% 8.29% 7.88% 7.78%

CLEVELAND 49.45% 49.28% 48.59% 47.11%

DERMATOLOGY 14.09% 12.54% 13.11% 11.34%

ECOLI 44.24% 46.30% 44.88% 44.48%

HABERMAN 27.33% 28.10% 28.73% 28.04%

HAYES ROTH 29.15% 27.92% 28.08% 26.46%

HEART 15.67% 15.52% 16.00% 15.15%

HOUSEVOTES 4.00% 3.62% 3.74% 4.52%

IONOSPHERE 10.14% 10.03% 10.03% 10.71%

LIVERDISORDER 32.80% 32.12% 32.82% 32.29%
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Table 5. Cont.

Dataset NNC-S (R = 2) NNC-S (R = 5) NNC-S (R = 10) NNC-S (R = 20)

MAMMOGRAPHIC 17.18% 16.78% 16.58% 16.62%

PARKINSONS 12.68% 12.16% 12.26% 11.95%

PIMA 25.72% 25.11% 25.26% 26.33%

POPFAILURES 5.87% 5.72% 5.52% 5.58%

REGIONS2 23.55% 24.04% 24.47% 24.08%

SAHEART 29.48% 28.96% 29.52% 29.24%

SEGMENT 40.32% 40.23% 39.38% 40.82%

STUDENT 4.18% 4.50% 4.52% 4.78%

TRANSFUSION 24.60% 24.12% 24.33% 24.36%

WDBC 6.09% 5.68% 5.59% 5.46%

WINE 11.00% 10.30% 11.47% 9.41%

Z_F_S 8.33% 8.30% 7.93% 8.50%

Z_O_N_F_S 41.70% 43.42% 40.42% 41.44%

ZO_NF_S 7.58% 7.72% 6.60% 7.10%

ZONF_S 2.50% 2.54% 2.36% 3.00%

ZOO 6.80% 6.30% 7.20% 6.10%

AVERAGE 18.61% 18.52% 18.43% 18.28%

Figure 7. Time comparison between the initial method and the proposed modifications.

As a practical application of the suggested method, we consider the dataset proposed
in [97], which relates alcohol consumption and EEG recordings. The proposed method was
applied on this dataset and it is compared against the original neural network construction
technique; the results are outlined in Figure 8.
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Figure 8. Comparison between the proposed method and the original Neural Construction method
for the alcohol consumption dataset.

Once again, the present method outperforms the original artificial neural network
construction technique and the performance appears to be stable as the critical parameter
g grows.

4. Conclusions

In the current work, an extension of the original Grammatical Evolution has been
proposed, which was applied in the Neural Construction method. In this extension,
an application of a modified optimization method was suggested, in order to improve
the efficiency of the underlying technique. The proposed optimization algorithm was a
variant of the Simulated Annealing method, which was applied on a series of chromosomes
that was randomly from the Grammatical Evolution procedure. This method was chosen
because of its widespread use in many applications and because of its ability to handle
integer representations, since the chromosomes in Grammatical Evolution are vectors of
integers. Of course, other local optimization techniques could be incorporated, such as
tabu search [98] or hill climbing [99] as feature extensions of the proposed method.

The proposed modification was applied to the neural network construction method
and its efficiency was measured on some commonly used classification and regression
datasets. Based on the experimental results, it has become clear that the proposed variant
significantly improves the performance of the technique both on classification datasets
and on data fitting datasets. Also, the effectiveness and the robustness of the proposed
modification were measured using experiments with different values of some critical
parameters of the current Simulated Annealing variant. These experiments indicated that
the method tends to be robust, since the experimental results do not depend on the selection
of any critical parameter of the Simulated Annealing variant.

The present modification could be applied to other techniques that use Grammatical
Evolution without significant differences and, moreover, it could also be used to optimize
functions either without constraints or with constraints in similar techniques that have
been proposed in recent years. However, as was seen from the experimental results,
the addition of the Simulated Annealing technique significantly increases the required
execution time and it is necessary to use techniques that are not particularly demanding in
time or to search for termination techniques of the proposed Simulated Annealing variant
that take advantage of its particular characteristics. Also, a field of research could be the
search for more effective techniques to reduce the critical temperature factor used in the
Simulated Annealing.
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Future work may include application of the local search procedure in other Grammat-
ical Evolution applications, such as feature construction, creation of classification rules,
etc. Also, the proposed process can be significantly accelerated by the use of parallel
optimization techniques [100], which take advantage of modern computational structures.
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